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Generating functions play an important role in the investigation of various useful properties of the sequences which they generate.
In this paper, we aim to establish certain generating functions for the incomplete hypergeometric functions introduced by Srivastava
et al. (2012). All the derived results in this paper are general and can yield a number of (known and new) results in the theory of
generating functions.

1. Introduction and Definitions

A lot of research work has recently come up on the study
and development of the familiar incomplete Gamma type
functions like 𝛾(𝑠, 𝑥) and Γ(𝑠, 𝑥) given in ((1)) and ((2)),
respectively. The study of incomplete Gamma functions has
a very long history (see, e.g., [1]) and now stands on fairly
firm footing through the research contributions of various
authors (see, e.g., [2–17]). Incomplete Gamma functions are
important special functions and their closely related ones
are widely used in physics and engineering; therefore, they
are of interest to physicists, engineers, statisticians, and
mathematicians.

The theory of the incomplete Gamma functions, as a
part of the theory of confluent hypergeometric functions, has
received its first systematic exposition by Tricomi [18] in the
early 1950s.The familiar incomplete Gamma functions 𝛾(𝑠, 𝑥)
and Γ(𝑠, 𝑥) are defined, respectively, by

𝛾 (𝑠, 𝑥) := ∫

𝑥

0

𝑡
𝑠−1

𝑒
−𝑡

𝑑𝑡, (R (𝑠) > 0; 𝑥 ≥ 0) , (1)

Γ (𝑠, 𝑥) := ∫

∞

𝑥

𝑡
𝑠−1

𝑒
−𝑡

𝑑𝑡, (𝑥 ≥ 0; R (𝑠) > 0 when 𝑥 = 0) .

(2)

The following decomposition formula holds:

𝛾 (𝑠, 𝑥) + Γ (𝑠, 𝑥) = Γ (𝑠) , (R (𝑠) > 0) , (3)

where Γ(𝑠) is the familiar Gamma function defined by

Γ (𝑠) := ∫

∞

0

𝑡
𝑠−1

𝑒
−𝑡

𝑑𝑡, (R (𝑠) > 0) . (4)

Historically, ((1)) and ((2)) were first studied in 1877 for
𝑥 = 1 by Prym [1]. The functions ((1)) and ((2)) are also
referred to as Prym’s functions. For general 𝑥 > 0 (even for
𝑥 < 0), the function ((2)) appears in Exercises de Calcul
Integral by Legendre [19] and in some of his later works.

The function Γ(𝑠, 𝑥) can be expressed in terms of Tricomi’s
confluent hypergeometric function Ψ(𝑎, 𝑐; 𝑥) as follows (see
[6, page 266, Equation 6.9.2(21)]):

Γ (𝑠, 𝑥) := 𝑒
−𝑥

Ψ (1 − 𝑠, 1 − 𝑠; 𝑥) . (5)
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In terms of the Gamma function Γ(𝑧), Pochhammer
symbol (𝜆)

𝑛
is defined (for 𝜆 ∈ C) by (see, e.g., [10, page 2

and pages 4–6])

(𝜆)
𝑛
:= {

1, (𝑛 = 0)

𝜆 (𝜆 + 1) ⋅ ⋅ ⋅ (𝜆 + 𝑛 − 1) , (𝑛 ∈ N := {1, 2, 3, . . .})

=
Γ (𝜆 + 𝑛)

Γ (𝜆)
, (𝜆 ∈ C \ Z

−

0
) ,

(6)

where C and Z−
0
denote the sets of complex numbers and

nonpositive integers, respectively.
Recently, Srivastava et al. [16] introduced and studied

some fundamental properties and characteristics of a family
of the following twopotentially useful generalized incomplete
hypergeometric functions defined as follows:

𝑝
𝛾
𝑞
[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

𝑏
1
, . . . , 𝑏

𝑞
;
𝑧]

:=

∞

∑

𝑛=0

(𝑎
1
; 𝑥)
𝑛
(𝑎
2
)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑝
)
𝑛

(𝑏
1
)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑞
)
𝑛

⋅
𝑧
𝑛

𝑛!
,

(7)

𝑝
Γ
𝑞
[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

𝑏
1
, . . . , 𝑏

𝑞
;
𝑧]

:=

∞

∑

𝑛=0

[𝑎
1
; 𝑥]
𝑛
(𝑎
2
)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑝
)
𝑛

(𝑏
1
)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑞
)
𝑛

⋅
𝑧
𝑛

𝑛!
,

(8)

where (𝑎
1
; 𝑥)
𝑛
and [𝑎

1
; 𝑥]
𝑛
are certain interesting generaliza-

tions of the Pochhammer symbol (𝜆)
𝑛
which are defined, in

terms of the incomplete Gamma type functions 𝛾(𝑠, 𝑥) and
Γ(𝑠, 𝑥) given in ((1)) and ((2)), by

(𝜆; 𝑥)] :=
𝛾 (𝜆 + ], 𝑥)

Γ (𝜆)
, (𝜆, ] ∈ C; 𝑥 ≥ 0) ,

[𝜆; 𝑥]] :=
Γ (𝜆 + ], 𝑥)

Γ (𝜆)
, (𝜆, ] ∈ C; 𝑥 ≥ 0) .

(9)

These incomplete Pochhammer symbols (𝜆; 𝑥)] and
[𝜆; 𝑥]], which were defined by Srivastava et al. [16], like ((3)),
also satisfy the following decomposition relation:

(𝜆; 𝑥)] + [𝜆; 𝑥]] = (𝜆)], (𝜆, ] ∈ C; 𝑥 ≥ 0) . (10)

Remark 1. As already mentioned by Srivastava et al. [16,
Remark 7] (see also [17, page 3220, Remark]), since

󵄨󵄨󵄨󵄨(𝜆; 𝑥)𝑛
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨(𝜆)𝑛
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨[𝜆; 𝑥]𝑛
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨(𝜆)𝑛
󵄨󵄨󵄨󵄨 ,

(𝑛 ∈ N; 𝜆 ∈ C; 𝑥 ≥ 0) ,

(11)

the precise (sufficient) conditions under which the infinite
series in the definitions ((7)) and ((8)) would converge abso-
lutely can be derived from those that are well-documented

in the case of the generalized hypergeometric function
𝑝
𝐹
𝑞

(𝑝, 𝑞 ∈ N) (see, for details, [20, pages 72-73] and [11,
page 20]; see also [21–23]). Indeed, in their special case
when 𝑥 = 0, both

𝑝
𝛾
𝑞
(𝑝, 𝑞 ∈ N) and

𝑝
Γ
𝑞
(𝑝, 𝑞 ∈ N)

would reduce immediately to the extensively investigated
generalized hypergeometric function

𝑝
𝐹
𝑞
(𝑝, 𝑞 ∈ N) (see, e.g.,

[20, Chapter 5]; see also [10, Section 1.5]). Furthermore, as an
immediate consequence of the definitions ((7)) and ((8)), we
have the following decomposition formula:

𝑝
𝛾
𝑞
[
(𝑎
1
, 𝑥) 𝑎
2
, . . . , 𝑎

𝑝
;

𝑏
1
, . . . , 𝑏

𝑞
;

𝑧]

+
𝑝
Γ
𝑞
[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

𝑏
1
, . . . , 𝑏

𝑞
;

𝑧]

=
𝑝
𝐹
𝑞
[
𝑎
1
, . . . , 𝑎

𝑝
;

𝑏
1
, . . . , 𝑏

𝑞
;
𝑧] ,

(12)

in terms of the familiar generalized hypergeometric function
𝑝
𝐹
𝑞
(𝑝, 𝑞 ∈ N).

Generating functions play an important role in the inves-
tigation of various useful properties of the sequences which
they generate. They are used in finding certain properties
and formulas for numbers and polynomials in a wide variety
of research subjects, indeed, in modern combinatorics. For
a systematic introduction to, and several interesting (and
useful) applications of, the various methods of obtaining
linear, bilinear, bilateral, or mixed multilateral generating
functions for a fairly wide variety of sequences of special
functions (and polynomials) in one, two, and more variables,
among much abundant literature, we refer to the extensive
works by Srivastava andManocha [24] andAgarwal andKoul
[25]. In this regard, in fact, a remarkably large number of
generating functions involving a variety of special functions
have been developed by many authors (see, e.g., [24, 26];
see also [27]). Also many generating functions containing
the incomplete hypergeometric functions ((7)) and ((8)) have
been presented (see, e.g., [17, Corollary 3]). Here, motivated
mainly by the works of both Chen and Srivastava [28]
and Srivastava and Cho [17], we present certain generating
functions involving the incomplete hypergeometric functions
((7)) and ((8)). Furthermore, it should be mentioned in
passing that our results in the present paper are established
by using a different method employed by [17].

2. Generating Functions for the Incomplete
Hypergeometric Functions

In this section, we establish certain generating functions
for the incomplete hypergeometric functions ((7)) and ((8))
asserted byTheorem 2.
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Theorem 2. The following generating functions hold true:
∞

∑

𝑘=0

(
𝛼 + 𝑘 − 1

𝑘
)
𝑝
𝛾
𝑞+1

[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

1 − 𝛼 − 𝑘, 𝑏
1
, . . . , 𝑏

𝑞
;
𝑧] 𝑡
𝑘

= (1 − 𝑡)
−𝛼

𝑝
𝛾
𝑞+1

[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

1 − 𝛼, 𝑏
1
, . . . , 𝑏

𝑞
;
𝑧 (1 − 𝑡)] ,

(𝑥 ≥ 0; 𝛼 ∈ C; |𝑡| < 1) ,

(13)

∞

∑

𝑘=0

(
𝛼 + 𝑘 − 1

𝑘
)
𝑝
Γ
𝑞+1

[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

1 − 𝛼 − 𝑘, 𝑏
1
, . . . , 𝑏

𝑞
;
𝑧] 𝑡
𝑘

= (1 − 𝑡)
−𝛼

𝑝
Γ
𝑞+1

[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

1 − 𝛼, 𝑏
1
, . . . , 𝑏

𝑞
;
𝑧 (1 − 𝑡)] ,

(𝑥 ≥ 0; 𝛼 ∈ C; |𝑡| < 1) .

(14)

Proof. For convenience, let the left-hand side of ((13)) be
denoted by S. Applying the series expression of ((7)) to S,
we get

S =

∞

∑

𝑘=0

(
𝛼 + 𝑘 − 1

𝑘
)

⋅ (

∞

∑

𝑛=0

(𝑎
1
; 𝑥)
𝑛
(𝑎
2
)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑝
)
𝑛

(1 − 𝛼 − 𝑘)
𝑛
(𝑏
1
)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑞
)
𝑛

⋅
𝑧
𝑛

𝑛!
) 𝑡
𝑘

.

(15)

Using the following known identities (see, e.g., [10, page 5]):

(
𝛼

𝑛
) =

Γ (𝛼 + 1)

𝑛!Γ (𝛼 − 𝑛 + 1)
, (𝑛 ∈ N

0
; 𝛼 ∈ C) ,

Γ (𝛼 − 𝑛)

Γ (𝛼)
=

(−1)
𝑛

(1 − 𝛼)
𝑛

, (𝑛 ∈ N
0
; 𝛼 ∈ C \ Z) ,

(16)

Z being the set of integers and N
0
:= N ∪ {0}, we can prove

the following identity (see [28, page 169]):

(1 − 𝛼 − 𝑘)
𝑛
= (1 − 𝛼)

𝑛
(
𝛼 + 𝑘 − 1

𝑘
)

⋅ (
𝛼 − 𝑛 + 𝑘 − 1

𝑘
)

−1

, (𝑘, 𝑛 ∈ N
0
) .

(17)

By changing the order of summations in ((15)) and using the
identity ((17)), after little simplification, we have

S =

∞

∑

𝑛=0

(𝑎
1
; 𝑥)
𝑛
(𝑎
2
)
𝑛
⋅ ⋅ ⋅ (𝑎
𝑝
)
𝑛

(1 − 𝛼)
𝑛
, (𝑏
1
)
𝑛
⋅ ⋅ ⋅ (𝑏
𝑞
)
𝑛

⋅
𝑧
𝑛

𝑛!

∞

∑

𝑘=0

(
𝛼 − 𝑛 + 𝑘 − 1

𝑘
) 𝑡
𝑘

.

(18)

We find that the inner sum in ((18)) is the generalized
binomial expansion
∞

∑

𝑘=0

(
𝛼 − 𝑛 + 𝑘 − 1

𝑘
) 𝑡
𝑘

= (1 − 𝑡)
−𝛼+𝑛

, (|𝑡| < 1) . (19)

Finally, replacing the inner sum of ((18)) by the identity ((19))
yields our desired result ((13)).

It is easy to see that a similar argument as in the proof of
((13)) will establish the result ((14)). This completes the proof
of Theorem 2.

Remark 3. Recently, Srivastava and Cho [17] presented a
very general class of certain interesting generating functions
involving the incomplete hypergeometric functions ((7)) and
((8)) by essentially using the following interesting and useful
unified expansion formula given by Gould (see [29, page 196,
Equation (9)]; see also [17, page 3221]):

∞

∑

𝑘=0

𝜅

𝜅 + (𝛽 + 1) 𝑛
(
𝛼 + (𝛽 + 1) 𝑛

𝑛
) 𝑡
𝑛

= (1 + 𝜉)
𝛼

∞

∑

𝑛=0

(−1)
𝑛

(
𝛼 − 𝜅

𝑛
)(

𝑛 +
𝜅

𝛽 + 1

𝑛
−1

)(
𝜉

1 + 𝜉
)

𝑛

,

(20)

where 𝛼, 𝛽, and 𝜅 are complex numbers independent of 𝑛 and
𝜉 is a function of 𝑡 defined implicitly by

𝜉 = 𝑡(1 + 𝜉)
𝛽+1

,

𝜁 (0) = 0.

(21)

The results [17, Corollary 3] look very similar to those given
inTheorem 2. Yet, it is easy to see that they cannot be special
or general cases of the other one’s results.

3. Further Generalization of the
Generating Functions for the Incomplete
Hypergeometric Functions

A further generalization of the incomplete hypergeometric
functions ((7)) and ((8)) is given in the following definition.

Definition 4. Let us introduce two sequences {Λ(𝛼,𝛽)
𝑘

(𝑧)}
∞

𝑘=0

and {Ω(𝛼,𝛽)
𝑘

(𝑧)}
∞

𝑘=0
defined by

Λ
(𝛼,𝛽)
𝑘

(𝑧) = Λ
(𝛼,𝛽)
𝑘

[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

𝑏
1
, . . . , 𝑏

𝑞
;
𝑧]

=
𝑝
𝛾
𝑞+𝛽

[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

Δ (𝛽; 1 − 𝛼 − 𝑘) , 𝑏
1
, . . . , 𝑏

𝑞
;
𝑧] ,

(𝑥 ≥ 0; 𝛽 ∈ N; 𝛼 ∈ C) ,

Ω
(𝛼,𝛽)
𝑘

(𝑧) = Ω
(𝛼,𝛽)
𝑘

[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

𝑏
1
, . . . , 𝑏

𝑞
;
𝑧]

=
𝑝
Γ
𝑞+𝛽

[
(𝑎
1
, 𝑥) , 𝑎

2
, . . . , 𝑎

𝑝
;

Δ (𝛽; 1 − 𝛼 − 𝑘) , 𝑏
1
, . . . , 𝑏

𝑞
;
𝑧] ,

𝑥 (𝑥 ≥ 0; 𝛽 ∈ N; 𝛼 ∈ C) ,

(22)
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where, for convenience, Δ(𝛽; 𝛼) abbreviates the array of 𝑁
parameters as follows:

𝛼

𝛽
,
𝛼 + 1

𝛽
, . . . ,

𝛼 + 𝛽 − 1

𝛽
, (𝛼 ∈ C; 𝛽 ∈ N) . (23)

Then, as inTheorem 2, we can give the following generat-
ing functions for the generalized incomplete hypergeometric
functions ((22)) asserted byTheorem 5.

Theorem 5. Each of the following identities holds true:

∞

∑

𝑘=0

(
𝛼 + 𝑚 + 𝑘 − 1

𝑘
)Λ

(𝛼,𝛽)
𝑚+𝑘

(𝑧) 𝑡
𝑘

= (1 − 𝑡)
−𝛼−𝑚

Λ
(𝛼,𝛽)
𝑚

(𝑧(1 − 𝑡)
𝛽

) ,

(𝑥 ≥ 0; 𝑚 ∈ N
0
; 𝛼 ∈ C; 𝛽 ∈ N; |𝑡| < 1) ,

(24)

∞

∑

𝑘=0

(
𝛼 + 𝑚 + 𝑘 − 1

𝑘
)Ω

(𝛼,𝛽)
𝑚+𝑘

(𝑧) 𝑡
𝑘

= (1 − 𝑡)
−𝛼−𝑚

Ω
(𝛼,𝛽)
𝑚

(𝑧(1 − 𝑡)
𝛽

) ,

(25)

(𝑥 ≥ 0; 𝑚 ∈ N
0
; 𝛼 ∈ C; 𝛽 ∈ N; |𝑡| < 1) . (26)

Proof. Similarly as in Theorem 2, we can prove the results in
Theorem 5. So their details are left to the interested reader
by, instead of the essential identity ((17)), presenting the
following identity:

(1 − 𝛼 − 𝑚 − 𝑘)
𝛽𝑛
= (1 − 𝛼 − 𝑚)

𝛽𝑛
(
𝛼 + 𝑚 + 𝑘 − 1

𝑘
)

⋅ (
𝛼 + 𝑚 − 𝛽𝑛 + 𝑘 − 1

𝑘
)

−1

,

(𝑘, 𝑛 ∈ N
0
; 𝛽 ∈ N) .

(27)

It should be noted that, if we set 𝛽 = 1 and replace 𝛼 by
𝛼 − 𝑚 in ((24)), we are easily led to the result ((13)).

Concluding Remarks. If we add the two generating functions
((13)) and ((14)) and use the decomposition formula ((11)), we
have an interesting result expressed in terms of generalized
hypergeometric functions

𝑝
𝐹
𝑞
:

∞

∑

𝑘=0

(
𝛼 + 𝑘 − 1

𝑘
)
𝑝
𝐹
𝑞+1

[
𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
;

1 − 𝛼 − 𝑘, 𝑏
1
, . . . , 𝑏

𝑞
;
𝑧] 𝑡
𝑘

= (1 − 𝑡)
−𝛼

𝑝
𝐹
𝑞+1

[
𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑝
;

1 − 𝛼, 𝑏
1
, . . . , 𝑏

𝑞
;
𝑧 (1 − 𝑡)] ,

(𝛼 ∈ C; |𝑡| < 1) .

(28)

We also observe that the result ((28)) corresponds to that
given in [28, page 170, Equation (5.12)].

The generalized incomplete hypergeometric functions
given in ((7)) and ((8)) reduce, when 𝑥 = 0, to the generalized
hypergeometric function

𝑝
𝐹
𝑞
(𝑝, 𝑞 ∈ N

0
) whose particular

cases are known to express most of the special functions
occurring in the mathematical, physical, and engineering
sciences. Therefore most of the known and widely investi-
gated special functions are expressible also in terms of the
generalized incomplete hypergeometric functions

𝑝
𝛾
𝑞
(𝑝, 𝑞 ∈

N
0
) and

𝑝
Γ
𝑞
(𝑝, 𝑞 ∈ N

0
) (for some interesting examples

and applications, see [16, Sections 5 and 6]). In view of
this observation, the results presented here, being of general
character, can yield numerous generating functions for a
certain class of incomplete hypergeometric polynomials (see
[17]) and other special functions which are expressible in
terms of hypergeometric functions. Finally, we conclude our
present investigation by remarking that our results presented
here are also believed to give some contribution to the
communication theory, probability theory, and groundwater
pumping modeling.
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