
Research Article
Global Stability of a Discrete Mutualism Model

Kun Yang,1 Xiangdong Xie,2 and Fengde Chen1

1 College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350116, China
2Department of Mathematics, Ningde Normal University, Fujian 352100, China

Correspondence should be addressed to Xiangdong Xie; ndsyxxd@163.com

Received 24 April 2014; Accepted 10 June 2014; Published 23 June 2014

Academic Editor: Luca Guerrini

Copyright © 2014 Kun Yang et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A discrete mutualism model is studied in this paper. By using the linear approximation method, the local stability of the interior
equilibrium of the system is investigated. By using the iterative method and the comparison principle of difference equations,
sufficient conditions which ensure the global asymptotical stability of the interior equilibrium of the system are obtained. The
conditions which ensure the local stability of the positive equilibrium is enough to ensure the global attractivity are proved.

1. Introduction

There are many examples where the interaction of two or
more species is to the advantage of all; we call such a
situation the mutualism. For example, cellulose of white
ants’ gut provides nutrients for flagellates, while flagellates
provide nutrients for white ants through the decomposition
of cellulose to glucose. As was pointed out by Chen et al.
[1] “the mutual advantage of mutualism or symbiosis can be
very important. As a topic of theoretical ecology, even for two
species, this area has not been as widely studied as the others
even though its importance is comparable to that of predator-
prey and competition interactions.”Thus, it seems interesting
to study some relevant topics on the symbiosis system.

The following model was proposed by Chen et al. [1] to
describe the mutualism mechanism:
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Li [2] argued that the nonautonomous one is more
appropriate, and he proposed the following two-species
cooperative model:
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where 𝑟
𝑖
, 𝐾
𝑖
, 𝛼
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, 𝜏
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, 𝜎
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∈ 𝐶(𝑅, 𝑅+), 𝛼
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, 𝜏
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, 𝜎
𝑖
(𝑖 =

1, 2) are periodic functions of period 𝜔 > 0. Here the author
incorporates the time delays to the model, which means that
the cooperation effect needs to spend some time to realize,
but not immediately realize. By applying the coincidence
degree theory, Li showed that the system has at least one
positive periodic solution. For more works related to the
system (1) and (2), one could refer to [1–9] and the references
cited therein.

It is well known that the discrete time models governed
by difference equations are more appropriate than the con-
tinuous ones when the populations have nonoverlapping
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generations, and discrete time models can also provide
efficient computational models of continuous models for
numerical simulations. Corresponding to system (2), Li [10]
proposed the following delayed discrete model of mutualism:
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Under the assumption that 𝑟
𝑖
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𝑖
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𝑖
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positive periodic sequences with a common cycle 𝜔, and
𝛼
𝑖
> 𝐾
𝑖
holds, by applying coincidence degree theory, he

showed that system (3) has at least one positive 𝜔-periodic
solution, where 𝜔 is a positive integer. Chen [11] argued
that the general nonautonomous nonperiodic system is more
appropriate, and he showed that the system (3) is permanent.
Formore work about cooperative system, we can refer to [12–
19].

It brings to our attention that neither Li [10] nor Chen [11]
investigated the stability property of the system (3), which is
one of the most important topics on the study of population
dynamics. We mention here that, with 𝜎

𝑖
(𝑘) ̸= 0, system (3) is

a pure-delay system, and it is not an easy thing to investigate
the stability property of the system. This motivated us to
discuss a simple system, that is, the following autonomous
cooperative system:
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where 𝑥
𝑖
(𝑘) (𝑖 = 1, 2) are the population density of the 𝑖th

species at 𝑘-generation. 𝑟
𝑖
, 𝐾
𝑖
, 𝑖 = 1, 2, are all positive con-

stants.
Throughout this paper, we assume that the coefficients of

system (4) satisfy
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The aimof this paper is, by further developing the analysis
technique of [15], to obtain a set of sufficient conditions
to ensure the global asymptotical stability of the interior
equilibrium of system (4). More precisely, we will prove the
following result.

Theorem 1. In addition to (𝐻
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), further assume that
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system (4) is globally asymptotically stable.

The rest of the paper is arranged as follows. In Section 2
we will introduce a useful lemma and investigate the local
stability property of the positive equilibrium. With the help
of several useful lemmas, the global attractivity of positive
equilibrium of the system (4) is investigated in Section 3. An
example together with its numeric simulation is presented in
Section 4 to show the feasibility of our results. We end this
paper by a brief discussion.

2. Local Stability

In view of the actual ecological implications of system (4), we
assume that the initial value 𝑥
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Lemma 2 (see [20]). Let 𝐹(𝜆) = 𝜆2+𝐵𝜆+𝐶 = 0, where B and
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From Lemma 2 we can obtain that 𝐸
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asymptotically stable.This completes the proof ofTheorem 3.

3. Global Stability

We will give a strict proof of Theorem 1 in this section. To
achieve this objective, we introduce several useful lemmas.

Lemma 4 (see [20]). Let 𝑓(𝑢) = 𝑢 exp(𝛼 − 𝛽𝑢), where 𝛼 and
𝛽 are positive constants; then 𝑓(𝑢) is nondecreasing for 𝑢 ∈

(0, (1/𝛽)].

Lemma 5 (see [20]). Assume that sequence {𝑢(𝑘)} satisfies

𝑢 (𝑘 + 1) = 𝑢 (𝑘) exp (𝛼 − 𝛽𝑢 (𝑘)) , 𝑘 = 1, 2, . . . , (18)

where 𝛼 and 𝛽 are positive constants and 𝑢(0) > 0. Then

(i) if 𝛼 < 2, then lim
𝑘→+∞

𝑢(𝑘) = 𝛼/𝛽;
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respect to 𝑥. If {𝑥(𝑘)} and {𝑢(𝑘)} are the nonnegative solutions
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From the first equation of system (4), we obtain
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According to the first equation of system (4) we can obtain
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Consider the auxiliary equation as follows:

𝑢 (𝑘 + 1) = 𝑢 (𝑘) exp {𝑟
1
𝐾
1
− 𝑟
1
𝑢 (𝑘)} . (29)

Since 0 < 𝑟
1
𝐾
1
≤ 1, according to (ii) of Lemma 5, we can

obtain 𝑢(𝑘) ≤ (1/𝐾
1
) for all 𝑘 ≥ 2, where 𝑢(𝑘) is arbitrary

positive solution of (23) with initial value 𝑢(0) > 0. From
Lemma 4, 𝑓(𝑢) = 𝑢 exp(𝑟

1
𝐾
1
− 𝑟
1
𝑢) is nondecreasing for 𝑢 ∈

(0, (1/𝐾
1
)]. According to Lemma 6we can obtain𝑥(𝑘) ≥ 𝑢(𝑘)

for all 𝑘 ≥ 2, where 𝑢(𝑘) is the solution of (23) with the initial
value 𝑢(𝑘

1
) = 𝑥(𝑘

1
). According to (i) of Lemma 5, we have

𝑉
1
= lim inf
𝑘→+∞

𝑥
1
(𝑘) ≥ lim

𝑘→+∞

𝑢 (𝑘) = 𝐾
1

def
= 𝑁
𝑥
1

1
. (30)

From the second equation of system (4), we obtain

𝑥
2
(𝑘 + 1) ≥ 𝑥

2
(𝑘) exp {𝑟

2
𝐾
2
− 𝑟
2
𝑥
2
(𝑘)} . (31)

Similar to the above analysis, we have

𝑉
2
= lim inf
𝑘→+∞

𝑥
2
(𝑘) ≥ lim

𝑘→+∞

𝑢 (𝑘) = 𝐾
2

def
= 𝑁
𝑥
2

1
. (32)

Then, for sufficiently small constant 𝜀 > 0, there is an integer
𝑘
2
> 𝑘
1
such that

𝑥
1
(𝑘) ≥ 𝑁

𝑥
1

1
− 𝜀, 𝑥

2
(𝑘) ≥ 𝑁

𝑥
2

1
− 𝜀

∀ 𝑘 > 𝑘
2
.

(33)

Equation (24) combined with the first equation of system (4)
leads to

𝑥
1
(𝑘 + 1) ≤ 𝑥

1
(𝑘) exp{𝑟

1
[
𝐾
1
+ 𝛼
1
(𝑀
𝑥
2

1
+ 𝜀)

1 + (𝑀
𝑥
2

1
+ 𝜀)

− 𝑥
1
(𝑘)]} ,

𝑘 > 𝑘
2
.

(34)

Similar to the analysis of (23) and (24), we have

𝑈
1
= lim sup
𝑘→+∞

𝑥
1
(𝑘) ≤

𝐾
1
+ 𝛼
1
(𝑀
𝑥
2

1
+ 𝜀)

1 + (𝑀
𝑥
2

1
+ 𝜀)

. (35)

Because of arbitrariness of 𝜀 > 0, we have 𝑈
1
≤ 𝑀
𝑥
1

2
, where

𝑀
𝑥
1

2
=
𝐾
1
+ 𝛼
1
𝑀
𝑥
2

1

1 +𝑀
𝑥
2

1

< 𝑀
𝑥
1

1
. (36)

Equation (24) combined with the second equation of system
(4) leads to

𝑥
2
(𝑘 + 1) ≤ 𝑥

2
(𝑘) exp{𝑟

2
[
𝐾
2
+ 𝛼
2
(𝑀
𝑥
1

1
+ 𝜀)

1 + (𝑀
𝑥
1

1
+ 𝜀)

− 𝑥
2
(𝑘)]} ,

𝑘 > 𝑘
2
.

(37)

Similar to the analysis of (23) and (24), we can obtain

𝑈
2
= lim sup
𝑘→+∞

𝑥
2
(𝑘) ≤

𝐾
2
+ 𝛼
2
(𝑀
𝑥
1

1
+ 𝜀)

1 + (𝑀
𝑥
1

1
+ 𝜀)

. (38)

Because of arbitrariness of 𝜀 > 0, we have 𝑈
2
≤ 𝑀
𝑥
2

2
, where

𝑀
𝑥
2

2
=
𝐾
2
+ 𝛼
2
𝑀
𝑥
1

1

1 +𝑀
𝑥
1

1

< 𝑀
𝑥
2

1
. (39)

Then, for sufficiently small constant 𝜀 > 0, there is an integer
𝑘
3
> 𝑘
2
such that

𝑥
1
(𝑘) ≤ 𝑀

𝑥
1

2
− 𝜀, 𝑥

2
(𝑘) ≤ 𝑀

𝑥
2

2
− 𝜀,

∀ 𝑘 > 𝑘
3
.

(40)

Equation (27) combined with the first equation of system (4)
leads to

𝑥
1
(𝑘 + 1) ≥ 𝑥

1
(𝑘) exp{𝑟

1
[
𝐾
1
+ 𝛼
1
(𝑁
𝑥
2

1
− 𝜀)

1 + (𝑁
𝑥
2

1
− 𝜀)

− 𝑥
1
(𝑘)]} ,

𝑘 > 𝑘
3
.

(41)
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From this, we can finally obtain

𝑉
1
= lim inf
𝑘→+∞

𝑥
1
(𝑘) ≥

𝐾
1
+ 𝛼
1
(𝑁
𝑥
2

1
− 𝜀)

1 + (𝑁
𝑥
2

1
− 𝜀)

. (42)

Because of the arbitrariness of 𝜀, we have 𝑉
1
≥ 𝑁
𝑥
1

2
, where

𝑁
𝑥
1

2
=
𝐾
1
+ 𝛼
1
𝑁
𝑥
2

1

1 + 𝑁
𝑥
2

1

> 𝐾
1
= 𝑁
𝑥
1

1
. (43)

Equation (27) combined with the first equation of system (4)
leads to

𝑥
2
(𝑘 + 1) ≥ 𝑥

2
(𝑘) exp{𝑟

1
[
𝐾
2
+ 𝛼
2
(𝑁
𝑥
1

1
− 𝜀)

1 + (𝑁
𝑥
1

1
− 𝜀)

− 𝑥
1
(𝑘)]} ,

𝑘 > 𝑘
3
.

(44)

From the above inequality we can obtain

𝑉
2
= lim inf
𝑘→+∞

𝑥
2
(𝑘) ≥

𝐾
2
+ 𝛼
2
(𝑁
𝑥
1

1
− 𝜀)

1 + (𝑁
𝑥
1

1
− 𝜀)

. (45)

Because of the arbitrariness of 𝜀, we have 𝑉
2
≥ 𝑁
𝑥
2

2
, where

𝑁
𝑥
2

2
=
𝐾
2
+ 𝛼
2
𝑁
𝑥
1

1

1 + 𝑁
𝑥
1

1

> 𝐾
2
= 𝑁
𝑥
2

1
. (46)

Then, for sufficiently small constant 𝜀 > 0, there is an integer
𝑘
4
> 𝑘
3
such that

𝑥
1
(𝑘) ≥ 𝑁

𝑥
1

2
− 𝜀, 𝑥

2
(𝑘) ≥ 𝑁

𝑥
2

2
− 𝜀

∀ 𝑘 > 𝑘
4
.

(47)

Continuing the above steps, we can get four sequences
{𝑀
𝑥
1

𝑘
}, {𝑀𝑥2
𝑘
}, {𝑁𝑥1
𝑘
}, and {𝑁𝑥1

𝑘
} such that

𝑀
𝑥
1

𝑘
=
𝐾
1
+ 𝛼
1
𝑀
𝑥
2

𝑘−1

1 +𝑀
𝑥
2

𝑘−1

, 𝑀
𝑥
2

𝑘
=
𝐾
2
+ 𝛼
2
𝑀
𝑥
1

𝑘−1

1 +𝑀
𝑥
1

𝑘−1

; (48)

𝑁
𝑥
1

𝑘
=
𝐾
1
+ 𝛼
1
𝑁
𝑥
2

𝑘−1

1 + 𝑁
𝑥
2

𝑘−1

, 𝑁
𝑥
2

𝑘
=
𝐾
2
+ 𝛼
2
𝑁
𝑥
1

𝑘−1

1 + 𝑁
𝑥
1

𝑘−1

. (49)

Clearly, we have

𝑁
𝑥
1

𝑘
≤ 𝑉
1
≤ 𝑈
1
≤ 𝑀
𝑥
1

𝑘
,

𝑁
𝑥
2

𝑘
≤ 𝑉
2
≤ 𝑈
2
≤ 𝑀
𝑥
2

𝑘
,

𝑘 = 0, 1, 2, . . . .

(50)

Now, we will prove {𝑀𝑥𝑖
𝑘
} (𝑖 = 1, 2) is monotonically

decreasing and {𝑁𝑥𝑖
𝑘
} (𝑖 = 1, 2) is monotonically increasing

by means of inductive method.

First of all, it is clear that𝑀𝑥𝑖
2
≤ 𝑀
𝑥
𝑖

1
, 𝑁
𝑥
𝑖

2
≥ 𝑁
𝑥
𝑖

1
(𝑖 = 1, 2).

For 𝑖 ≥ 2, we assume that𝑀𝑥1
𝑖
≤ 𝑀
𝑥
1

𝑖−1
and𝑁𝑥1

𝑖
≥ 𝑁
𝑥
1

𝑖−1
hold;

then

𝑀
𝑥
2

𝑖+1
=
𝐾
2
+ 𝛼
2
𝑀
𝑥
1

𝑖

1 +𝑀
𝑥
1

𝑖

≤
𝐾
2
+ 𝛼
2
𝑀
𝑥
1

𝑖−1

1 +𝑀
𝑥
1

𝑖−1

= 𝑀
𝑥
2

𝑖
, (51)

𝑁
𝑥
2

𝑖+1
=
𝐾
2
+ 𝛼
2
𝑁
𝑥
1

𝑖

1 + 𝑁
𝑥
1

𝑖

≥
𝐾
2
+ 𝛼
2
𝑁
𝑥
1

𝑖−1

1 + 𝑁
𝑥
1

𝑖−1

= 𝑁
𝑥
2

𝑖
, (52)

𝑀
𝑥
1

𝑖+1
=
𝐾
1
+ 𝛼
1
𝑀
𝑥
2

𝑖

1 +𝑀
𝑥
2

𝑖

≤
𝐾
1
+ 𝛼
1
𝑀
𝑥
2

𝑖−1

1 +𝑀
𝑥
2

𝑖−1

= 𝑀
𝑥
1

𝑖
, (53)

𝑁
𝑥
1

𝑖+1
=
𝐾
1
+ 𝛼
1
𝑁
𝑥
2

𝑖

1 + 𝑁
𝑥
2

𝑖

≥
𝐾
1
+ 𝛼
1
𝑁
𝑥
2

𝑖−1

1 + 𝑁
𝑥
1

𝑖−1

= 𝑁
𝑥
1

𝑖
. (54)

Equations (51)–(54) show that {𝑀
𝑥
1

𝑘
} and {𝑀

𝑥
2

𝑘
} are

monotonically decreasing and {𝑁
𝑥
1

𝑘
} and {𝑁

𝑥
2

𝑘
} are mono-

tonically increasing. Consequently, lim
𝑘→+∞

{𝑀
𝑥
𝑖

𝑘
} and

lim
𝑘→+∞

{𝑁
𝑥
𝑖

𝑘
} (𝑖 = 1, 2) both exist. Let

lim
𝑘→+∞

𝑀
𝑥
𝑖

𝑘
= 𝑋
∗

𝑖
, lim
𝑘→+∞

𝑁
𝑥
𝑖

𝑘
= 𝑥
∗

𝑖
, 𝑖 = 1, 2. (55)

From (48) and (55), we have

𝑋
∗

1
=
𝐾
1
+ 𝛼
1
𝑋
∗

2

1 + 𝑋∗
2

,

𝑋
∗

2
=
𝐾
2
+ 𝛼
2
𝑋
∗

1

1 + 𝑋∗
1

.

(56)

From (49) and (55), we get

𝑥
∗

1
=
𝐾
1
+ 𝛼
1
𝑥
∗

2

1 + 𝑥∗
2

,

𝑥
∗

2
=
𝐾
2
+ 𝛼
2
𝑥
∗

1

1 + 𝑥∗
1

.

(57)

Equations (56) and (57) show that (𝑋∗
1
, 𝑋
∗

2
) and (𝑥∗

1
, 𝑥
∗

2
) are

all solutions of system (6). However, system (6) has unique
positive solution (𝑥

1
, 𝑥
2
). Therefore

𝑈
𝑖
= 𝑉
𝑖
= lim
𝑘→+∞

𝑥
𝑖
(𝑘) = 𝑥

𝑖
, 𝑖 = 1, 2. (58)

That is, 𝐸
+
(𝑥
1
, 𝑥
2
) is globally attractive.

From Theorem 3, we get that equilibrium 𝐸
+
(𝑥
1
, 𝑥
2
) is

locally asymptotically stable. And so, 𝐸
+
(𝑥
1
, 𝑥
2
) is globally

asymptotically stable. This ends the proof of Theorem 1.
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Figure 1: Dynamic behaviors of the solution (𝑥
1
(𝑡), 𝑥
2
(𝑡)) of sys-

tem (59), with the initial conditions (𝑥
1
(0), 𝑥
2
(0)) = (0.1, 0.25),

(0.28, 0.3), (0.15, 0.14), and (0.4, 0.1), respectively.

4. Example

In this section, we will give an example to illustrate the feasi-
bility of the main result.

Example. Consider the following cooperative system:

𝑥
1
(𝑘 + 1) = 𝑥

1
(𝑘) exp{2 [

0.3 + 0.4𝑥
2
(𝑘)

1 + 𝑥
2
(𝑘)

− 𝑥
1
(𝑘)]} ,

𝑥
2
(𝑘 + 1) = 𝑥

2
(𝑘) exp{4 [

0.2 + 0.25𝑥
1
(𝑘)

1 + 𝑥
1
(𝑘)

− 𝑥
2
(𝑘)]} .

(59)

By calculating, we have that positive equilibrium𝐸
+
(𝑥
1
, 𝑥
2
) =

(0.317495, 0.212049), 𝑟
1
𝛼
1
= 0.8 < 1, 𝑟

2
𝛼
2
= 1, 𝐾

𝑖
< 𝛼
𝑖
(𝑖 =

1, 2) and the coefficients of system (59) satisfy (𝐻
1
) and (𝐻

2
).

From Theorem 1, positive equilibrium 𝐸
+
(𝑥
1
, 𝑥
2
) is globally

asymptotically stable. Numeric simulation also supports our
finding (see Figure 1).

5. Discussion

It is well known [6] that, for autonomous two-species Lotka-
Volterra mutualism model, the conditions which ensure the
existence of positive equilibrium are enough to ensure that
the equilibrium is globally stable. However, for the two-
species discrete Lotka-Volterra mutualism model, Lu and
Wang [22] proved that a cooperative system cannot be
permanent. That is, the dynamic behaviors of discrete Lotka-
Volterra mutualism model are very different to the contin-
uous ones.

Recently, by using the iterative method, Xie et al. [8]
showed that, for a mutualism model with infinite delay,
conditions which ensure the permanence of the system are

enough to ensure the global stability of the system. As a
corollary of their result, one could draw the conclusion that
system (1) admits a unique positive equilibrium, which is
globally stable. One interesting issue is proposed. For the
discrete type mutualism model (4), is there any relationship
between the existence of positive equilibrium and the stability
property of the positive equilibrium?

In this paper, by using the linear approximation, compari-
son principle of difference equations, andmethod of iteration
scheme, we showed that the conditionswhich ensure the local
stability property of the positive equilibrium ((𝐻

2
) 0 < 𝑟

𝑖
𝛼
𝑖
≤

1 (𝑖 = 1, 2)) are also enough to guarantee the global stability
of the positive equilibrium 𝐸

+
(𝑥
1
, 𝑥
2
).

At the end of this paper, we would like to mention
here that, for the Lotka-Volterra type mutualism system with
time delay, delay is one of the most important factors to
influence the dynamic behaviors of the system [23–25]. It
seems interesting to incorporate the time delay to the system
(4) and investigate the dynamic behaviors of the system; we
leave this for future study.
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