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We carry out group classification of a general bond-option pricing equation.We show that the equation admits a three-dimensional
equivalence Lie algebra. We also show that some of the values of the constants which result from group classification give us well-
known models in mathematics of finance such as Black-Scholes, Vasicek, and Cox-Ingersoll-Ross. For all such values of these
arbitrary constants we obtain Lie point symmetries. Symmetry reductions are then obtained and group invariant solutions are
constructed for some cases.

1. Introduction

The theory of option pricing began in 1900 when the French
mathematician Bachelier [1] deduced an option pricing for-
mula based on the assumption that stock prices follow a
Brownian motion. The Black-Scholes equation
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was introduced by Black and Scholes [2] as the general
equilibrium theory of option pricing which is particularly
attractive because the final formula is a function of observable
variables. Merton [3] extended the Black-Scholes theory of
option pricing by introducing more assumptions and found
new explicit formulas for pricing both the call and put options
as well as the warrants and the down-and-out options. The
equation is mainly used to find the fair price of a financial
instrument (option or derivative) and to find the implied
volatility.

The first bond pricing equation
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+ 𝜅 (𝜃 − 𝑥) 𝑢
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was introduced by Vasicek [4] and thereafter many other
researchers (see, e.g., [5–12]) came up with other one-factor
models which modelled the term structure of interest rates.

Many differential equations, including financial mathe-
matics equations, involve parameters, arbitrary elements, or
functions, which need to be determined. Usually, these arbi-
trary parameters are determined experimentally. However,
the Lie symmetry approach through the method of group
classification has proven to be a versatile tool in specifying the
forms of these parameters systematically (see, e.g., [13–20]).

In 1881, Lie [21]was the first one to investigate the problem
of group classification. In this regard, he studied a linear
second-order partial differential equation with two indepen-
dent variables. Suppose a differential equation contains an
arbitrary element 𝑓(𝑢). The main idea of group classification
of this differential equation is to find the Lie point symmetries
of the differential equation with arbitrary element 𝑓(𝑢) and
then find all possible forms of 𝑓(𝑢) for which the principal
Lie algebra can be extended.

Semi-invariants for the (1 + 1) linear parabolic equations
with two independent variables and one dependent variable
were derived by Johnpillai and Mahomed [22]. In addition,
joint invariant equation was obtained for the linear parabolic
equation and the (1 + 1) linear parabolic equation was
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reducible via a local equivalence transformation to the one-
dimensional heat equation. In [23], a necessary and sufficient
condition for the parabolic equation to be reducible to the
classical heat equation under the equivalence group was
provided which improved the work done in [22].

Goard [24] found group invariant solutions of the bond
pricing equation by the use of classical Lie method. The
solutions obtained were shown to satisfy the condition for
the bond price, that is, 𝑃(𝑟, 𝑇) = 1, where 𝑃 is the price
of the bond. Here 𝑟 is the short-term interest rate which is
governed by the stochastic differential equation and 𝑇 is time
to maturity.

In [25], the fundamental solutions were obtained for
a number of zero-coupon bond models by transforming
the one-factor bond pricing equations corresponding to the
bond models to the one-dimensional heat equation whose
fundamental solution is well known. Subsequently, the trans-
formations were used to construct the fundamental solutions
for zero-coupon bond pricing equations.

Sinkala et al. [26] computed the zero-coupon bonds
(group invariant solutions satisfying the terminal condition
𝑢(𝑇, 𝑇) = 1) using symmetry analysis for the Vasicek and
Cox-Ingersoll-Ross (CIR) equations, respectively. In [27] an
optimal system of one-dimensional subalgebras was derived
and used to construct distinct families of special closed-form
solutions of CIR equation. In [20], group classification of the
linear second-order parabolic partial differential equation
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where 𝛼, 𝛽, 𝜆, 𝜌, and 𝛾 are constants, was carried out. Lie
point symmetries and group invariant solutions were found
for certain values of 𝛾. Also the forms where equation (3)
admitted the maximal seven Lie point symmetry algebra
were transformed into the heat equation. Vasicek, CIR, and
Longstaff models were recovered from group classification
and some other equations were derived which had not been
considered before in the literature. Furthermore, Mahomed
et al. [28] used the invariant conditions developed in [23] to
carry out group classification of [20] and somenew caseswere
discovered.

Dimas et al. [29] investigated some of the well-known
equations that arise in mathematics of finance, such as Black-
Scholes, Longtsaff, Vasicek, CIR, and heat equations. Lie
point symmetries of these equations were found and their
algebras were compared with those of the heat equation. The
equations with seven symmetries were transformed to the
heat equation.

In this paper, we study a general bond-option pricing
equation. The partial differential equation which will be
investigated is a generalisation of (1) and (2) and is given by
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where 𝑡 is time, 𝑥 is the stock (share or equity) price or
instantaneous short-term interest rate at current time 𝑡, and
𝑢(𝑡, 𝑥) is the current value of the option or bond. Here 𝑝 ≥ 0,
𝑞 ≥ 0, and 𝛼, 𝛾, 𝜆, and 𝛽 are constants with 𝛼, 𝜆, 𝛾 ̸= 0. When
𝑞 = 0, (4) is the option pricing equation and it is the bond
pricing PDE when 𝑞 = 1.

This paper is structured as follows. In Section 2, we find
two classifying equations on which group classification of (4)
depends, one for 𝑝 ̸= 2 and the other for 𝑝 = 2. Then we
use the two equations to find possible values for arbitrary
constants for which (4) admits nontrivial Lie point symmetry
algebras. In Section 3, we obtain symmetry reductions and
construct group-invariant solutions for Case 2.1(1) and finally
in Section 4 we give conclusions.

2. Determination of Classifying
Equations of (4)

The Lie point symmetries for (4) are given by the vector field:
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where𝑋[2] is the second prolongation of𝑋 defined as
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To perform the group classification of (4) it turns out that we
need to consider two cases of 𝑝 separately: 𝑝 ̸= 2 and 𝑝 = 2.

2.1. Classifying Equation of (4) for 𝑝 ̸= 2. Expanding the
determining equation (6), we obtain
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Separating (10) with respect to the derivatives of 𝑢, since the
functions 𝜏, 𝜉, and 𝜂 do not depend on them, leads to the
following linear PDEs:
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𝑡
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𝑝
𝜂
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− 𝛽𝜆𝜏
𝑡
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(17)

To solve the above system of equations, we first observe from
(11) and (14) that 𝜏 does not depend on 𝑥 and 𝑢, which means
that 𝜏 is a function of 𝑡. Thus

𝜏 = 𝜏 (𝑡) . (18)

Equation (12) implies that 𝜉 depends on both 𝑡 and 𝑥 but not
on 𝑢. Hence

𝜉 = 𝜉 (𝑡, 𝑥) . (19)

Integration of (13) with respect to 𝑢 twice gives

𝜂 (𝑡, 𝑥, 𝑢) = 𝐴 (𝑡, 𝑥) 𝑢 + 𝐵 (𝑡, 𝑥) , (20)

where 𝐴(𝑡, 𝑥) and 𝐵(𝑡, 𝑥) are arbitrary functions of 𝑡 and 𝑥.
Using the expressions for 𝜏 and 𝜉 in (15) and integrating with
respect to 𝑥 lead to

𝜉 (𝑡, 𝑥) = 𝑐 (𝑡) 𝑥
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−

𝑥𝜏
󸀠
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where 𝑐(𝑡) is an arbitrary function of 𝑡. Using (18), (20), and
(21) in (17) yields
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𝐴
𝑥
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2
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1+𝑝/2

(𝑝 − 2)
2

− 4𝑥
2
𝜏
󸀠󸀠
(𝑡)

+ 2𝛽𝜆𝑝𝐶 (𝑡) 𝑥
𝑝/2
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𝑝/2

𝑥𝑐
󸀠
(𝑡) (𝑝 − 2)
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2
(𝑝 − 2) + 4𝛽𝑥 (1 − 𝑝)) 𝜏

󸀠
(𝑡)
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(22)

Integrating (22) with respect to 𝑥 and solving for𝐴we obtain

𝐴 (𝑡, 𝑥) = 𝑑 (𝑡) +

𝑥
−𝑝−1

4𝛼(𝑝 − 2)
2

× {(𝑝 − 2)
2

𝑥
𝑝/2

𝑐 (𝑡) (𝑝𝛼𝑥
𝑝
+ 2𝜆𝑥 (𝑥 − 𝛽))

−2𝑥
3
𝜏
𝑡𝑡
} −

𝑥
−𝑝−1

4𝛼(𝑝 − 2)
2

× {2𝑥
2
(2 (𝑝 − 2) 𝑥

𝑝/2
𝑐
󸀠
(𝑡)

+ (2 − 𝑝) 𝜆𝜏
󸀠
(𝑡) (𝛽 − 𝑥))} ,

(23)

where 𝑑(𝑡) is an arbitrary function of 𝑡.
Using (18)–(21) and (23) in (16) gives

16𝛼(𝑝 − 2)
2

𝑥
2+𝑝/2

(𝛼𝑥
𝑝
𝐵
𝑥𝑥

+ 𝐵𝛾𝑥
𝑞
+ 𝐵
𝑡
+ 𝛽𝜆𝐵

𝑥
− 𝜆𝑥𝐵

𝑥
)

+ 8𝑢𝛼 (𝑝 − 2) 𝑥
2+𝑝/2

(2𝛾 (𝑝 − 𝑞 − 2) 𝑥
𝑞

−𝜆 (𝑝 − 2) (𝑝 − 1)) 𝜏
𝑡

− 8𝑢𝜆
2
(𝑝 − 2)

2

𝑥
4−𝑝/2

𝜏
𝑡
+ 8𝛽𝜆𝑢 (𝑝 − 2)

× {𝛼 (𝑝 − 1) 𝑝𝑥
1+𝑝/2

𝜏
𝑡
− 𝛽𝜆 (𝑝 − 1) 𝑥

2−𝑝/2
𝜏
𝑡

+𝜆 (2𝑝 − 3) 𝑥
3−𝑝/2

𝜏
𝑡
}

+ 𝑢 {8 (𝑝 − 2) (2𝛼 (𝑝 − 2) 𝑑
𝑡
𝑥
2+𝑝/2

+𝛼 (𝑝 − 1) 𝑥
2+𝑝/2

𝜏
𝑡𝑡

−2𝑥
3
𝑐
𝑡𝑡
) + 8𝑥

4−𝑝/2
𝜏
𝑡𝑡𝑡
}

+ 𝛼(𝑝 − 2)
2

𝑐 (𝑡) 𝑥
𝑝−1

𝑢 {𝛼𝑝
3
𝑥
𝑝
− 6𝛼𝑝

2
𝑥
𝑝
+ 8𝛼𝑝𝑥

𝑝

−8𝛽𝜆𝑝𝑥 + 16𝛾𝑞𝑥
𝑞+2

}

+ 4𝜆
2
(𝑝 − 2)

2

𝑥𝑢𝑐 (𝑡) (𝑥 − 𝛽) (−𝛽𝑝 + 𝑝𝑥 − 2𝑥)

= 0.

(24)
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Since the functions 𝐵, 𝑐, 𝑑, and 𝜏 do not depend on 𝑢, we split
(24) with respect to 𝑢 and get

1 : 𝐵
𝑡
+ 𝛼𝑥
𝑝
𝐵
𝑥𝑥

+ 𝜆 (𝛽 − 𝑥) 𝐵
𝑥
+ 𝛾𝑥
𝑞
𝐵 = 0, (25)

𝑢 : 8𝛼 (𝑝 − 2) 𝑥
2+𝑝/2

(2𝛾 (𝑝 − 𝑞 − 2) 𝑥
𝑞

−𝜆 (𝑝 − 2) (𝑝 − 1)) 𝜏
𝑡

− 8𝜆
2
(𝑝 − 2)

2

𝑥
4−𝑝/2

𝜏
𝑡
+ 8𝛽𝜆 (𝑝 − 2)

× (𝛼 (𝑝 − 1) 𝑝𝑥
1+𝑝/2

𝜏
𝑡
− 𝛽𝜆 (𝑝 − 1) 𝑥

2−𝑝/2
𝜏
𝑡

+𝜆 (2𝑝 − 3) 𝑥
3−𝑝/2

𝜏
𝑡
)

+ (8 (𝑝 − 2) (2𝛼 (𝑝 − 2) 𝑑
𝑡
𝑥
2+𝑝/2

+ 𝛼 (𝑝 − 1) 𝑥
2+𝑝/2

𝜏
𝑡𝑡

−2𝑥
3
𝑐
𝑡𝑡
) + 8𝑥

4−𝑝/2
𝜏
𝑡𝑡𝑡
)

+ 𝛼(𝑝 − 2)
2

𝑐 (𝑡) 𝑥
𝑝−1

(𝛼𝑝
3
𝑥
𝑝
− 6𝛼𝑝

2
𝑥
𝑝
+ 8𝛼𝑝𝑥

𝑝

−8𝛽𝜆𝑝𝑥 + 16𝛾𝑞𝑥
𝑞+2

)

+ 4𝜆
2
(𝑝 − 2)

2

𝑥𝑐 (𝑡) (𝑥 − 𝛽) (−𝛽𝑝 + 𝑝𝑥 − 2𝑥)

= 0.

(26)

It is clear that 𝐵 satisfies the original equation of (4).
Rewriting (26) yields our classifying equation as

ℎ
0
(𝑡) 𝑥
5𝑝/2

+ ℎ
1
(𝑡) 𝑥
𝑞+2+3𝑝/2

+ ℎ
2
(𝑡) 𝑥
1+3𝑝/2

+ ℎ
3
(𝑡) 𝑥
4

+ ℎ
4
(𝑡) 𝑥
3
+ ℎ
5
(𝑡) 𝑥
𝑝+2

+ ℎ
6
(𝑡) 𝑥
𝑝+𝑞+3

+ ℎ
7
(𝑡) 𝑥
𝑝+3

+ ℎ
8
(𝑡) 𝑥
3+𝑝/2

+ ℎ
9
(𝑡) 𝑥
2+𝑝/2

+ ℎ
10

(𝑡) 𝑥
4+𝑝/2

+ ℎ
11

(𝑡) 𝑥
5

= 0, (27)

where

ℎ
0
(𝑡) = 𝛼

2
(𝑝 − 4) (𝑝 − 2)

3

𝑝𝑐 (𝑡) ,

ℎ
1
(𝑡) = 16𝛼𝛾(𝑝 − 2)

2

𝑞𝑐 (𝑡) ,

ℎ
2
(𝑡) = −8𝛼𝛽𝜆(𝑝 − 2)

2

𝑝𝑐 (𝑡) ,

ℎ
3
(𝑡) = 8𝛽𝜆

2
(𝑝 − 2) (2𝑝 − 3) 𝜏

󸀠
(𝑡) ,

ℎ
4
(𝑡) = −8𝛽

2
𝜆
2
(𝑝 − 2) (𝑝 − 1) 𝜏

󸀠
(𝑡) ,

ℎ
5
(𝑡) = 8𝛼𝛽𝜆 (𝑝 − 2) (𝑝 − 1) 𝑝𝜏

󸀠
(𝑡) ,

ℎ
6
(𝑡) = 16𝛼𝛾 (𝑝 − 2) (𝑝 − 𝑞 − 2) 𝜏

󸀠
(𝑡) ,

ℎ
7
(𝑡) = 8𝛼 (𝑝 − 2) ((𝑝 − 1) 𝜏

󸀠󸀠
(𝑡) − 𝜆 (𝑝 − 2)

× (𝑝 − 1) 𝜏
󸀠
(𝑡) + 2 (𝑝 − 2) 𝑑

󸀠
(𝑡)) ,

ℎ
8
(𝑡) = −8𝛽𝜆

2
(𝑝 − 2)

2

(𝑝 − 1) 𝑐 (𝑡) ,

ℎ
9
(𝑡) = 4𝛽

2
𝜆
2
(𝑝 − 2)

2

𝑝𝑐 (𝑡) ,

ℎ
10

(𝑡) = 4 (𝑝 − 2) (𝜆
2
𝑝
2
𝑐 (𝑡) − 4𝜆

2
𝑝𝑐 (𝑡)

+4𝜆
2
𝑐 (𝑡) − 4𝑐

󸀠󸀠
(𝑡)) ,

ℎ
11

(𝑡) = −8 (𝜆
2
𝑝
2
𝜏
󸀠
(𝑡) − 4𝜆

2
𝑝𝜏
󸀠
(𝑡)

+4𝜆
2
𝜏
󸀠
(𝑡) − 𝜏

󸀠󸀠󸀠
(𝑡)) .

(28)

2.2. Classifying Equation of (4) for 𝑝= 2. In the case when
𝑝 = 2 in (4), we proceed as above to obtain the determining
equation as

𝑞𝑢𝛾𝜉𝑥
𝑞−1

+ 𝛾𝜂𝑥
𝑞
+ 𝑢𝛾𝜏

𝑡
𝑥
𝑞
− 𝑢𝛽𝛾𝜆𝑢

𝑥
𝜏
𝑢
𝑥
𝑞
+ 𝑢𝛽𝛾𝜆𝜏

𝑥
𝑥
𝑞

+ 𝑢𝛾𝑢
𝑥
𝜉
𝑢
𝑥
𝑞
− 𝑢𝛾𝜂

𝑢
𝑥
𝑞
− 𝑢
2
𝛾
2
𝜏
𝑢
𝑥
2𝑞

+ 𝑢𝛾𝜆𝑢
𝑥
𝜏
𝑢
𝑥
𝑞+1

− 𝑢𝛾𝜆𝜏
𝑥
𝑥
𝑞+1

− 𝑢𝛼𝛾𝜏
𝑢
𝑢
𝑥𝑥
𝑥
𝑞+2

+ 𝑢𝛼𝛾𝑢
2

𝑥
𝜏
𝑢,𝑢

𝑥
𝑞+2

+ 2𝑢𝛼𝛾𝑢
𝑥
𝜏
𝑥𝑢
𝑥
𝑞+2

+ 𝑢𝛼𝛾𝜏
𝑥𝑥
𝑥
𝑞+2

+ 𝛼
2
𝑢
2

𝑥
𝑢
𝑥𝑥
𝜏
𝑢𝑢
𝑥
4

+ 2𝛼
2
𝑢
𝑥
𝑢
𝑥𝑥
𝜏
𝑥𝑢
𝑥
4
+ 𝛼
2
𝑢
𝑥𝑥
𝜏
𝑥𝑥
𝑥
4
− 𝛼𝜆𝜏

𝑥
𝑢
𝑥𝑥
𝑥
3

− 𝛼𝜆𝑢
3

𝑥
𝜏
𝑢𝑢
𝑥
3
− 2𝛼𝜆𝑢

2

𝑥
𝜏
𝑥𝑢
𝑥
3
− 𝛼𝜆𝑢

𝑥
𝜏
𝑥𝑥
𝑥
3

+ 𝜆
2
𝑢
𝑥
𝜏
𝑥
𝑥
2
− 2𝛼𝑢

𝑥
𝜏
𝑢
𝑢
𝑡𝑥
𝑥
2
− 2𝛼𝜏

𝑥
𝑢
𝑡𝑥
𝑥
2
+ 𝛼𝜏
𝑡
𝑢
𝑥𝑥
𝑥
2

+ 𝛼𝛽𝜆𝜏
𝑥
𝑢
𝑥𝑥
𝑥
2
− 2𝛼𝑢

𝑥
𝜉
𝑢
𝑢
𝑥𝑥
𝑥
2
− 2𝛼𝜉

𝑥
𝑢
𝑥𝑥
𝑥
2

+ 𝛼𝛽𝜆𝑢
3

𝑥
𝜏
𝑢𝑢
𝑥
2
+ 2𝛼𝛽𝜆𝑢

2

𝑥
𝜏
𝑥𝑢
𝑥
2
+ 𝛼𝛽𝜆𝑢

𝑥
𝜏
𝑥𝑥
𝑥
2

− 𝛼𝑢
3

𝑥
𝜉
𝑢𝑢
𝑥
2
− 2𝛼𝑢

2

𝑥
𝜉
𝑥𝑢
𝑥
2
− 𝛼𝑢
𝑥
𝜉
𝑥𝑥
𝑥
2
+ 𝛼𝑢
2

𝑥
𝜂
𝑢𝑢
𝑥
2

+ 2𝛼𝑢
𝑥
𝜂
𝑥𝑢
𝑥
2
+ 𝛼𝜂
𝑥𝑥
𝑥
2
− 𝜆𝑢
𝑥
𝜏
𝑡
𝑥 − 2𝛽𝜆

2
𝑢
𝑥
𝜏
𝑥
𝑥

+ 𝜆𝑢
𝑥
𝜉
𝑥
𝑥 − 𝜆𝜂

𝑥
𝑥 + 2𝛼𝜉𝑢

𝑥𝑥
𝑥 − 𝜆𝑢

𝑥
𝜉 + 𝛽𝜆𝑢

𝑥
𝜏
𝑡

+ 𝛽
2
𝜆
2
𝑢
𝑥
𝜏
𝑥
− 𝑢
𝑥
𝜉
𝑡
− 𝛽𝜆𝑢

𝑥
𝜉
𝑥
+ 𝜂
𝑡
+ 𝛽𝜆𝜂

𝑥

= 0.

(29)

As before, splitting (29) on derivatives of 𝑢 and simplifying
lead to

𝜏
𝑢
= 0, (30)

𝜉
𝑢
= 0, (31)

𝜂
𝑢𝑢

= 0, (32)

𝜏
𝑥
= 0, (33)

2𝛼𝜂
𝑥𝑢
𝑥
3
− 𝛼𝜉
𝑥𝑥
𝑥
3
− 𝜆𝜉
𝑥
𝑥
2
+ 𝜆𝜉𝑥

− 𝜉
𝑡
𝑥 + 𝛽𝜆𝜉

𝑥
𝑥 − 2𝛽𝜆𝜉 = 0,

(34)

2𝑥𝜉
𝑥
− 2𝜉 − 𝑥𝜏

𝑡
= 0, (35)
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𝑥
𝑞
(𝑢𝛾𝜉 (𝑞 − 2) + 𝑥 (𝛾𝜂 − 𝑢𝛾𝜂

𝑢
+ 2𝑢𝛾𝜉

𝑥
))

+ 𝑥
2
𝛼𝜂
𝑥𝑥
𝑥 + 𝑥𝜆𝜂

𝑥
(𝛽 − 𝑥) + 𝑥𝜂

𝑡
= 0.

(36)

Equations (30) and (33) imply that

𝜏 = 𝜏 (𝑡) , (37)

whereas (31) means that 𝜉 does not depend on 𝑢; that is,

𝜉 = 𝜉 (𝑡, 𝑥) , (38)

and (32) gives

𝜂 (𝑡, 𝑥, 𝑢) = 𝐴 (𝑡, 𝑥) 𝑢 + 𝐵 (𝑡, 𝑥) , (39)

after integrating twice by𝑢 and for some arbitrary functions𝐴
and𝐵. Substituting (37) and (38) into (35), we get a linear first-
order ODE in 𝜉which can be easily integrated with respect to
𝑥 to give

𝜉 (𝑡, 𝑥) = 𝑥𝑒 (𝑡) +

1

2

𝑥𝜏
󸀠
(𝑡) ln𝑥, (40)

where 𝑒(𝑡) is an arbitrary function of 𝑡. If we substitute (37),
(40), and (39) into (34) and solve the resulting differential
equation for 𝐴, we get

𝐴 (𝑡, 𝑥) =

1

8𝛼𝑥

[{𝑥 [4𝑒
󸀠
(𝑡) + ln𝑥𝜏

󸀠󸀠
(𝑡)]

+2𝜏
󸀠
(𝑡) [𝑥 (𝛼 + 𝜆) − 𝛽𝜆]} ln𝑥 − 4𝛽𝜆𝑒 (𝑡)]

+ 𝑓 (𝑡) ,

(41)

where 𝑓(𝑡) is an arbitrary function of 𝑡. Substituting (41) and
(40) into (36), we obtain

8𝛼
2
𝑥
4
𝐵
𝑥𝑥

− 8𝛼𝜆𝑥
3
𝐵
𝑥
+ 8𝛼𝛽𝜆𝑥

2
𝐵
𝑥
+ 8𝛼𝑥

2
𝐵
𝑡
+ 8𝛼𝛾𝑥

𝑞+2
𝐵

+ 𝑢 ( − 4𝛼𝑥
2
𝑒
󸀠
(𝑡) − 4𝜆𝑥

2
𝑒
󸀠
(𝑡) + 4𝑒 (𝑡)

× (2𝛼𝛾𝑞𝑥
𝑞+2

+ 𝛽𝜆 (𝛽𝜆 − 𝑥 (2𝛼 + 𝜆)))

+ 4𝑥
2
𝑒
󸀠󸀠
(𝑡) ln𝑥 + 8𝛼𝑥

2
𝑓
󸀠
(𝑡) + 8𝛼𝛾𝑥

𝑞+2
𝜏
󸀠
(𝑡)

+ 4𝛼𝛾𝑞𝑥
𝑞+2

𝜏
󸀠
(𝑡) ln𝑥 − 2𝛽

2
𝜆
2
𝜏
󸀠
(𝑡) − 2𝛼

2
𝑥
2
𝜏
󸀠
(𝑡)

− 4𝛼𝜆𝑥
2
𝜏
󸀠
(𝑡) + 2𝛼𝑥

2
𝜏
󸀠󸀠
(𝑡) − 2𝜆

2
𝑥
2
𝜏
󸀠
(𝑡)

+ 𝑥
2
𝜏
(3)

(𝑡) ln2𝑥 + 4𝛽𝜆
2
𝑥𝜏
󸀠
(𝑡) + 8𝛼𝛽𝜆𝑥𝜏

󸀠
(𝑡)

− 4𝛼𝛽𝜆𝑥𝜏
󸀠
(𝑡) ln𝑥

+2𝛽
2
𝜆
2
𝜏
󸀠
(𝑡) ln𝑥 − 2𝛽𝜆

2
𝑥𝜏
󸀠
(𝑡) ln𝑥)

= 0.

(42)

Splitting (42) on 𝑢 yields

1 : 𝐵
𝑡
+ 𝛼𝑥
2
𝐵
𝑥𝑥

+ 𝜆 (𝛽 − 𝑥) 𝐵
𝑥
+ 𝛾𝑥
𝑞
𝐵 = 0, (43)

𝑢 : (4𝑥
2
𝑒
󸀠󸀠
(𝑡) + 4𝛼𝛾𝑞𝑥

𝑞+2
𝜏
󸀠
(𝑡) + 2𝛽

2
𝜆
2
𝜏
󸀠
(𝑡) − 4𝛼𝛽𝜆𝑥𝜏

󸀠
(𝑡)

−2𝛽𝜆
2
𝑥𝜏
󸀠
(𝑡)) ln𝑥 − 4𝛼𝑥

2
𝑒
󸀠
(𝑡) − 4𝜆𝑥

2
𝑒
󸀠
(𝑡) + 4𝑒 (𝑡)

× (2𝛼𝛾𝑞𝑥
𝑞+2

+ 𝛽𝜆 (𝛽𝜆 − 𝑥 (2𝛼 + 𝜆))) + 8𝛼𝑥
2
𝑓
󸀠
(𝑡)

+ 8𝛼𝛾𝑥
𝑞+2

𝜏
󸀠
(𝑡) − 2𝛽

2
𝜆
2
𝜏
󸀠
(𝑡) − 2𝛼

2
𝑥
2
𝜏
󸀠
(𝑡)

− 4𝛼𝜆𝑥
2
𝜏
󸀠
(𝑡) + 2𝛼𝑥

2
𝜏
󸀠󸀠
(𝑡) − 2𝜆

2
𝑥
2
𝜏
󸀠
(𝑡)

+ 𝑥
2
𝜏
󸀠󸀠󸀠

(𝑡) ln2𝑥 + 8𝛼𝛽𝜆𝑥𝜏
󸀠
(𝑡) + 4𝛽𝜆

2
𝑥𝜏
󸀠
(𝑡)

= 0.

(44)

Rewriting (44) we get our classifying equation as

𝑏
0
(𝑡) + 𝑏

1
(𝑡) ln𝑥 + 𝑥 (𝑏

2
(𝑡) + 𝑏

3
(𝑡) ln𝑥)

+ 𝑥
2
(𝑏
4
(𝑡) + 𝑏

5
(𝑡) ln𝑥 + 𝑏

6
(𝑡) ln2𝑥)

+ 𝑥
𝑞+2

(𝑏
7
(𝑡) + 𝑏

8
(𝑡) ln𝑥) = 0,

(45)

where

𝑏
0
(𝑡) = 4𝛽

2
𝜆
2
𝑒 (𝑡) − 2𝛽

2
𝜆
2
𝜏
󸀠
(𝑡) ,

𝑏 (1) = 2𝛽
2
𝜆
2
𝜏
󸀠
(𝑡) ,

𝑏
2
(𝑡) = −4𝛽𝜆 (2𝛼 + 𝜆) (𝑒 (𝑡) − 𝜏

󸀠
(𝑡)) ,

𝑏
3
(𝑡) = −2𝛽𝜆 (2𝛼 + 𝜆) 𝜏

󸀠
(𝑡) ,

𝑏
4
(𝑡) = 8𝛼𝑓

󸀠
(𝑡) − 4 (𝛼 + 𝜆) 𝑒

󸀠
(𝑡)

− 2(𝛼 + 𝜆)
2
𝜏
󸀠
(𝑡) + 2𝛼𝜏

󸀠󸀠
(𝑡) ,

𝑏
5
(𝑡) = 4𝑒

󸀠󸀠
(𝑡) ,

𝑏
6
(𝑡) = 𝜏

󸀠󸀠󸀠
(𝑡) ,

𝑏
7
(𝑡) = 4𝛼𝛾 (2𝑞𝑒 (𝑡) + 2𝜏

󸀠
(𝑡)) ,

𝑏
8
(𝑡) = 4𝛼𝛾𝑞𝜏

󸀠
(𝑡) .

(46)

3. Results of Group Classification

We note that our classifying equations (27) and (45) are
satisfied if we choose

𝑐 (𝑡) = 𝑒 (𝑡) = 0, 𝑑 (𝑡) = 𝑓 (𝑡) = 𝑐
2
, 𝜏 (𝑡) = 𝑐

1
, (47)

for some constants 𝑐
1
and 𝑐
2
.Thus using these values, for both

cases, the coefficients of the infinitesimal operator are

𝜏 = 𝑐
1
, 𝜉 = 0, 𝜂 = 𝑐

2
𝑢 + 𝐵 (𝑡, 𝑥) , (48)

where 𝐵(𝑡, 𝑥) is any solution of (4).
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Case 0 (𝛼, 𝛾, 𝜆, 𝛽, 𝑝, 𝑞 arbitrary). We obtain the following Lie
point symmetries:

𝑋
1
=

𝜕

𝜕𝑡

, 𝑋
2
= 𝑢

𝜕

𝜕𝑢

, 𝑋
𝐵
= 𝐵 (𝑡, 𝑥)

𝜕

𝜕𝑢

, (49)

where the symmetry associatedwith𝐵 is the solution symme-
try. Lie symmetries (49) generate what is called the principal
Lie algebra.

By equating the powers of 𝑥 in (27) and solving for 𝑝 we
infer that possible extensions of the principal Lie algebra are
possible for the following values of 𝑝:

0, 1,

3

2

,

4

3

,

6

5

,

8

5

,

8

3

, 3, 4, 6. (50)

In this paper, we consider 𝑝 = 0, 1, and 2, as these values of
𝑝 provide us with very important equations in mathematics
of finance. For example, when 𝑝 = 2 and 𝑞 = 0, we have
the Black-Scholes equation. We obtain the Vasicek equation
when 𝑝 = 0 and 𝑞 = 1 and CIR equation when 𝑝 = 1 and
𝑞 = 1.

We show only the different combinations of parameters
which extend the principal Lie algebra.

Case 1 (𝑝 = 0)

Case 1.1 (𝑞 = 0). In this case, the principal Lie algebra
extends by the following Lie point symmetries:

𝑋
3
=

𝑒
2𝜆𝑡

2𝜆

𝜕

𝜕𝑡

+ 𝑒
2𝜆𝑡

(

𝑥

2

−

𝛽

2

)

𝜕

𝜕𝑥

+ 𝑢𝑒
2𝜆𝑡

(

𝛽
2
𝜆

2𝛼

−

𝛾

2𝜆

+

𝜆𝑥
2

2𝛼

−

𝛽𝜆𝑥

𝛼

−

1

2

)

𝜕

𝜕𝑢

,

𝑋
4
=

𝑒
−2𝜆𝑡

2𝜆

[−

𝜕

𝜕𝑡

+ 𝜆 (𝑥 − 𝛽)

𝜕

𝜕𝑥

+ 𝛾𝑢

𝜕

𝜕𝑢

] ,

𝑋
5
= 𝑒
𝜆𝑡
[

𝜕

𝜕𝑥

+

𝜆

𝛼

𝑢 (𝑥 − 𝛽)

𝜕

𝜕𝑢

] ,

𝑋
6
= 𝑒
−𝜆𝑡 𝜕

𝜕𝑥

.

(51)

Case 1.2 (𝑞 = 1). The principal Lie algebra extends by

𝑋
3
=

𝑒
2𝜆𝑡

2𝜆

𝜕

𝜕𝑡

+ 𝑒
2𝜆𝑡

(−

𝛼𝛾

𝜆
2
−

𝛽

2

+

𝑥

2

)

𝜕

𝜕𝑥

+ 𝑢𝑒
2𝜆𝑡

(

𝛽
2
𝜆

2𝛼

+

𝛼𝛾
2

2𝜆
3
+

𝛽𝛾

𝜆

+

𝜆𝑥
2

2𝛼

−

𝛽𝜆𝑥

𝛼

−

3𝛾𝑥

2𝜆

−

1

2

)

𝜕

𝜕𝑢

,

𝑋
4
=

𝑒
−2𝜆𝑡

2𝜆

[−

𝜕

𝜕𝑡

+

1

𝜆

(𝜆
2
(𝑥 − 𝛽) − 2𝛼𝛾)

𝜕

𝜕𝑥

+

𝛾𝑢

𝜆
2
(𝜆
2
𝑥 − 𝛼𝛾)

𝜕

𝜕𝑢

] ,

𝑋
5
= 𝑒
𝜆𝑡
[

𝜕

𝜕𝑥

+

𝑢

𝛼𝜆

(−𝛼𝛾 − 𝛽𝜆
2
+ 𝜆
2
𝑥)

𝜕

𝜕𝑢

] ,

𝑋
6
= 𝑒
−𝜆𝑡

[

𝜕

𝜕𝑥

+

𝛾𝑢

𝜆

𝜕

𝜕𝑢

] .

(52)

It should be noted that this case results in the Vasicek
equation [26].

Case 1.3 (𝑞 = 2). (1) Consider𝛼 ̸= 𝜆
2
/4𝛾. The additional Lie

point symmetries are given by

𝑋
3
=

𝑒
2𝜅𝑡

2𝜅

𝜕

𝜕𝑡

+ 𝑒
2𝜅𝑡

(

1

2

𝑥 −

𝛽𝜆
2

2𝜅

)

𝜕

𝜕𝑥

+

𝑢𝑒
2𝜅𝑡

4𝛼𝜅
3
(−2𝛼𝛽

2
𝛾𝜆
2
+ (𝜅 + 𝜆)

× ((𝜅𝑥 − 𝛽𝜆) (𝜅
2
𝑥 − 𝛽𝜆

2
) − 𝛼𝜅

2
))

𝜕

𝜕𝑢

,

𝑋
4
= −

𝑒
−2𝜅𝑡

2𝜅

𝜕

𝜕𝑡

+

𝑒
−2𝜅𝑡

2𝜅
2

(𝜅
2
𝑥 − 𝛽𝜆

2
)

𝜕

𝜕𝑥

−

𝑢𝑒
−2𝑡𝜅

4𝛼𝜅
3

(𝛼𝜆 (2𝛽
2
𝛾𝜆 + 𝜅 (𝜅 + 𝜆)) − 4𝛼

2
𝛾𝜅

− 𝛽
2
𝜆
3
(𝜅 + 𝜆) + 𝜅

3
𝑥
2
(𝜅 − 𝜆)

+𝛽𝜅𝜆𝑥(𝜅 − 𝜆)
2
)

𝜕

𝜕𝑢

,

𝑋
5
= 𝑒
𝜅𝑡
[

𝜕

𝜕𝑥

+

1

2𝛼𝜅

𝑢 (𝜅 + 𝜆) (𝑥𝜅 + 𝛽𝜆)

𝜕

𝜕𝑢

] ,

𝑋
6
= 𝑒
−𝜅𝑡

[

𝜕

𝜕𝑥

−

1

2𝛼𝜅

𝑢 (𝜅 − 𝜆) (𝑥𝜅 − 𝛽𝜆)

𝜕

𝜕𝑢

] ,

(53)

where 𝜅 = √𝜆
2
− 4𝛼𝛾.

(2) Consider 𝛼 = 𝜆
2
/4𝛾.The additional Lie point symmetries

are

𝑋
3
= 𝑡

𝜕

𝜕𝑡

+ (

𝑥

2

−

3

4

𝛽𝜆
2
𝑡
2
)

𝜕

𝜕𝑥

+ 𝑢(

1

2

𝛽
2
𝛾𝜆
2
𝑡
3
+

3

2

𝛽
2
𝛾𝜆𝑡
2
−

3

2

𝛽𝛾𝜆𝑡
2
𝑥

+𝛽
2
𝛾𝑡 −

𝜆𝑡

2

− 3𝛽𝛾𝑡𝑥 +

𝛾𝑥
2

𝜆

−

𝛽𝛾𝑥

𝜆

)

𝜕

𝜕𝑢

,
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𝑋
4
= 𝑡
2 𝜕

𝜕𝑡

+ (𝑡𝑥 −

1

2

𝛽𝜆
2
𝑡
3
)

𝜕

𝜕𝑥

+ 𝑢(

1

4

𝛽
2
𝛾𝜆
2
𝑡
4
+ 𝛽
2
𝛾𝜆𝑡
3
− 𝛽𝛾𝜆𝑡

3
𝑥 + 𝛽
2
𝛾𝑡
2
−

𝜆𝑡
2

2

−3𝛽𝛾𝑡
2
𝑥 +

2𝛾𝑡𝑥
2

𝜆

−

2𝛽𝛾𝑡𝑥

𝜆

−

𝑡

2

+

𝛾𝑥
2

𝜆
2
)

𝜕

𝜕𝑢

,

𝑋
5
=

𝜕

𝜕𝑥

+ 𝑢 (

2𝛾𝑥

𝜆

− 2𝛽𝛾𝑡)

𝜕

𝜕𝑢

,

𝑋
6
= 𝑡

𝜕

𝜕𝑥

+ 𝑢(−𝛽𝛾𝑡
2
−

2𝛽𝛾𝑡

𝜆

+

2𝛾𝑡𝑥

𝜆

+

2𝛾𝑥

𝜆
2
)

𝜕

𝜕𝑢

.

(54)

Case 2 (𝑝 = 1)

Case 2.1 (𝑞 = 0). (1) Consider 𝛽 ̸= 𝛼/2𝜆 and 𝛽 ̸= 3𝛼/2𝜆. The
principal Lie algebra is extended by

𝑋
3
= 𝑒
𝜆𝑡
[

1

𝜆

𝜕

𝜕𝑡

+ 𝑥

𝜕

𝜕𝑥

+ 𝑢(

𝜆𝑥

𝛼

−

𝛽𝜆

𝛼

−

𝛾

𝜆

)

𝜕

𝜕𝑢

] ,

𝑋
4
=

𝑒
−𝜆𝑡

𝜆

[−

𝜕

𝜕𝑡

+ 𝑥𝜆

𝜕

𝜕𝑥

+ 𝛾𝑢

𝜕

𝜕𝑢

] .

(55)

(2) Consider 𝛽 = 𝛼/2𝜆. The additional Lie point symmetries
are

𝑋
3
= 𝑒
𝜆𝑡
[

1

𝜆

𝜕

𝜕𝑡

+ 𝑥

𝜕

𝜕𝑥

+ 𝑢(

𝜆𝑥

𝛼

−

𝛾

𝜆

−

1

2

)

𝜕

𝜕𝑢

] ,

𝑋
4
=

𝑒
−𝜆𝑡

𝜆

[−

𝜕

𝜕𝑡

+ 𝑥𝜆

𝜕

𝜕𝑥

+ 𝛾𝑢

𝜕

𝜕𝑢

] ,

𝑋
5
= √𝑥𝑒

𝜆𝑡/2 𝜕

𝜕𝑥

+

𝜆𝑢√𝑥𝑒
𝜆𝑡/2

𝛼

𝜕

𝜕𝑢

,

𝑋
6
= √𝑥𝑒

−𝜆𝑡/2 𝜕

𝜕𝑥

.

(56)

(3) Consider 𝛽 = 3𝛼/2𝜆. The Lie point symmetries that
extend the principal Lie algebra are

𝑋
3
=

𝑒
𝜆𝑡

𝜆

𝜕

𝜕𝑡

+ 𝑥𝑒
𝜆𝑡 𝜕

𝜕𝑥

+ 𝑒
𝜆𝑡
(

𝜆𝑥

𝛼

−

𝛾

𝜆

−

3

2

) 𝑢

𝜕

𝜕𝑢

,

𝑋
4
= −

𝑒
−𝜆𝑡

𝜆

𝜕

𝜕𝑡

+ 𝑥𝑒
−𝜆𝑡 𝜕

𝜕𝑥

+

𝛾𝑢𝑒
−𝜆𝑡

𝜆

𝜕

𝜕𝑢

,

𝑋
5
= √𝑥𝑒

𝜆𝑡/2 𝜕

𝜕𝑥

+ 𝑒
𝜆𝑡/2

(

𝜆√𝑥

𝛼

−

1

2√𝑥

)𝑢

𝜕

𝜕𝑢

,

𝑋
6
= √𝑥𝑒

−𝜆𝑡/2 𝜕

𝜕𝑥

−

𝑢𝑒
−𝜆𝑡/2

2√𝑥

𝜕

𝜕𝑢

.

(57)

Case 2.2 (𝑞 = 1/2). This has two subcases.

(1) Consider 𝛽 = 𝛼/2𝜆. This case results in the following
extra Lie point symmetries:

𝑋
3
=

𝑒
𝜆𝑡

𝜆

𝜕

𝜕𝑡

+ 𝑒
𝜆𝑡
(𝑥 −

2𝛼𝛾√𝑥

𝜆
2

)

𝜕

𝜕𝑥

+ 𝑢𝑒
𝜆𝑡
(

𝜆𝑥

𝛼

−

3𝛾√𝑥

𝜆

+

𝛼𝛾
2

𝜆
3

−

1

2

)

𝜕

𝜕𝑢

,

𝑋
4
= −

𝑒
−𝜆𝑡

𝜆

𝜕

𝜕𝑡

+ 𝑒
−𝜆𝑡

(𝑥 −

2𝛼𝛾√𝑥

𝜆
2

)

𝜕

𝜕𝑥

+ 𝑢𝑒
−𝜆𝑡

(

𝛾√𝑥

𝜆

−

𝛼𝛾
2

𝜆
3
)

𝜕

𝜕𝑢

,

𝑋
5
= √𝑥𝑒

𝜆𝑡/2 𝜕

𝜕𝑥

+ 𝑢𝑒
𝜆𝑡/2

(

𝜆√𝑥

𝛼

−

𝛾

𝜆

)

𝜕

𝜕𝑢

,

𝑋
6
= √𝑥𝑒

−𝜆𝑡/2 𝜕

𝜕𝑥

+

𝛾𝑢𝑒
−𝜆𝑡/2

𝜆

𝜕

𝜕𝑢

.

(58)

(2) Consider 𝛽 = 3𝛼/2𝜆. The extra Lie point symmetries are

𝑋
3
=

𝑒
𝜆𝑡

𝜆

𝜕

𝜕𝑡

+ 𝑒
𝜆𝑡
(𝑥 −

2𝛼𝛾√𝑥

𝜆
2

)

𝜕

𝜕𝑥

+ 𝑒
𝜆𝑡
(

𝛼𝛾
2

𝜆
3

−

3

2

+

𝛼𝛾

𝜆
2
√𝑥

+

𝜆𝑥

𝛼

−

3𝛾√𝑥

𝜆

)𝑢

𝜕

𝜕𝑢

,

𝑋
4
= −

𝑒
−𝜆𝑡

𝜆

𝜕

𝜕𝑡

+ 𝑒
−𝜆𝑡

(𝑥 −

2𝛼𝛾√𝑥

𝜆
2

)

𝜕

𝜕𝑥

+ 𝑒
−𝜆𝑡

(−

𝛼𝛾
2

𝜆
3

+

𝛼𝛾

𝜆
2
√𝑥

+

𝛾√𝑥

𝜆

)𝑢

𝜕

𝜕𝑢

,

𝑋
5
= √𝑥𝑒

−

𝜆𝑡

2
𝜕

𝜕𝑥

+ 𝑒

−

𝜆𝑡

2 (

𝛾

𝜆

−

1

2√𝑥

)𝑢

𝜕

𝜕𝑢

,

𝑋
6
= √𝑥𝑒

𝜆𝑡

2
𝜕

𝜕𝑥

+ 𝑒

𝜆𝑡

2 (

𝜆√𝑥

𝛼

−

𝛾

𝜆

−

1

2√𝑥

)𝑢

𝜕

𝜕𝑢

.

(59)

Case 2.3 (𝑞 = 1). This leads to six subcases.

(1) Consider 𝛽 ̸= 𝛼/2𝜆 and 𝛽 ̸= 3𝛼/2𝜆 and 𝛼 ̸= 𝜆
2
/4𝛾. The

principal Lie algebra is extended by

𝑋
3
=

𝑒
𝑡𝜅

𝜅

𝜕

𝜕𝑡

+ 𝑥𝑒
𝑡𝜅 𝜕

𝜕𝑥

+

𝑢𝑒
𝑡𝜅

2𝛼

(𝑥𝜅 −

𝛽𝜆
2

𝜅

+ 𝜆𝑥 − 𝛽𝜆)

𝜕

𝜕𝑢

,

𝑋
4
= −

𝑒
−𝑡𝜅

𝜅

𝜕

𝜕𝑡

+ 𝑥𝑒
−𝑡𝜅 𝜕

𝜕𝑥

+

𝑢𝑒
−𝑡𝜅

2𝛼

(

𝛽𝜆
2

𝜅

− 𝛽𝜆 + 𝜆𝑥 − 𝑥𝜅)

𝜕

𝜕𝑢

,

(60)
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where 𝜅 = √𝜆
2
− 4𝛼𝛾. We note that this case gives us the CIR

equation [26, 27].

(2) Consider𝛼 = 𝜆
2
/4𝛾, 𝛽 ̸= 𝛼/2𝜆, and 𝛽 ̸= 3𝛼/2𝜆. The extra

symmetries that extend the principal Lie algebra are given by

𝑋
3
= 𝑡

𝜕

𝜕𝑡

+ 𝑥

𝜕

𝜕𝑥

+ 𝛾𝑢 (

2𝑥

𝜆

− 2𝛽𝑡)

𝜕

𝜕𝑢

,

𝑋
4
= 𝑡
2 𝜕

𝜕𝑡

+ 2𝑡𝑥

𝜕

𝜕𝑥

+ 𝛾𝑢(

4𝑡𝑥

𝜆

+

4𝑥

𝜆
2
− 2𝛽𝑡
2
−

4𝛽𝑡

𝜆

)

𝜕

𝜕𝑢

.

(61)

(3) Consider 𝛼 = 𝜆
2
/4𝛾, 𝛽 = 𝛼/2𝜆. Additional Lie point

symmetries are

𝑋
3
= 𝑡

𝜕

𝜕𝑡

+ 𝑥

𝜕

𝜕𝑥

+ 𝑢 (

2𝛾𝑥

𝜆

−

1

4

𝜆𝑡)

𝜕

𝜕𝑢

,

𝑋
4
= 𝑡
2 𝜕

𝜕𝑡

+ 2𝑡𝑥

𝜕

𝜕𝑥

+ 𝑢 (

4𝛾𝑡𝑥

𝜆

−

1

4

𝜆𝑡
2
−

1

2

𝑡 +

4𝛾𝑥

𝜆
2
)

𝜕

𝜕𝑢

,

𝑋
5
= √𝑥

𝜕

𝜕𝑥

+

2𝛾𝑢√𝑥

𝜆

𝜕

𝜕𝑢

,

𝑋
6
= 𝑡√𝑥

𝜕

𝜕𝑥

+ 2𝛾𝑢√𝑥(

2

𝜆
2
+

𝑡

𝜆

)

𝜕

𝜕𝑢

.

(62)

(4) Consider 𝛼 = 𝜆
2
/4𝛾, 𝛽 = 3𝛼/2𝜆. Additional Lie point

symmetries to the principal Lie algebra are given by

𝑋
3
= 𝑡

𝜕

𝜕𝑡

+ 𝑥

𝜕

𝜕𝑥

+ 𝑢 (

2𝛾𝑥

𝜆

−

3

4

𝜆𝑡)

𝜕

𝜕𝑢

,

𝑋
4
= 𝑡
2 𝜕

𝜕𝑡

+ 2𝑡𝑥

𝜕

𝜕𝑥

+ 𝑢 (

4𝛾𝑡𝑥

𝜆

−

3

2

𝑡 +

4𝛾𝑥

𝜆
2

−

3

4

𝜆𝑡
2
)

𝜕

𝜕𝑢

,

𝑋
5
= √𝑥

𝜕

𝜕𝑥

+ 𝑢(

2𝛾√𝑥

𝜆

−

1

2√𝑥

)

𝜕

𝜕𝑢

,

𝑋
6
= 𝑡√𝑥

𝜕

𝜕𝑥

+ 𝑢(

2𝛾𝑡√𝑥

𝜆

−

𝑡

2√𝑥

+

4𝛾√𝑥

𝜆
2

)

𝜕

𝜕𝑢

.

(63)

(5) Consider 𝛽 = 𝛼/2𝜆, 𝛼 ̸= 𝜆
2
/4𝛾. The extra Lie point

symmetries are

𝑋
3
=

𝑒
𝑡𝜅

𝜅

𝜕

𝜕𝑡

+ 𝑥𝑒
𝑡𝜅 𝜕

𝜕𝑥

+ 𝑢𝑒
𝑡𝜅
(

𝑥𝜅

2𝛼

−

1

4

−

𝜆

4𝜅

+

𝜆𝑥

2𝛼

)

𝜕

𝜕𝑢

,

𝑋
4
= −

𝑒
−𝑡𝜅

𝜅

𝜕

𝜕𝑡

+ 𝑥𝑒
−𝑡𝜅 𝜕

𝜕𝑥

+ 𝑢𝑒
−𝑡𝜅

(

𝜆

4𝜅

−

1

4

+

𝜆𝑥

2𝛼

−

𝑥𝜅

2𝛼

)

𝜕

𝜕𝑢

,

𝑋
5
= √𝑥𝑒

(1/2)𝑡𝜅 𝜕

𝜕𝑥

+ 𝑢√𝑥𝑒
(1/2)𝑡𝜅 𝜆 + 𝜅

2𝛼

𝜕

𝜕𝑢

,

𝑋
6
= √𝑥𝑒

−(1/2)𝑡𝜅 𝜕

𝜕𝑥

+ 𝑢√𝑥𝑒
−(1/2)𝑡𝜅 𝜆 − 𝜅

2𝛼

𝜕

𝜕𝑢

,

(64)

where 𝜅 = √𝜆
2
− 4𝛼𝛾.

(6) Consider 𝛽 = 3𝛼/2𝜆,𝛼 ̸= 𝜆
2
/4𝛾.The principal Lie algebra

is extended by

𝑋
3
=

𝑒
𝜅𝑡

𝜅

𝜕

𝜕𝑡

+ 𝑥𝑒
𝜅𝑡 𝜕

𝜕𝑥

+ 𝑒
𝜅𝑡
(

𝜅𝑥

2𝛼

−

3𝜆

4𝜅

−

3

4

+

𝜆𝑥

2𝛼

)𝑢

𝜕

𝜕𝑢

,

𝑋
4
= −

𝑒
−𝜅𝑡

𝜅

𝜕

𝜕𝑡

+ 𝑥𝑒
−𝜅𝑡 𝜕

𝜕𝑥

+ 𝑒
−𝜅𝑡

(

3𝜆

4𝜅

−

3

4

+

𝜆𝑥

2𝛼

−

𝜅𝑥

2𝛼

)𝑢

𝜕

𝜕𝑢

,

𝑋
5
= √𝑥𝑒

𝜅𝑡/2 𝜕

𝜕𝑥

+ 𝑒
𝜅𝑡/2

(

𝜆√𝑥

2𝛼

+

𝜅√𝑥

2𝛼

−

1

2√𝑥

)𝑢

𝜕

𝜕𝑢

,

𝑋
6
= √𝑥𝑒

−𝜅𝑡/2 𝜕

𝜕𝑥

+ 𝑒
−𝜅𝑡/2

(

𝜆√𝑥

2𝛼

−

𝜅√𝑥

2𝛼

−

1

2√𝑥

)𝑢

𝜕

𝜕𝑢

,

(65)

where 𝜅 = √𝜆
2
− 4𝛼𝛾.

Case 3 (𝑝 = 2). We can conclude from (45) that 𝑞 can
only take the value 0. Proceeding as before, we find that the
principal Lie algebra extends for the case when 𝛽 = 0 by the
following symmetry operators:

𝑋
3
= 𝑡

𝜕

𝜕𝑡

+

1

2

𝑥 ln𝑥

𝜕

𝜕𝑥

+ 𝑢(

𝜆
2
𝑡

4𝛼

+

1

4

𝛼𝑡 − 𝛾𝑡 +

1

2

𝜆𝑡 +

𝜆 ln𝑥

4𝛼

+

1

4

ln𝑥)

𝜕

𝜕𝑢

,

𝑋
4
= 𝑡
2 𝜕

𝜕𝑡

+ 𝑡𝑥 ln𝑥

𝜕

𝜕𝑥

+ 𝑢(

𝜆
2
𝑡
2

4𝛼

+

1

4

𝛼𝑡
2
− 𝛾𝑡
2
+

1

2

𝜆𝑡
2
−

1

2

𝑡

+

𝜆𝑡 ln𝑥

2𝛼

+

1

2

𝑡 ln𝑥 +

ln2𝑥
4𝛼

)

𝜕

𝜕𝑢

,

𝑋
5
= 𝑥

𝜕

𝜕𝑥

,

𝑋
6
= 𝑡𝑥

𝜕

𝜕𝑥

+ 𝑢(

𝜆𝑡

2𝛼

+

1

2

𝑡 +

ln𝑥

2𝛼

)

𝜕

𝜕𝑢

.

(66)

This case gives us the Black-Scholes equation [30].

4. Symmetry Reductions and Group
Invariant Solutions

We obtain symmetry reductions [31] and construct group
invariant solutions of Case 2.1(1), that is, when 𝑝 = 1, 𝑞 = 0,
𝛽 ̸= 𝛼/(2𝜆), and 𝛽 ̸= 3𝛼/(2𝜆), while all other constants in (4)
are arbitrary. Equation (4) is then given by

𝑢
𝑡
+ 𝛼𝑥𝑢

𝑥𝑥
+ 𝜆 (𝛽 − 𝑥) 𝑢

𝑥
+ 𝛾𝑢 = 0. (67)
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Case 2.1 (𝑋
1
). The operator 𝑋

1
results in two invariants 𝐽

1
=

𝑥 and 𝐽
2
= 𝑢. The group invariant solution is given by 𝑢 =

𝑓(𝑥), where 𝑓 solves

𝛼𝑥𝑓
󸀠󸀠
(𝑥) + 𝜆 (𝛽 − 𝑥) 𝑓

󸀠
(𝑥) + 𝛾𝑓 (𝑥) = 0. (68)

Case 2.2 (𝑋
3
). The operator 𝑋

3
gives the following two

invariants:

𝐽
1
= 𝑥𝑒
−𝜆𝑡

, 𝐽
2
= 𝑢 exp{

𝛼𝛾𝑡 + 𝛽𝜆
2
𝑡 − 𝜆𝑥

𝛼

} . (69)

Hence, the invariant solution of (67) under𝑋
3
is given by

𝑢 = 𝑓 (𝑥𝑒
−𝜆𝑡

) exp{

𝜆𝑥 − 𝑡 (𝛼𝛾 + 𝛽𝜆
2
)

𝛼

} , (70)

where 𝑓 satisfies

𝛼𝑧𝑓
󸀠󸀠
(𝑧) + 𝛽𝜆𝑓

󸀠
(𝑧) = 0, 𝑧 = 𝑥𝑒

−𝜆𝑡
. (71)

The solution of the above equation is

𝑓 (𝑧) =

𝑐
1
𝛼𝑧
(𝛼−𝛽𝜆)/𝛼

𝛼 − 𝛽𝜆

+ 𝑐
2
, (72)

where 𝑐
1
and 𝑐
2
are arbitrary constants. Hence, the group

invariant solution under𝑋
3
is

𝑢 (𝑡, 𝑥) =
[

[

𝑐
1
𝛼(𝑥𝑒
−𝜆𝑡

)

(𝛼−𝛽𝜆)/𝛼

𝛼 − 𝛽𝜆

+ 𝑐
2
]

]

× exp{

𝜆𝑥 − 𝑡 (𝛼𝛾 + 𝛽𝜆
2
)

𝛼

} .

(73)

Case 2.3 (𝑋
4
). The symmetry operator 𝑋

4
gives the invari-

ants 𝐽
1

= 𝑥𝑒
𝜆𝑡 and 𝐽

2
= 𝑢𝑒
𝛾𝑡. Thus, the group invariant

solution in this case is given by

𝑢 (𝑡, 𝑥) =
[

[

𝑐
1
𝛼(𝑥𝑒
𝜆𝑡
)

(𝛼−𝛽𝜆)/𝛼

𝛼 − 𝛽𝜆

+ 𝑐
2
]

]

𝑒
−𝛾𝑡

, (74)

where 𝑐
1
and 𝑐
2
are arbitrary constants.

It should be noted that the operators 𝑋
2
and 𝑋

𝐵
do not

provide invariant solutions.

5. Conclusions

In this paper we carried out group classification of the general
bond-option pricing PDE (4) for 𝑝 = 0, 1, and 2. The
principal Lie algebra was found to be three-dimensional.
These values of 𝑝 resulted in 16 cases, which extended the
principal Lie algebra. We presented the Lie point symme-
tries for each case. Three cases gave us the option pricing
equations, which were given by Cases 1.1, 2.1(1), and 3. In the
last case, Black-Scholes equation was recovered. Seven bond
pricing equations were obtained and these were Case 1.2 and
Cases 2.3(1)–2.3(6). Cases 1.2 and 2.3(1) were found to be the
Vasicek and CIR equations, respectively. Finally, symmetry
reductions and construction of group invariant solutions for
Case 2.1(1) were presented.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References
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