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Some hybrid fixed point theorems of Krasnosel’skii type, which involve product of two operators, are proved in partially ordered
normed linear spaces. These hybrid fixed point theorems are then applied to fractional integral equations for proving the existence
of solutions under certain monotonicity conditions blending with the existence of the upper or lower solution.

1. Introduction

Recently, Nieto and Rodŕıguez-López [1] proved the follow-
ing hybrid fixed point theorem for the monotone mappings
in partially orderedmetric spaces using themixed arguments
from algebra and geometry.

Theorem 1 (Nieto and Rodŕıguez-López [1]). Let (𝑋, ⪯) be a
partially ordered set and suppose that there is a metric 𝑑 in 𝑋
such that (𝑋, 𝑑) is a complete metric space. Let 𝑇 : 𝑋 → 𝑋

be a monotone non-decreasing mapping such that there exists
a constant 𝑘 ∈ (0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≦ 𝑘𝑑 (𝑥, 𝑦) (1)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋. Assume that either 𝑇 is
continuous or𝑋 is such that if {𝑥

𝑛
} is a non-decreasing sequence

with 𝑥
𝑛
→ 𝑥 in𝑋, then

𝑥
𝑛
≦ 𝑥 (𝑛 ∈ N := {1, 2, 3, . . .}) . (2)

Further, if there is an element 𝑥
0
∈ 𝑋 satisfying 𝑥

0
⪯ 𝑇𝑥
0
, then

𝑇 has a fixed point which is unique if “every pair of elements in
𝑋 has a lower and an upper bound.”

Another fixed point theorem in the above direction can
be stated as follows.

Theorem 2 (Nieto and Rodŕıguez-López [1]). Let (𝑋, ⪯) be a
partially ordered set and suppose that there is a metric 𝑑 in 𝑋
such that (𝑋, 𝑑) is a complete metric space. Let 𝑇 : 𝑋 → 𝑋

be a monotone non-decreasing mapping such that there exists
a constant 𝑘 ∈ (0, 1) such that (1) satisfies for all comparable
elements 𝑥, 𝑦 ∈ 𝑋. Assume that either 𝑇 is continuous or 𝑋 is
such that if {𝑥

𝑛
} is a non-decreasing sequence with 𝑥

𝑛
→ 𝑥 in

𝑋, then

𝑥
𝑛
≧ 𝑥 (𝑛 ∈ N) . (3)

Further, if there is an element 𝑥
0
∈ 𝑋 satisfying 𝑥

0
⪰ 𝑇𝑥
0
, then

𝑇 has a fixed point which is unique if “every pair of elements in
𝑋 has a lower and an upper bound.”

Remark 3. If we suppose that 𝑑(𝑎, 𝑐) ≧ 𝑑(𝑏, 𝑐) (𝑎 ≦ 𝑏 ≦ 𝑐)

and {𝑥
𝑛
} → 𝑥 is a sequence in 𝑋 whose consecutive terms

are comparable, then there exists a subsequence {𝑥
𝑛𝑘
}
𝑘∈N of

{𝑥
𝑛
}
𝑛∈N such that every term comparable to the limit𝑥 implies

the conditions (2) and (3), since (in the monotone case) the
existence of a subsequence whose terms are comparable with
the limit is equivalent to saying that all the terms in the
sequence are also comparable with the limit.

Taking Remark 3 into account, the results discussed by
Nieto and Rodŕıguez-López and the fact that, in conditions
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{𝑥
𝑛
} → 𝑥, there is a sequence in 𝑋 whose consecutive

terms are comparable, there exists a subsequence {𝑥
𝑛𝑘
}
𝑘∈N

of {𝑥
𝑛
}
𝑛∈N such that every term comparable to the limit 𝑥

implies the validity of the conditions (2) and (3). Here the key
is that the terms in the sequence (starting at a certain term)
are comparable to the limit. Nieto and Rodŕıguez-López [2]
obtained the following results, which improve Theorems 1
and 2.

Theorem 4 (Nieto and Rodŕıguez-López [2]). Let (𝑋, ⪯) be a
partially ordered set and suppose that there exists a metric 𝑑 in
𝑋 such that (𝑋, 𝑑) is a complete metric space. Let 𝑇 : 𝑋 →

𝑋 be a monotone function (non-decreasing or non-increasing)
such that there exists 𝑘 ∈ [0, 1) with

𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) ≦ 𝑘𝑑 (𝑥, 𝑦) (𝑥 ≧ 𝑦) . (1
󸀠)

Suppose that either 𝑇 is continuous or 𝑋 is such that if 𝑥
𝑛
→

𝑥 is a sequence in X whose consecutive terms are comparable,
then there exists a subsequence {𝑥

𝑛𝑘
}
𝑘∈N of {𝑥

𝑛
}
𝑛∈N such that

every term comparable to the limit 𝑥. If there exists 𝑥
0
∈ 𝑋

with 𝑥
0
≦ 𝑇(𝑥

0
) or 𝑥
0
≧ 𝑇(𝑥

0
), then 𝑇 has a fixed point which

is unique if “every pair of elements in 𝑋 has a lower and an
upper bound.”

After the publication of the above fixed point theorems,
there is a huge upsurge in the development of the metric
fixed point theory in partially ordered metric spaces. A good
number of fixed and commonfixed point theorems have been
proved in the literature for two, three, and four mappings
in metric spaces by suitably modifying the contraction
condition (1) as per the requirement of the results. We claim
that almost all the results proved so far along this line, though
not mentioned here, have their origin in a paper due to
Heikkilä and Lakshmikantham [3]. The main difference is
the convergence criteria of the sequence of iterations of the
monotone mappings under consideration. The convergence
of the sequence in Heikkilä and Lakshmikantham [3] is
straightforward, whereas the convergence of the sequence in
Nieto and Rodŕıguez-López [1, 2] is due mainly to the metric
condition of contraction. The hybrid fixed point theorem
of Heikkilä and Lakshmikantham [3] for the monotone
mappings in ordered metric spaces is as follows.

Theorem 5 (Heikkillä and Lakshmikantham [3]). Let [𝑎, 𝑏]
be an order interval in a subset 𝑌 of the ordered metric space𝑋
and let𝐺 : [𝑎, 𝑏] → [𝑎, 𝑏] be a non-decreasing mapping. If the
sequence {𝐺𝑥

𝑛
} converges in 𝑌 whenever {𝑥

𝑛
} is a monotone

sequence in [𝑎, 𝑏], then the well-ordered chain of 𝐺-iterations
of 𝑎 has themaximum 𝑥

∗ which is a fixed point of𝐺. Moreover,

𝑥
∗

= max {𝑦 ∈ [𝑎, 𝑏] | 𝑦 ≦ 𝐺𝑦} . (4)

The above hybrid fixed point theorem is applicable in
the study of discontinuous nonlinear equations and has been
used throughout the research monograph of Heikkillä and
Lakshmikantham [3]. We also claim that the convergence
of the monotone sequence in Theorem 5 is replaced in
Theorem 4 by the Cauchy sequence {𝑥

𝑛
} and completeness of

𝑋. Further, the Cauchy non-decreasing sequence is replaced

by the equivalent contraction condition for comparable ele-
ments in𝑋.Theorem 4 is the best hybrid fixed point theorem
because it is derived for the mixed arguments from algebra
and geometry. The main advantage of Theorem 4 is that the
uniqueness of the fixed point of the monotone mappings is
obtained under certain additional conditions on the domain
space such as lattice structure of the partially ordered space
under consideration and these fixed point results are useful
in establishing the uniqueness of the solution of nonlinear
differential and integral equations. Again, some hybrid fixed
point theorems ofKrasnosel’skii type formonotonemappings
are proved in Dhage [4, 5] along the lines of Heikkilä and
Lakshmikantham [3].

The main object of this paper is first to establish some
hybrid fixed point theorems of Krasnosel’skii type in partially
ordered normed linear spaces, which involve product of two
operators. We then apply these hybrid fixed point theorems
to fractional integral equations for proving the existence of
solutions under certain monotonicity conditions blending
with the existence of the upper or lower solution.

2. Hybrid Fixed Point Theorems

Let𝑋 be a linear space or vector space.We introduce a partial
order ⪯ in𝑋 as follows. A relation ⪯ in𝑋 is said to be a partial
order if it satisfies the following properties:

(1) reflexivity: 𝑎 ⪯ 𝑎 for all 𝑎 ∈ 𝑋;

(2) antisymmetry: 𝑎 ⪯ 𝑏 and 𝑏 ⪯ 𝑎 implies 𝑎 = 𝑏;

(3) transitivity: 𝑎 ⪯ 𝑏 and 𝑏 ⪯ 𝑐 implies 𝑎 ⪯ 𝑐;

(4) order linearity: 𝑥
1
⪯ 𝑦
1
and 𝑥

2
⪯ 𝑦
2
⇒ 𝑥
1
+ 𝑥
2
⪯

𝑦
1
+ 𝑦
2
; and 𝑥 ⪯ 𝑦 ⇒ 𝑡𝑥 ⪯ 𝑡𝑦 for 𝑡 ≧ 0.

The linear space 𝑋 together with a partial order ⪯

becomes a partially ordered linear or vector space. Two
elements 𝑥 and 𝑦 in a partially ordered linear space 𝑋 are
called comparable if the relation either 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥 holds
true.We introduce a norm ‖⋅‖ in partially ordered linear space
𝑋 so that 𝑋 becomes now a partially ordered normed linear
space. If 𝑋 is complete with respect to the metric 𝑑 defined
through the above norm, then it is called a partially ordered
complete normed linear space.

The following definitions are frequently used in our
present investigation.

Definition 6. A mapping 𝑇 : 𝑋 → 𝑋 is called monotone
non-decreasing if 𝑥 ⪯ 𝑦 implies 𝑇𝑥 ⪯ 𝑇𝑦 for all 𝑥, 𝑦 ∈ 𝑋.

Definition 7. A mapping 𝑇 : 𝑋 → 𝑋 is called monotone
non-increasing if 𝑥 ⪯ 𝑦 implies 𝑇𝑥 ⪰ 𝑇𝑦 for all 𝑥, 𝑦 ∈ 𝑋.

Definition 8. A mapping 𝑇 : 𝑋 → 𝑋 is called monotone
if it is either monotone non-increasing or monotone non-
decreasing.

Definition 9 (see [6, 7]). A mapping 𝜑 : R+ → R+ is called a
monotone dominating function or, in short, an 𝑀-function
if it is an upper or lower semicontinuous and monotonic
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non-decreasing or non-increasing function satisfying the
condition: 𝜑(0) = 0.

Definition 10 (see [6, 7]). Given a partially ordered normed
linear space 𝐸, a mapping 𝑄 : 𝐸 → 𝐸 is called partially𝑀-
Lipschitz or partially nonlinear𝑀-Lipschitz if there is an𝑀-
function 𝜑 : R+ → R+ satisfying

󵄩󵄩󵄩󵄩𝑄𝑥 − 𝑄𝑦
󵄩󵄩󵄩󵄩 ≦ 𝜑 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩) (5)

for all comparable elements 𝑥, 𝑦 ∈ 𝐸. The function is called
an 𝑀-function of 𝑄 on 𝐸. If 𝜑(𝑟) = 𝑘𝑟 (𝑘 > 0), then 𝑄 is
called partially𝑀-Lipschitz with the Lipschitz constant 𝑘. In
particular, if 𝑘 < 1, then𝑄 is called a partially𝑀-contraction
on𝑋with the contraction constant 𝑘. Further, if 𝜑(𝑟) < 𝑟, for
𝑟 > 0, then 𝑄 is called a partially nonlinear 𝑀-contraction
with an𝑀-function 𝜑 of 𝑄 on𝑋.

There do exist𝑀-functions and the commonly used𝑀-
functions are 𝜑(𝑟) = 𝑘𝑟 and 𝜑(𝑟) = 𝑟/1+𝑟, et cetera.These𝑀-
functions can be used in the theory of nonlinear differential
and integral equations for proving the existence results via
fixed point methods.

Definition 11 (see [8]). An operator 𝑄 on a normed linear
space 𝐸 into itself is called compact if 𝑄(𝐸) is a relatively
compact subset of 𝐸. 𝑄 is called totally bounded if, for any
bounded subset 𝑆 of 𝐸, 𝑄(𝑆) is a relatively compact subset of
𝐸. If 𝑄 is continuous and totally bounded, then it is called
completely continuous on 𝐸.

Definition 12 (see [8]). An operator 𝑄 on a normed linear
space 𝐸 into itself is called partially compact if 𝑄(𝐶) is a
relatively compact subset of 𝐸 for all totally ordered set
or chain 𝐶 in 𝐸. The operator 𝑄 is called partially totally
bounded if, for any totally ordered and bounded subset 𝐶 of
𝐸, 𝑄(𝐶) is a relatively compact subset of 𝐸. If the operator 𝑄
is continuous and partially totally bounded, then it is called
partially completely continuous on 𝐸.

Remark 13. We note that every compact mapping in a
partially metric space is partially compact and every partially
compact mapping is partially totally bounded. However,
the reverse implication does not hold true. Again, every
completely continuous mapping is partially completely con-
tinuous and every partially completely continuous mapping
is continuous and partially totally bounded, but the converse
may not be true.

We now state and prove the basic hybrid fixed point
results of this paper by using the argument fromalgebra, anal-
ysis, and geometry. The slight generalization of Theorem 4
and Dhage [8] using𝑀-contraction is stated as follows.

Theorem 14. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝑇 : 𝑋 → 𝑋 be a monotone function
(non-decreasing or non-increasing) such that there exists an𝑀-
function 𝜑

𝑇
such that

𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) ≦ 𝜑
𝑇
(𝑑 (𝑥, 𝑦)) (6)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋 and satisfying 𝜑
𝑇
(𝑟) <

𝑟 (𝑟 > 0). Suppose that either 𝑇 is continuous or 𝑋 is such
that if 𝑥

𝑛
→ 𝑥 is a sequence in𝑋 whose consecutive terms are

comparable, then there exists a subsequence {𝑥
𝑛𝑘
}
𝑘∈N of {𝑥𝑛}𝑛∈N

such that every term comparable to the limit 𝑥. If there exists
𝑥
0
∈ 𝑋with𝑥

0
≦ 𝑇(𝑥

0
) or𝑥
0
≧ 𝑇(𝑥

0
), then𝑇 has a fixed point

which is unique if “every pair of elements in𝑋 has a lower and
an upper bound.”

Proof. The proof is standard. Nevertheless, for the sake of
completeness, we give the details involved. Define a sequence
{𝑥
𝑛
} of successive iterations of 𝑇 by

𝑥
𝑛+1

= 𝑇𝑥
𝑛

(𝑛 ∈ N) . (7)

By the monotonicity property of 𝑇, we obtain

𝑥
0
⪯ 𝑥
1
⪯ ⋅ ⋅ ⋅ ⪯ 𝑥

𝑛
⋅ ⋅ ⋅ (8)

or

𝑥
0
⪰ 𝑥
1
⪰ ⋅ ⋅ ⋅ ⪰ 𝑥

𝑛
⋅ ⋅ ⋅ . (9)

If 𝑥
𝑛
= 𝑥
𝑛+1

, for some 𝑛 ∈ N, then 𝑢 = 𝑥
𝑛
is a fixed point of

𝑇. Therefore, we assume that 𝑥
𝑛
= 𝑥
𝑛+1

for some 𝑛 ∈ N. If
𝑥 = 𝑥

𝑛−1
and 𝑦 = 𝑥

𝑛
, then, by the condition (6), we obtain

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ≦ 𝜑 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)) (10)

for each 𝑛 ∈ N.
Let us write 𝑟

𝑛
= 𝑑(𝑥

𝑛
, 𝑥
𝑛+1
). Since 𝜑 is an 𝑀-function,

{𝑟
𝑛
} is a monotonic sequence of real numbers which is

bounded. Hence {𝑟
𝑛
} is convergent and there exists a real

number 𝑟 such that

lim
𝑛→∞

𝑟
𝑛
= 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1
) = 𝑟. (11)

We show that 𝑟 = 0. If 𝑟 ̸= 0, then

𝑟 = lim
𝑛→∞

𝑟
𝑛
= lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
)

≦ lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑛−1
, 𝑥
𝑛
)) ≦ 𝜑 (𝑟) < 𝑟,

(12)

which is a contradiction. Hence 𝑟 = 0.
We now show that {𝑥

𝑛
} is a Cauchy sequence in𝑋. If not,

then, for 𝜖 > 0, there exists a positive integer 𝑘 such that

𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑛(𝑘)

) ≧ 𝜖 (13)

for all positive integers𝑚(𝑘) ≧ 𝑛(𝑘) ≧ 𝑘.
If we write 𝑟

𝑘
= 𝑑(𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)

), then

𝜖 ≦ 𝑟
𝑘
= 𝑑 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)

)

≦ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)−1

) + 𝑑 (𝑥
𝑚(𝑘)−1

, 𝑥
𝑛(𝑘)

)

= 𝑟
𝑚(𝑘)−1

+ 𝜖,

(14)

so that we have

lim
𝑘→∞

𝑟
𝑘
= 𝜖. (15)
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Again, we have

𝜖 ≦ 𝑟
𝑘
= 𝑑 (𝑥

𝑚(𝑘)
, 𝑥
𝑛(𝑘)

)

≦ 𝑑 (𝑥
𝑚(𝑘)

, 𝑥
𝑚(𝑘)+1

) + 𝑑 (𝑥
𝑚(𝑘)+1

, 𝑥
𝑛(𝑘)+1

)

+ 𝑑 (𝑥
𝑛(𝑘)+1

, 𝑥
𝑛(𝑘)

) = 𝑟
𝑚(𝑘)

+ 𝜑 (𝑟
𝑘
) + 𝑟
𝑛(𝑘)

.

(16)

Taking the limit as 𝑘 → ∞, we obtain

𝜖 ≦ 𝜑 (𝜖) < 𝜖, (17)

which is a contradiction.Therefore, {𝑥
𝑛
} is a Cauchy sequence

in 𝑋. By the metric space (𝑋, 𝑑) being complete, there is
a point 𝑥∗ ∈ 𝑋 such that lim

𝑛→0
𝑥
𝑛
= 𝑥∗. The rest of

the proof is similar to above fixed point Theorem 4 given in
Nieto and Rodŕıguez-López [2]. Hence we omit the details
involved.

Corollary 15. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝑇 : 𝑋 → 𝑋 be a monotone function
(non-decreasing or non-increasing) such that there exists an𝑀-
function 𝜑 and a positive integer 𝑝 such that

𝑑 (𝑇
𝑝

(𝑥) , 𝑇
𝑝

(𝑦)) ≦ 𝜑
𝑇
(𝑑 (𝑥, 𝑦)) (18)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋 and satisfying 𝜑
𝑇
(𝑟) <

𝑟 (𝑟 > 0). Suppose that either 𝑇 is continuous or 𝑋 is such
that if 𝑥

𝑛
→ 𝑥 is a sequence in𝑋 whose consecutive terms are

comparable, then there exists a subsequence {𝑥
𝑛𝑘
}
𝑘∈N of {𝑥𝑛}𝑛∈N

such that every term comparable to the limit 𝑥. If there exists
𝑥
0
∈ 𝑋 with 𝑥

0
≦ 𝑇(𝑥

0
) or 𝑥

0
≧ 𝑇(𝑥

0
), then 𝑇 has a fixed

point which is unique if “every pair of elements in X has a lower
and an upper bound.”

Proof. Let us first set 𝑄 = 𝑇
𝑝. Then 𝑄 : 𝑋 → 𝑋

is a continuous monotonic mapping. Also there exists the
element 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯ 𝑄𝑥

0
. Now, an application

of Theorem 14 yields that 𝑄 has an unique fixed point; that
is, it is a point 𝑢 ∈ 𝑋 such that 𝑄(𝑢) = 𝑇

𝑝(𝑢) = 𝑢. Now
𝑇(𝑢) = 𝑇(𝑇𝑝𝑢) = 𝑄(𝑇𝑢), showing that 𝑇𝑢 is again a fixed
point of 𝑄. By the uniqueness of 𝑢, we get 𝑇𝑢 = 𝑢. The proof
is complete.

Fixed point Theorem 14 and Corollary 15 have some nice
applications to various nonlinear problemsmodelled on non-
linear equations for proving existence as well as uniqueness
of the solutions under generalized Lipschitz condition. The
following fixed point theorem is presumably new in the
literature. The basic principle in formulating this theorem is
the same as that of Dhage [5, 8] and Nieto and Rodŕıguez-
López [2]. Before stating these results, we give an useful
definition.

Definition 16. The order relation ⪯ and the norm ‖ ⋅ ‖ in
a nonempty set 𝑋 are said to be compatible if {𝑥

𝑛
} is a

monotone sequence in 𝑋 and if a subsequence {𝑥
𝑛𝑘
} of

{𝑥
𝑛
} converges to 𝑥

0
impling that the whole sequence {𝑥

𝑛
}

converges to 𝑥
0
. Similaraly, given a partially ordered normed

linear space (𝑋, ⪯, ‖ ⋅ ‖), the ordered relation ⪯ and the norm

‖ ⋅ ‖ are said to be compatible if ⪯ and the metric 𝑑 defined
through the norm are compatible.

Clearly, the set R with the usual order relation ≦ and the
norm defined by absolute value function has this property.
Similarly, the space 𝐶(𝐽,R) with usual order relation defined
by 𝑥 ≦ 𝑦 if and only if 𝑥(𝑡) ≦ 𝑦(𝑡) for all 𝑡 ∈ 𝐽 or 𝑥 ≦ 𝑦 if
and only if 𝑥(𝑡) ≧ 𝑦(𝑡) for all 𝑡 ∈ 𝐽 and the usual standard
supremum norm ‖ ⋅ ‖ are compatible.

We now state a more basic hybrid fixed point theorem.
Since the proof is straightforword, we omit the details
involved.

Theorem 17. Let 𝑋 be a partially ordered linear space and
suppose that there is a norm in 𝑋 such that 𝑋 is a normed
linear space. Let 𝑇 : 𝑋 → 𝑋 be a monotonic (non-decreasing
or non-increasing), partially compact and continuousmapping.
Further, if the order relation ⪯ or ⪰ and the norm ‖ ⋅ ‖ in X
are compatible and if there is an element 𝑥

0
∈ 𝑋 satisfying

𝑥
0
≦ 𝑇𝑥
0
or 𝑥
0
≧ 𝑇𝑥
0
, then 𝑇 has a fixed point.

In this paper, we combine Theorems 14 and 17 and
Corollary 15 to derive some Krasnosel’skii type fixed point
theorems in partially ordered complete normed linear spaces
and discuss some of their applications to fractional integral
equations of mixed type. We freely use the conventions and
notations for fractional integrals as in (for example) [9–11].

3. Krasnosel’skii Type Fixed Point Theorems

We first state the following result.

Theorem 18 (see Krasnosel’skii [12]). Let 𝑆 be a closed convex
and bounded subset of a Banach space 𝑋 and let 𝐴 : 𝑋 →

𝑋 and 𝐵 : 𝑆 → 𝑋 be two operators satisfying the following
conditions:

(a) 𝐴 is nonlinear contraction;
(b) 𝐵 is completely continuous;
(c) 𝐴𝑥 + 𝐵𝑦 = 𝑥 for all 𝑦 ∈ 𝑆 implies 𝑥 ∈ 𝑆.

Then the following operator equation

𝐴𝑥 + 𝐵𝑥 = 𝑥 (19)

has a solution.

Theorem 18 is very much useful and applied to linear
perturbations of differential and integral equations by several
authors in the literature for proving the existence of the solu-
tions.The theory of Krasnosel’skii type fixed point theorem is
initiated by Dhage [5]. The following Krasosel’skii type fixed
point theorem is proved in Dhage [5].

Theorem 19 (see Dhage [5]). Let 𝑆 be a nonempty, closed,
convex, and bounded subset of the Banach algebra 𝑋. Also let
𝐴 : 𝑋 → 𝑋 and 𝐵 : 𝑆 → 𝑋 be two operators such that

(a) 𝐴 is 𝐷-Lipschitz with the𝐷-function 𝜓;
(b) 𝐵 is completely continuous;
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(c) 𝑥 = 𝐴𝑥𝐵𝑦 ⇒ 𝑥 ∈ 𝑆 for all 𝑦 ∈ 𝑆;

𝑀𝜓(𝑟) < 𝑟, 𝑟 > 0 where

𝑀 = ‖𝐵 (𝑆)‖ = sup {‖𝐵 (𝑥)‖ : 𝑥 ∈ 𝑆} . (20)

Then the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 has a solution in 𝑆.

Remark 20. (𝐼/𝐴)−1𝐵 is monotone (non-decreasing or non-
increasing) if𝐴 and𝐵 aremonotone (non-decreasing or non-
increasing), but the converse may not be true.

We now obtain another version of Krasnosel’skii type
fixed point theorems in partially ordered complete normed
linear spaces under weaker conditions, which improve
Theorem 19, and discuss some of their applications to frac-
tional integral equations of mixed type.

Theorem 21. Let (𝑋, ⪯, ‖ ⋅ ‖) be a partially ordered complete
normed linear space such that the order relation⪯ and the norm
‖ ⋅ ‖ in𝑋 are compatible. Let 𝐴, 𝐵 : 𝑋 → 𝑋 be two monotone
operators (non-decreasing or non-increasing) such that

(a) 𝐴 is continuous and partially nonlinear𝑀-contraction;
(b) 𝐵 is continuous and partially compact;
(c) there exists an element 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯ 𝐴𝑥
0
𝐵𝑦

or 𝑥
0
⪰ 𝐴𝑥
0
𝐵𝑦 for all 𝑦 ∈ 𝑋;

(d) every pair of elements 𝑥, 𝑦 ∈ 𝑋 has a lower and an
upper bound in𝑋;

(e) 𝐾𝜑(𝑟) < 𝑟, 𝑟 > 0 where

𝐾 = ‖𝐵 (𝑋)‖ = sup {‖𝐵𝑥‖ : 𝑥 ∈ 𝑋} . (21)

Then the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 has a solution.

Proof. Define an operator 𝑇 : 𝑋 → 𝑋 by

𝑇 (𝑥) = (
𝐼

𝐴
)
−1

𝐵. (22)

Clearly, the operator 𝑇 is well defined. To see this, let 𝑦 ∈ 𝑋

be fixed and define a mapping 𝐴
𝑦
: 𝑋 → 𝑋 by

𝐴
𝑦
(𝑥) = 𝐴𝑥𝐵𝑦. (23)

Now, for any two comparable elements 𝑥
1
, 𝑥
2
∈ 𝑋, we have

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑦
(𝑥
1
) − 𝐴
𝑦
(𝑥
2
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝐴𝑥1𝐵𝑦 − 𝐴𝑥2𝐵𝑦

󵄩󵄩󵄩󵄩 ≦
󵄩󵄩󵄩󵄩𝐴𝑥1 − 𝐴𝑥2

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝐵𝑦

󵄩󵄩󵄩󵄩

≦ 𝐾𝜑
𝐴
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩) ,

(24)

where𝐴 is an𝑀-function of𝑇 on𝑋. Hence, by an application
of fixed point Theorem 14, 𝐴

𝑦
has an unique fixed point; say

𝑥∗ ∈ 𝑋. Therefore, we have an unique element 𝑥∗ ∈ 𝑋 such
that

𝐴
𝑦
(𝑥
∗

) = 𝐴𝑥
∗

𝐵𝑦 = 𝑥
∗

, (25)

which implies that

(
𝐼

𝐴
)
−1

𝐵𝑦 = 𝑥
∗ (26)

or, equivalently, that

𝑇𝑦 = 𝑥
∗

. (27)

Thus the mapping 𝑇 : 𝑋 → 𝑋 is well defined.
We now define a sequence {𝑥

𝑛
} of iterates of 𝑇; that is,

𝑥
𝑛+1

= 𝑇𝑥
𝑛
for 𝑛 ∈ N

0
:= {0, 1, 2, . . .}. It follows from the

hypothesis (c) that 𝑥
0
≦ 𝑇(𝑥

0
) or 𝑥

0
≧ 𝑇(𝑥

0
). Again, by

Remark 20, we find that the mapping 𝑇 is monotonic (non-
decreasing or non-increasing) on𝑋. So we have

𝑥
0
⪯ 𝑥
1
⪯ 𝑥
2
⪯ ⋅ ⋅ ⋅ 𝑥

𝑛
⪯ ⋅ ⋅ ⋅ (28)

or

𝑥
0
⪰ 𝑥
1
⪰ 𝑥
2
⪰ ⋅ ⋅ ⋅ 𝑥

𝑛
⪰ ⋅ ⋅ ⋅ . (29)

Since 𝐵 is partially compact and (𝐼/𝐴)−1 is continuous, the
composition mapping 𝑇 = (𝐼/𝐴)

−1

𝐵 is partially compact
and continuous on 𝑋 into 𝑋. Therefore, the sequence {𝑥

𝑛
}

has a convergent subsequence and, from the compatibility of
the order relation and the norm, it follows that the whole
sequence converges to a point in 𝑋. Hence, an application
of Theorem 17 implies that 𝑇 has a fixed point. This further
implies that

(
𝐼

𝐴
)
−1

𝐵𝑥
∗

= 𝑥
∗ or 𝐴𝑥

∗

𝐵𝑥
∗

= 𝑥
∗

, (30)

which evidently completes the proof of Theorem 21.

Theorem 22. Let (𝑋, ⪯, ‖ ⋅ ‖) be a partially ordered complete
normed linear space such that the order relation ⪯ and the
norm ‖ ⋅ ‖ in 𝑋 are compatible. Let 𝐴, 𝐵 : 𝑋 → 𝑋 be
two monotone mappings (non-decreasing or non-increasing)
satisfying the following conditions:

(a) 𝐴 is linear and bounded and 𝐴𝑝 is partially nonlinear
𝑀-contraction for some positive integer 𝑝;

(b) 𝐵 is continuous and partially compact;
(c) there exists an element 𝑥

0
∈ 𝑋 such that 𝑥

0
⪯ 𝐴𝑥
0
𝐵𝑦

or 𝑥
0
⪰ 𝐴𝑥
0
𝐵𝑦 for all 𝑦 ∈ 𝑋;

(d) every pair of elements 𝑥, 𝑦 ∈ 𝑋 has a lower and an
upper bound in𝑋;

(e) 𝐾𝜑(𝑟) < 𝑟, 𝑟 > 0 where

𝐾 = ‖𝐵 (𝑋)‖ = sup {‖𝐵𝑥‖ : 𝑥 ∈ 𝑋} . (31)

Then the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 has a solution.

Proof. Define an operator 𝑇 on𝑋 by

𝑇 (𝑥) = (
𝐼

𝐴
)
−1

𝐵. (32)
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Now the mapping (𝐼/𝐴)−1 exists in view of the relation

(
𝐼

𝐴
)
−1

= (
𝐼

𝐴𝑝
)
−1𝑝−1

∏
𝑗=1

𝐴
𝑗

, (33)

where ∏𝑝−1
𝑗=1

𝐴𝑗 is bounded and (𝐼/𝐴𝑝)
−1 exists in view of

Corollary 15. Hence, (𝐼/𝐴)−1 exists and is continuous on 𝑋.
Next, the operator 𝑇 is well defined. To see this, let 𝑦 ∈ 𝑋 be
fixed and define a mapping 𝐴

𝑦
: 𝑋 → 𝑋 by

𝐴
𝑦
(𝑥) = 𝐴𝑥𝐵𝑦. (34)

Then, for any two comparable elements 𝑥, 𝑦 ∈ 𝑋, we have
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑝

𝑦
(𝑥
1
) − 𝐴
𝑝

𝑦
(𝑥
2
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝐴
𝑝

𝑥
1
𝐵𝑦 − 𝐴

𝑝

𝑥
2
𝐵𝑦
󵄩󵄩󵄩󵄩 ≦

󵄩󵄩󵄩󵄩𝐴
𝑝

𝑥
1
− 𝐴
𝑝

𝑥
2

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝐵𝑦

󵄩󵄩󵄩󵄩

≦ 𝐾𝜑
𝐴
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩) .

(35)

Hence, by Corollary 15 again, there exists an unique element
𝑥∗ such that

𝐴
𝑝

𝑦
(𝑥
∗

) = 𝐴
𝑝
(𝑥
∗

) 𝐵𝑦 = 𝑥
∗

. (36)

This further implies that 𝐴
𝑦
(𝑥∗) = 𝑥∗ and 𝑥∗ is an unique

fixed point of 𝐴
𝑦
. Thus we have

𝐴
𝑦
(𝑥
∗

) = 𝑥
∗

= 𝐴𝑥
∗

𝐵𝑦 or (
𝐼

𝐴
)
−1

𝐵𝑦 = 𝑥
∗

. (37)

Consequently, 𝑇𝑦 = 𝑥∗ and so 𝑇 is well defined. The rest of
the proof is similar to that of Theorem 21 and we omit the
details. The proof is complete.

Remark 23. The hypothesis (d) of Theorems 21 and 22 holds
true if the partially ordered set 𝑋 is a lattice. Furthermore,
the space 𝐶(𝐽,R) of continuous real-valued functions on the
closed and bounded interval 𝐽 = [𝑎, 𝑏] is a lattice, where
the order relation ≦ is defined as follows. For any 𝑥, 𝑦 ∈

𝐶(𝐽,R), 𝑥 ≦ 𝑦 if and only if 𝑥(𝑡) ≦ 𝑦(𝑡) for all 𝑡 ∈ 𝐽. The
real-variable operations show that min(𝑥, 𝑦) and max(𝑥, 𝑦)
are, respectively, the lower and upper bounds for the pair of
elements 𝑥 and 𝑦 in𝑋.

4. Fractional Integral Equations of Mixed Type

In this section we apply the hybrid fixed point theorems
proved in the preceding sections to some nonlinear fractional
integral equations of mixed type.

Given a closed and bounded interval 𝐽 = [𝑡
0
, 𝑡
0
+ 𝑎] inR,

R being the set of real numbers or some real numbers 𝑡
0
∈ R

and 𝑎 ∈ R with 𝑎 > 0 and given a real number 0 < 𝑞 <

1, consider the following nonlinear hybrid fractional integral
equation (in short HFIE):

𝑥 (𝑡) = [𝑓 (𝑡, 𝑥 (𝑡))] (
1

Γ (𝑞)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠) ,

(38)

where 𝑓 : 𝐽 × R → R is continuous and 𝑔 : 𝐽 × R → R is
locally Hölder continuous.

We seek the solutions of HFIE (38) in the space𝐶(𝐽,R) of
continuous real-valued functions defined on 𝐽. We consider
the following set of hypotheses in what follows.

(H
1
) 𝑔 is bounded on 𝐽 ×R with bound 𝐶

𝑔
.

(H
2
) 𝑔(𝑡, 𝑥) is non-decreasing in 𝑥 for each 𝑡 ∈ 𝐽.

(H
3
) There exist constants 𝐿 > 0 and𝐾 > 0 such that

0 ≦ (𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)) ≦
𝐿 (𝑥 − 𝑦)

𝐾 + (𝑥 − 𝑦)
(39)

for all 𝑥, 𝑦 ∈ R with 𝑥 ≧ 𝑦. Moreover, 𝐿 ≦ 𝐾.
(H
4
) There exists an element 𝑢

0
∈ 𝑋 = 𝐶(𝐽,R) such

that

𝑢
0
(𝑡) ≦ [𝑓 (𝑡, 𝑢

0
(𝑡))]

1

Γ (𝑞)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑔 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 (40)

for all 𝑡 ∈ 𝐽 and 𝑦 ∈ 𝑋 or

𝑢
0
(𝑡) ≧ [𝑓 (𝑡, 𝑢

0
(𝑡))]

1

Γ (𝑞)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑔 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 (41)

for all 𝑡 ∈ 𝐽 and 𝑦 ∈ 𝑋.

Remark 24. The condition given in the hypothesis (H
4
) is a

littlemore restrictive than that of a lower solution of theHFIE
(38). It is clear that 𝑢

0
is a lower solution of the HFIE (38);

however, the converse is not true.

Theorem 25. Assume that the hypotheses (𝐻
1
) through (𝐻

4
)

hold true. Then the HFIE (38) admits a solution.

Proof. Define two operators 𝐴 and 𝐵 on 𝑋 = 𝐶(𝐽,R), the
Banach space of continuous real-valued functions on 𝐽 with
the usual supremum norm ‖ ⋅ ‖ given by

‖𝑥‖ = sup
𝑡∈𝐽

|𝑥 (𝑡)| . (42)

We define an order relation ≦ in 𝑋 with help of a cone K
defined by

K = {𝑥 : 𝑥 ∈ 𝐶 (𝐽,R) , 𝑥 (𝑡) ≧ 0 (∀𝑡 ∈ 𝐽)} . (43)

Clearly, the Banach space 𝑋 together with this order relation
becomes an ordered Banach space. Furthermore, the order
relation ≦ and the norm ‖ ⋅ ‖ in𝑋 are compatible. Define two
operators 𝐴, 𝐵 : 𝐶(𝐽,R) → 𝐶(𝐽,R) by

𝐴𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) (𝑡 ∈ 𝐽) ,

𝐵𝑥 (𝑡) =
1

Γ (𝑞)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.
(44)

Then the given Hybrid fractional integral equation (38) is
transformed into an equivalent operator equation as follows:

𝐴𝑥 (𝑡) ⋅ 𝐵𝑥 (𝑡) = 𝑥 (𝑡) (𝑡 ∈ 𝐽) . (45)
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We show that the operators 𝐴 and 𝐵 satisfy all the conditions
of Theorem 21 on 𝐶(𝐽,R). First of all, we show that 𝐴 is a
nonlinear𝑀-contraction on 𝐶(𝐽,R). Let 𝑥, 𝑦 ∈ 𝑋. Then, by
the hypothesis (H

3
), we obtain

󵄨󵄨󵄨󵄨𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))
󵄨󵄨󵄨󵄨

≦
𝐿
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨

𝐾 +
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨

≦
𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝐾 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
.

(46)

Taking the supremum over 𝑡, we get

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩 ≦

𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝐾 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩
= 𝜑 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩) , (47)

where

𝜑 (𝑟) =
𝐿𝑟

𝐾 + 𝑟
< 𝑟 (𝑟 > 0) . (48)

Clearly, 𝜑 is an𝑀-function for the operator𝐴 on𝑋 and so𝐴
is a partially nonlinear𝑀-contraction on𝑋.

Next, we show that 𝐵 is a compact continuous operator
on𝑋. To this end, we show that 𝐵(𝑋) is a uniformly bounded
and equicontinuous set in𝑋. Now, for any 𝑥 ∈ 𝑋, we have

|𝐵𝑥 (𝑡)| ≦
1

Γ (𝑞)
∫
𝑡

𝑡0

|𝑡 − 𝑠|
𝑞−1 󵄨󵄨󵄨󵄨𝑔 (𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

≦
𝐶
𝑔

Γ (𝑞)
∫
𝑡

𝑡0

|𝑡 − 𝑠|
𝑞−1

𝑑𝑠 ≦
𝑎𝑞𝐶
𝑔

Γ (𝑞 + 1)
,

(49)

which shows that 𝐵 is a uniformly bounded set in𝑋. We now
let 𝑡
1
, 𝑡
2
∈ 𝐽. Then

󵄨󵄨󵄨󵄨𝐵𝑥 (𝑡1) − 𝐵𝑥 (𝑡2)
󵄨󵄨󵄨󵄨

≦
𝐶
𝑔

Γ (𝑞)
∫
𝑡2

𝑡0

󵄨󵄨󵄨󵄨󵄨
(𝑡
1
− 𝑠)
𝑞−1

− (𝑡
2
− 𝑠)
𝑞−1󵄨󵄨󵄨󵄨󵄨

𝑑𝑠+
𝐶
𝑔

Γ (𝑞 + 1)

󵄨󵄨󵄨󵄨𝑡1 − 𝑡2
󵄨󵄨󵄨󵄨
𝑞

≦
𝐶
𝑔

Γ (𝑞)
∫
𝑡0+𝑎

𝑡0

󵄨󵄨󵄨󵄨󵄨
(𝑡
1
− 𝑠)
𝑞−1

− (𝑡
2
− 𝑠)
𝑞−1󵄨󵄨󵄨󵄨󵄨

𝑑𝑠+
𝐶
𝑔

Γ (𝑞 + 1)

󵄨󵄨󵄨󵄨𝑡1 − 𝑡2
󵄨󵄨󵄨󵄨
𝑞

󳨀→ 0 as 𝑡
1
󳨀→ 𝑡
2

(50)

uniformly for all 𝑥 ∈ 𝑋. Hence 𝐵(𝑋) is an equicontinuous set
in 𝑋. Now we apply the Arzela-Ascoli theorem to show that
𝐵(𝑋) is a compact set in 𝑋. The continuity of 𝐵 follows from
the continuity of the function 𝑔 on 𝐽 ×R.

Finally, since 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are non-decreasing in 𝑥
for each 𝑡 ∈ 𝐽, the operators 𝐴 and 𝐵 are non-decreasing on
𝑋. Also the hypothesis (H

3
) yields 𝑢

0
≦ 𝐴𝑢
0
⋅𝐵𝑢
0
.Thus, all of

the conditions of Theorem 22 are satisfied and we conclude
that the fractional integral equation (38) admits a solution.
This completes the proof.

We now consider the following fractional integral equa-
tion of mixed type:

𝑥 (𝑡) = [∫
𝑡

𝑡0

V (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠]

× (𝑞 (𝑡) +
1

Γ (𝑞)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)

(51)

for all 𝑡 ∈ 𝐽 and 0 < 𝑞 < 1, where the functions V : 𝐽 × 𝐽 →

R+ and 𝑓, 𝑔 : 𝐽 ×R → R are continuous.
We consider the following set of hypotheses in what

follows.

(H
5
) The function V : 𝐽 × 𝐽 → R+ is continuous.

Moreover, V = sup
𝑡,𝑠∈𝐽

|V(𝑡, 𝑠)|.
(H
6
) 𝑓(𝑡, 𝑥) is linear in 𝑥 for each 𝑡 ∈ 𝐽.

(H
7
) 𝑓 is bounded on 𝐽 × R and there exists a

constant 𝐿 > 0 such that 𝑓(𝑡, 𝑥) < 𝐿|𝑥| for all 𝑡 ∈ 𝐽

and 𝑥 ∈ R.
(H
8
)There exists an element 𝑢

0
∈ 𝑋 = 𝐶(𝐽,R) such

that

𝑢
0
(𝑡) ≦ [∫

𝑡

𝑡0

V (𝑡, 𝑠) 𝑓 (𝑠, 𝑢
0
(𝑠)) 𝑑𝑠]

× (𝑞 (𝑡) +
1

Γ (𝑞)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑔 (𝑠, 𝑦 (𝑠)) 𝑑𝑠)

(52)

or

𝑢
0
(𝑡) ≧ [∫

𝑡

𝑡0

V (𝑡, 𝑠) 𝑓 (𝑠, 𝑢
0
(𝑠)) 𝑑𝑠]

× (𝑞 (𝑡) +
1

Γ (𝑞)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑔 (𝑠, 𝑦 (𝑠)) 𝑑𝑠)

(53)

for all 𝑡 ∈ 𝐽 and 0 < 𝑞 < 1, where the functions V :
𝐽 × 𝐽 → R+ and 𝑓, 𝑔 : 𝐽 ×R → R are continuous.

Remark 26. The condition given in hypothesis (H
7
) is a little

more restrictive than that of a lower solution for theHFIE (51)
defined on 𝐽.

Theorem 27. Assume that the hypotheses (𝐻
1
), (𝐻
2
), and

(𝐻
5
) through (𝐻

8
) hold true. Then the HFIE (51) admits a

solution.

Proof. Set 𝑋 = 𝐶(𝐽,R) and define an order relation ≦ with
the help of the cone K defined by (43). Clearly, 𝐶(𝐽,R) is a
lattice with respect to the above order relation ≦ in it. Define
two operators 𝐴 and 𝐵 on𝑋 by

𝐴𝑥 (𝑡) = ∫
𝑡

𝑡0

V (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (𝑡 ∈ 𝐽) ,

𝐵𝑥 (𝑡) = 𝑞 (𝑡) +
1

Γ (𝑞)
∫
𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (𝑡 ∈ 𝐽) .

(54)
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Clearly, the operator 𝐴 is linear and bounded in view of
the hypotheses (H

1
), (H
6
), and (H

7
). We only show that the

operator𝐴𝑛 is partially𝑀-contraction on𝑋 for every positive
integer 𝑛. Let 𝑥, 𝑦 ∈ 𝑋 be such that 𝑥 ≧ 𝑦. Then, by (H

6
) and

(H
7
), we have

󵄨󵄨󵄨󵄨𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)
󵄨󵄨󵄨󵄨

≦ ∫
𝑡

𝑡0

|𝑉| ⋅
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

≦ 𝑉∫
𝑡0+𝑎

𝑡0

𝐿
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠 ≦ 𝐿𝑉𝑎
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ,

(55)

where |𝑉| is the supremum of V(𝑡, 𝑠) over 𝑡. Thus, by taking
the supremum over 𝑡, we obtain

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩 ≦ 𝐿𝑉𝑎

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (56)

Similarly, it can be proved that

󵄩󵄩󵄩󵄩󵄩
𝐴
2

𝑥 − 𝐴
2

𝑦
󵄩󵄩󵄩󵄩󵄩
=
󵄨󵄨󵄨󵄨𝐴 (𝐴𝑥 (𝑡)) − 𝐴 (𝐴𝑦 (𝑡))

󵄨󵄨󵄨󵄨

≦ 𝐿𝑉∫
𝑡0+𝑎

𝑡0

(∫
𝑡

𝑡0

󵄨󵄨󵄨󵄨𝐴𝑥 (𝑠) − 𝐴𝑦 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑠) 𝑑𝑠

≦
𝐿2𝑉2𝑎2

2!

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(57)

In general, proceeding in the same way, for any positive
integer 𝑛, we have

󵄩󵄩󵄩󵄩𝐴
𝑛

𝑥 − 𝐴
𝑛

𝑦
󵄩󵄩󵄩󵄩 ≦

𝐿𝑛𝑉𝑛𝑎𝑛

𝑛!

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (58)

Therefore, for large 𝑛, 𝐴𝑛 is partially a nonlinear 𝑀-
contraction mapping on 𝑋. The rest of the proof is similar
to that of Theorem 25. The desired result now follows by an
application of Theorem 22. This completes the proof.

5. An Illustrative Example

Example 1. Consider a distributed-order fractional hybrid
differential equation (DOFHDES) involving the Reimann-
Liouville derivative operator of order 0 < 𝑞 < 1 with respect
to the negative density function 𝑏(𝑞) > 0 as follows:

∫
1

0

𝑏 (𝑞)𝐷
𝑞

[
𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] 𝑑𝑞 = 𝑔 (𝑡, 𝑥 (𝑡)) (𝑡 ∈ 𝐽) ,

∫
1

0

𝑏 (𝑞) 𝑑𝑞 = 1,

𝑥 (0) = 0.

(59)

Moreover, the function 𝑡 → 𝑥/𝑓(𝑡, 𝑥) is continuous for
each 𝑥 ∈ R, where 𝐽 = [0, 𝑇] is bounded inR for some𝑇 ∈ R.
Also 𝑓 ∈ 𝐶(𝐽 × R,R \ {0}) and 𝑔 ∈ 𝐶(𝐽,R). It is well known

that theDOFHDES (59) is equivalent to the following integral
equation:

𝑥 (𝑡)

=
𝑓 (𝑡, 𝑥 (𝑡))

𝜋
∫
𝑡

0

𝐿{𝑆{
1

𝐵 (𝑟𝑒−𝑖𝜋)
} ; 𝑡 − 𝜏}𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

(60)

such that 0 ≦ 𝜏 ≦ 𝑡 ≦ 𝑇 and

𝐵 (𝑠) = ∫
1

0

𝑏 (𝑞) 𝑠
𝑞

𝑑𝑞. (61)

The integral equation (60) is valid for all 𝑥 ∈ 𝐶(𝐽,R). Hence,
if Theorem 25 holds true then we further have

𝐿𝑀|ℎ|
𝐿
󸀠

𝜋
< 1 (𝑀 > 0) , (62)

then the above-mentioned DOFHDES (59) has a solution.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References
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of fixed point in partially ordered sets and applications to
ordinary differential equations,” Acta Mathematica Sinica, vol.
23, no. 12, pp. 2205–2212, 2007.
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