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The efficiency of the compositional verification of invariants depends on the abstraction, which may lead to verification
incompleteness. The invariant strengthening and state partitioning techniques are proposed in this paper. The former could refine
the overapproximation by removing the unreachable states, and the latter is a variant of counterexample-guided abstraction
refinement. Integrated with these two refinement techniques, a unified compositional verification framework is presented to
strengthen the abstraction and find counterexamples. Some examples are included to show that the verification of the safety
properties in component-based systems has been achieved by our framework.

1. Introduction

A component-based system is made up of several compo-
nents using a set of glue (interactions) that describes the
coordination between components [1]. Some components,
like program processes, contain local data and control infor-
mation to determine their own behaviors, and their inter-
actions represent the communication between components.
Component-based system has the advantages that the devel-
opment can be simplified and the time-to-market would be
reduced. However, the tremendously high (or even infinite)
number of states of the components makes the verification
of properties of these systems intractable. In this paper,
we discuss the compositional verification using abstraction
refinement techniques on component-based systems.

Compositional verification would alleviate the problem
of state explosion in concurrent model checking, especially
in conjunction with abstraction. The work in [2, 3] pro-
posed an automated compositional abstraction framework
which differs in the communication method.The abstraction
procedure in [2] is guided by the data (interaction through
shared variables) of the model while it is guided by the
action (interaction through message-passing event) in [3].
Threadmodular reasoning is also a compositional abstraction
framework proposed in [4], which automatically generates

the environment for each thread by analyzing its interaction.
Compositional verification using abstraction refinement
techniques on component-based systems has been exten-
sively studied. Malkis et al. combined CEGAR and thread
modular reasoning in their proposed technique [5], called
thread-modular CEGAR.The technique computed reachable
states with Cartesian abstraction. They directly compute the
reachable states for all processes of the compositional system
in an explicit way. Then refinement was applied to eliminate
unreachable states by removing them from the Cartesian
product. A technique closely related to compositional ver-
ification is assume-guarantee reasoning. Henzinger et al.
[6, 7] proposed a component-based verification algorithm
which is complete for verifying safety properties. They first
initialize each component as true (the most abstract model
which essentially accepts any behaviors) and then iteratively
refine them by adding new auxiliary predicates, whereas they
initialize the guarantee of the components as false (the most
abstract model which essentially rejects any behaviors) and
refine them successively by considering abstraction of current
component and guarantees of other components.

Another interesting branch for compositional verification
is the inductive invariant based method [8–10]. The proper-
ties established from the verification are usually invariants.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 703098, 12 pages
http://dx.doi.org/10.1155/2014/703098

http://dx.doi.org/10.1155/2014/703098


2 Journal of Applied Mathematics

Given a property on component-based system states, com-
positional verification of invariant is to verify whether the
given property can be inferred from the invariants of their
components. Divide-and-conquer approaches can be applied
in compositional verification to infer global invariants from
local invariants. A compositional verification method based
on the inductive invariant is presented in [11, 12]. In this
approach, the property of the component-based system can
be inferred by the compositional verification rule which is
referred to as the component invariant and the interaction
invariant. This approach is incomplete. Given a property
(predicate), if the conjunction of the component invariants
and the interaction invariants is able to establish the property,
one concludes the verification. Otherwise, one reports that
the verification is inconclusive.

The inconclusive problem is due to two reasons. One
is the abstraction, which transforms the original system
(infinite) to an abstract system (finite). The other is the
interaction invariant, which is the overapproximation of the
reachable abstract states. Thus, the conjunction of com-
ponent invariants and the interaction invariant is such an
overapproximation that unreachable states in the original
system may be computed as reachable in the abstract system,
which may include unreachable error states. We propose
two refinement techniques, counterexample-guided invariant
strengthening and state partitioning to address the inconclu-
sive problem.

A unified compositional abstraction refinement algo-
rithm for the invariant checking problem on component-
based systems is given, which contains two phases. At the
verification phase, we apply compositional verification to
the invariant checking problem. If it suffices to conclude
the verification, we are done. Otherwise, the verification
algorithm moves to the refinement phases. In the other
phase, we first strengthen the interaction invariant and
remove the spurious counterexamples. After the invariant is
strengthened,we analyze the remaining counterexamples and
partition abstract states. When our algorithm returns to the
verification phase, added states will induce a refined abstract
model.

The rest is organized as follows. The component-based
system, component invariant, and component abstraction
are introduced in Section 2. In Section 3, we introduce the
compositional verification of invariant for component-based
systems, which is the overapproximation of the system states.
We give counterexample-guided invariant strength and par-
tition refinement methods in Section 4. A compositional
verification framework integrated with iterative refinement
and its correctness proof are presented in Section 5. We show
the effectiveness of our proposed method in Section 6 and
then conclude in Section 7.

2. Preliminaries

In this section, we present concepts and definitions that are
used in this paper. We start with the overview of component-
based systems, which includes the concepts of atomic com-
ponent, interaction, and compound component. In the rest

of this section, we introduce the concepts for the component
invariant and abstraction.

2.1. Component-Based System. Component-based system is a
basic model of wide-ranging concurrent systems. It is proven
in [13] that such a hierarchical model can be converted
to semantically equivalent flat model. Therefore, instead of
analyzing complex hierarchical structure, we concentrate
on two-level structure in this paper. The lower level of
the component-based system is atomic component, and the
higher level is compound component which is composed of
several atomic components with a set of interactions.

An atomic component is a transition system, denoted by
a tuple 𝐵 = (𝐿, 𝑃, 𝑇,𝑋, {𝑔

𝑡
}
𝑡∈𝑇
, {𝑓
𝑡
}
𝑡∈ 𝑇

), where (𝐿, 𝑃, 𝑇) is a
transition system; that is, 𝐿 = {𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑘
} is a set of control

locations, 𝑃 is a set of ports, and 𝑇 ⊆ 𝐿 × 𝑃 × 𝐿 is a set of
transitions. 𝑋 = {𝑥

1
, . . . , 𝑥

𝑛
} is a set of variables and for each

𝑡 ∈ 𝑇, respectively, 𝑔
𝑡
(x) is a guard, a predicate on x, and

𝑓
𝑡
(x, x󸀠) is an update relation, a formula on x(current) and

x󸀠(next) state variables. Given a transition 𝑡 = (𝑙, 𝑝, 𝑙󸀠) ∈ 𝑇, 𝑙
and 𝑙󸀠 are, respectively, the source and target location denoted
by 󳐂𝑡 and 𝑡󳐂.

Given a set of components 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
where 𝐵

𝑖
=

(𝐿
𝑖
, 𝑃
𝑖
, 𝑇
𝑖
, 𝑋
𝑖
, {𝑔
𝑡
}
𝑡∈𝑇𝑖
, {𝑓
𝑡
}
𝑡∈𝑇𝑖
), an interaction 𝑎 is a set of

ports, subset of ⋃𝑛
𝑖=1
𝑃
𝑖
, such that, for all 𝑖 = 1, . . . , 𝑛 s.t.

|𝑎∩𝑃
𝑖
| ≤ 1.The trans(𝑎) is a set of transitions {𝑡

𝑖
= (𝑙
𝑖
, 𝑝
𝑖
, 𝑙
󸀠

𝑖
) ∈

𝑇
𝑖
}
𝑖∈𝐼
, for arbitrary 𝐼 ⊆ {1, . . . , 𝑛}, which have to execute

synchronously.
A compound component 𝛾(𝐵

1
, . . . , 𝐵

𝑛
) is also a transition

system, denoted by 𝐵 = (𝐿, 𝛾, 𝑇,𝑋, {𝑔
𝑡
}
𝑡∈𝑇
, {𝑓
𝑡
}
𝑡∈𝑇
), where

(1) (𝐿, 𝛾, 𝑇) is the transition system such that

(i) 𝐿 = 𝐿
1
×𝐿
2
×⋅ ⋅ ⋅×𝐿

𝑛
is a set of control locations,

(ii) 𝑇 ⊆ 𝐿 × 𝛾 × 𝐿 contains transitions 𝑡 =

((𝑙
1
, . . . , 𝑙
𝑛
), 𝑎, (𝑙

󸀠

1
, . . . , 𝑙

󸀠

𝑛
)) obtained by synchro-

nization of sets of transitions {𝑡
𝑖
= (𝑙
𝑖
, 𝑝
𝑖
, 𝑙
󸀠

𝑖
) ∈

𝑇
𝑖
}
𝑖∈𝐼

such that {𝑝
𝑖
}
𝑖∈𝐼

= 𝑎 ∈ 𝛾 and 𝑙󸀠
𝑗
= 𝑙
𝑗
if

𝑗 ∉ 𝐼, for arbitrary 𝐼 ⊆ {1, . . . , 𝑛};

(2) 𝑋 = ⋃
𝑛

𝑖=1
𝑋
𝑖
and for 𝑎 ∈ 𝛾, the transition

trans(𝑎) resulting from the synchronization of a set
of transitions {𝑡

𝑖
}
𝑖∈𝐼
, the associated guard and update

predicate are, respectively, 𝑔
𝑡
= ⋀
𝑖∈𝐼
𝑔
𝑡𝑖
and 𝑓

𝑡
=

⋀
𝑖∈𝐼
𝑓
𝑡𝑖
∧ ⋀
𝑖∉𝐼
(𝑋
󸀠

𝑖
= 𝑋
𝑖
).

A typical transition system (e.g., a component𝐵) contains
control states, usually the programcounterwhich takes values
from the set of control locations. Control states are defined
by formulas of the form (at 𝑙

𝑖
), where 𝑙

𝑖
∈ 𝐿. Additionally,

we assume that for each transition 𝑡 = (𝑙
𝑖
, 𝑝, 𝑙
𝑗
) ∈ 𝑇, we get

a transition formula written as at 𝑙
𝑖
∧ 𝑔
𝑡
(x) 󳨃→ 𝑓

𝑡
(x, x󸀠); at 𝑙

𝑗

where x ∈ 𝑋.

Definition 1 (component system). A component system is
denoted by S = (𝐵, Init), where 𝐵 is a component (atomic
or compound component) and Init is the initial predicate of
the system.
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2.2. Component Invariant. Most properties established dur-
ing verification are either invariants or depend on invariants.
To prove that a predicate 𝜙 is an invariant of some system
S, we need to find such a predicate 𝜓 that 𝜓 is stronger
than 𝜙 and 𝜓 is inductive. In general, for a system 𝑆, 𝜓 is an
invariant of 𝑆 if every initial state of system 𝑆 satisfies 𝜓 and
𝜓 is preserved under all transitions of the system.

Definition 2 (component invariant). Given a component
𝐵 = (𝐿, 𝑃, 𝑇,𝑋, {𝑔

𝑡
}
𝑡∈𝑇
, {𝑓
𝑡
}
𝑡∈𝑇
), for a global state predicate

Φ = ⋁
𝑙∈𝐿

at 𝑙 ∧ 𝜑
𝑙
, the generated formula by post pred-

icate is post(Φ) = ⋁
𝑙∈𝐿
(⋁
𝑡=(𝑙,𝑝,𝑙

󸀠
)
at 𝑙
󸀠
∧ post

𝑡
(𝜑
𝑙
)), where

post
𝑡
(𝜑(𝑋)) = ∃𝑋

󸀠
⋅(𝑔
𝑡
(𝑋
󸀠
)∧𝑓
𝑡
(𝑋
󸀠
, 𝑋)∧𝜑(𝑋

󸀠
)). A fixed point

of the post transformer is a component invariant (formulaΦ)
of the component 𝐵; that is, post(Φ) ⇔ Φ.

The component invariant is computed by the post predi-
cate transformer. A more detailed technique, as well as other
related properties for component invariants, is given in [8, 14]
and will not be presented.

Consider a system S = (𝐵, Init), where 𝐵 is a component
and Init is a state predicate satisfied by the initial states of 𝐵.
Φ is an invariant of 𝑆, if it is a component invariant of 𝐵 and
Init⇒ Φ.

2.3. Component Abstraction. When original system has real
or large range discrete variables, enumeration of concrete
states by valuation is impossible. Before computing interac-
tion invariants of the compound system, we need first to
generate a finite state abstraction for the component-based
system.

In our methodology, given a component-based system
S = ⟨𝐵, Init⟩, component invariant Φ = ⋁

𝑙∈𝐿
at 𝑙 ∧

(⋁
𝑚∈𝑀𝑙

𝜑
𝑙𝑚
) is automatically generated from a transition

system (a component) that describes its behavior, which is
represented by the disjunction of atomic formulas, such as
at 𝑙 ∧ 𝜑

𝑙𝑚
. However, instead of using the atomic formulas

to generate an abstract system, we use them to construct an
abstraction function.

The abstraction function maps an atomic formula to an
abstract value of that formula, which preserves the relation
among the atomic formulas instead of treating them as
independent propositions. The abstraction technique used
here is based on the approach proposed by Bensalem et
al. in [2, 8]. An abstraction function 𝛼 maps the concrete
representation of the atomic predicates at 𝑙 ∧ 𝜑

𝑙𝑚
to the

abstract presentation 𝜙, called abstract state. We use Φ𝛼 to
represent a set of abstract states.

Definition 3 (abstract component). Given a component 𝐵, a
component invariant Φ of 𝐵, and the associated abstraction
function 𝛼, the abstract component 𝐵𝛼 is denoted by 𝐵𝛼 =
(Φ
𝛼
, 𝑃, 󴁄󴀼), where

(i) Φ𝛼 is the abstract state, where Φ is the component
invariant and 𝛼 is abstraction function,

(ii) 𝑃 is a set of ports of 𝐵,

(iii) 󴁄󴀼 is the transition of 𝐵. For any pair of abstract states
𝜙 = 𝛼(at 𝑙 ∧ 𝜑) and 𝜙󸀠 = 𝛼(at 𝑙󸀠 ∧ 𝜑󸀠), there exists
the transition from 𝜙 to 𝜙󸀠 through 𝑝 (denoted by
𝜙
𝑝

󴁄󴀼 𝜙
󸀠) if and only if ∃𝑡 = (𝑙, 𝑝, 𝑙

󸀠
) ∈ 𝑇, post

𝑡
(𝜑) ∧

𝜑
󸀠
̸= false.

3. Compositional Verification

After the overview of component-based system, the com-
ponent invariant, and the component abstraction, we first
present the compositional verification rule of component-
based systems, then we give out the concepts of the verifica-
tion rules, and last we do the analysis on the overapproxima-
tion of the compositional abstraction.

3.1. Compositional Verification Rule. In the approach pre-
sented in [11, 12], the property Φ of 𝛾(𝐵

1
, . . . , 𝐵

𝑛
) can be

inferred by the following compositional verification rule:

{𝐵
𝑖
⟨Φ
𝑖
⟩}
𝑛

𝑖
, Ψ ∈ II ({𝐵𝛼1

1
, . . . , 𝐵

𝛼𝑛

𝑛
} , 𝛾) , (⋀

𝑛

𝑖
Φ
𝑖
) ∧ Ψ ⇒ Φ

𝛾 (𝐵
1
, . . . , 𝐵

𝑛
) ⟨Φ⟩

,

(1)
where 𝐵

𝑖
⟨Φ
𝑖
⟩ means that Φ

𝑖
is an invariant of component

𝐵
𝑖
and Ψ belongs to the set of interaction invariants II. For

component 𝐵
𝑖
, a predicate Φ

𝑖
on the component states is a

component invariant of 𝐵
𝑖
. Before generating the interaction

invariants, one needs to compute the abstraction for the
components. The abstraction for 𝐵

𝑖
, denoted by 𝐵

𝛼𝑖

𝑖
, is

computed from Φ
𝑖
by the abstraction function 𝛼

𝑖
. In the

abstract system 𝛾({𝐵
𝛼1

1
, . . . , 𝐵

𝛼𝑛

𝑛
}), we generate the interaction

invariant Ψ under the global behavior constraint, which is
the overapproximation of the reachable abstract states. Given
a property (predicate) Φ, if the conjunction of the invariant
⋀
𝑛

𝑖
Φ
𝑖
and the interaction invariants Ψ are able to establish

the property, one concludes the verification. Otherwise, one
reports that the verification is inconclusive.

3.2. Related Concepts. Consider a compound system S =

⟨𝛾(𝐵
1
, . . . , 𝐵

𝑛
), Init⟩ and a set of component invariants

Φ
1
, . . . , Φ

𝑛
associated with the atomic components. If 𝐵𝛼𝑖

𝑖

is an abstraction of 𝐵
𝑖
with respect to an invariant Φ

𝑖
and

its abstraction function 𝛼
𝑖
for 𝑖 = 1, . . . , 𝑛, then 𝐵

𝛼
=

𝛾(𝐵
𝛼1

1
, . . . , 𝐵

𝛼𝑛

𝑛
) is an abstraction of 𝐵 = 𝛾(𝐵

1
, . . . , 𝐵

𝑛
) with

respect to ⋀𝑛
𝑖=1
Φ
𝑖
and an abstraction function 𝛼 obtained as

the composition of the 𝛼
𝑖
.

Definition 4 (abstract system). Given a component system
S = (𝐵, Init), the abstract system is denoted by S𝛼 =

⟨𝐵
𝛼
, Init𝛼⟩, where 𝐵𝛼 is the abstraction for a component and

Init𝛼 = ⋁
𝜙∈Φ
𝛼

0

at 𝜙, where Φ𝛼
0
= {𝜙 ∈ Φ

𝛼
| 𝛼
−1
(𝜙) ∧

Init ̸= false} is the set of the initial abstract states.

The following lemma in [11] says that 𝛾(𝐵𝛼1
1
, . . . , 𝐵

𝛼𝑛

𝑛
) is an

abstraction of 𝐵 = 𝛾(𝐵
1
, . . . , 𝐵

𝑛
) and that invariants of the

abstract system are also invariants of the concrete system.

Lemma 5. If 𝐵𝛼 is an abstraction of 𝐵 with respect to an
invariant Φ and 𝛼 its abstraction function, then 𝐵𝛼 simulates
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𝐵. Moreover, if Φ𝛼 is an invariant of S𝛼, then 𝛼−1(Φ𝛼) is an
invariant of S.

Given an abstract system, interaction invariants charac-
terize constraints on the global abstract state space induced by
synchronization among components. Interaction invariants
are based on the concept of traps in Petri net, which are
computed on finite transition system 𝛾(𝐵

𝛼1

1
, . . . , 𝐵

𝛼𝑛

𝑛
) without

variables but abstract locations 𝜙.
Consider a compound system 𝛾(𝐵

𝛼1

1
, . . . , 𝐵

𝛼𝑛

𝑛
), where

𝐵
𝛼𝑖

𝑖
= (Φ
𝛼𝑖

𝑖
, 𝑃
𝑖
, 󴁄󴀼
𝑖
) is a transition system. For a set of abstract

states Φ𝛼 ⊆ ⋃
𝑛

𝑖=1
Φ
𝛼𝑖

𝑖
, the forward interaction set is denoted

byΦ𝛼󳐂 = ⋃
𝜙∈Φ
𝛼 𝜙󳐂where 𝜙󳐂 = {{𝜏

𝑖
}
𝑖∈𝐼
| ∀𝑖 ⋅ 𝜏

𝑖
∈ 󴁄󴀼
𝑖
∧∃𝑖 ⋅ 󳐂𝜏

𝑖
=

𝜙 ∧ { port (𝜏
𝑖
)}
𝑖∈𝐼
∈ 𝛾} is related to some interactions. In each

interaction, there exists a transition 𝜏
𝑖
from 𝜙 participate in.

That is, 𝜙󳐂 is composed of sets of transitions involved in some
interaction of 𝛾 inwhich a transition 𝜏

𝑖
from𝜙 can participate.

Given a parallel composition 𝛾(𝐵𝛼1
1
, . . . , 𝐵

𝛼𝑛

𝑛
), where 𝐵𝛼𝑖

𝑖
=

(Φ
𝛼𝑖

𝑖
, 𝑃
𝑖
, 󴁄󴀼
𝑖
), a trap [15] is a setΦ𝛼 of abstract locationsΦ𝛼 ⊆

⋃
𝑛

𝑖=1
Φ
𝛼𝑖

𝑖
such thatΦ𝛼󳐂 ⊆ 󳐂Φ𝛼.

Definition 6 (interaction invariant). Given an abstract system
S𝛼 = ⟨𝛾(𝐵

𝛼1

1
, . . . , 𝐵

𝛼𝑛

𝑛
), Init𝛼⟩, if the set of locations Φ𝛼 ⊆

⋃
𝑛

𝑖=1
Φ
𝛼𝑖

𝑖
is a trap containing the initial states of some

components, then ⋁
𝜙∈Φ
𝛼at 𝜙 is the interaction invariant of

S𝛼.

The characterization of traps in [12] allows one to com-
pute the set of traps [16] using different approaches, including
methods of positive mapping or fix-pointed computation.

3.3. Overapproximation. In the compositional verification
rule present in Section 1, the conjunction of component
invariants and the interaction invariant is an overapproxi-
mation of reachable system states. The overapproximation
of the compositional verification mainly results from two
kinds of abstractions. One is due to the abstraction function,
and the other is caused by interaction interference. The
conjunction of interaction invariants overapproximates the
set of reachable states, which may cause some unreachable
error states to be included.

The abstract system 𝐵
𝛼 for a component 𝐵 is generated

by elimination in a conservative way. To check whether 𝜙 󴁄󴀼
𝜙
󸀠, where 𝜙 = 𝛼(at 𝑙 ∧ 𝜑) and 𝜙

󸀠
= 𝛼(at 𝑙󸀠 ∧ 𝜑

󸀠
), we

check that for all transitions 𝑡 = (𝑙, 𝑝, 𝑙󸀠) we have post
𝑡
(𝜑) ∧

𝜑
󸀠
= false. When we generate abstract systems, the behaviors

of the abstract system are more than the original system’s.
As the compositional verification performance on abstract
components, the verification is incompleteness.

The conjunction of interaction invariant (a trap) charac-
terizes constraints on the states induced by synchronization
among components. States satisfying interaction invariants
provide enabled execution information, a local projection of
global states on part of components. However, these global
states may not be reachable from initial states. Moreover,
different interactions may include common ports. The inter-
actions including the same portmust exclusively execute, that

is, just only one interaction can execute. Interaction invariant
cannot characterize this dynamic information.

From the above analysis, we can conclude that invariant-
based compositional verification is incomplete. We propose
two refinement techniques in conjunction with invariant-
based compositional verification rule to get a verification
framework. The framework is an iterative scheme which
starts from the abstraction until a concrete counterexample is
found or until the safety property holds on abstract systems.

4. Refinement Approaches

We give counterexample-guided invariant strengthening and
partition refinement methods in this section.

4.1. Invariant Strengthening. In the first part of this sec-
tion, we present the invariant strengthening approach. As
interaction invariant computed by the greatest fixed point is
the overapproximation, counterexamples (represented by the
conjunction of abstract states) may be spurious. For this case,
we checkwhether counterexamples can be reachable from the
initial states. If not, we generate a fixed point backward from
the spurious counterexample and strengthen the invariant by
the fixed point.

Given an abstract component system, S𝛼 = ⟨𝐵
𝛼
, Init𝛼⟩,

where 𝐵𝛼 = 𝛾(𝐵𝛼1
1
, . . . , 𝐵

𝛼𝑛

𝑛
) and 𝐵𝛼𝑖

𝑖
= (Φ
𝛼𝑖

𝑖
, 𝑃
𝑖
, 󴁄󴀼
𝑖
). Formally,

S𝛼 = (Φ,T, Init𝛼) is a finite state machine (FSM) in which

(i) Φ is a set of global states; for the abstract state
𝜙 = (𝜙

1
, . . . , 𝜙

𝑛
)
𝜙𝑖∈Φ
𝛼𝑖

𝑖

, we can represent it as con-
junction (a vector) of local abstract state; that is, 𝜙 =
⋀
𝜙𝑖∈Φ
𝛼𝑖

𝑖

𝜙
𝑖
∈ Φ;

(ii) T is a predicate on global states Φ and Φ
󸀠; for

((𝜙
1
, . . . , 𝜙

𝑛
), 𝑎, (𝜙

󸀠

1
, . . . , 𝜙

󸀠

𝑛
)), where 𝑎 ∈ 𝛾, there exists

T(𝜙, 𝜙󸀠), where 𝜙 = ⋀
𝜙𝑖∈Φ
𝛼𝑖

𝑖

𝜙
𝑖
and 𝜙󸀠 = ⋀

𝜙
󸀠

𝑖
∈Φ
𝛼𝑖

𝑖

𝜙
󸀠

𝑖
;

(iii) Init𝛼 is the initial predicate of the abstract system.

A formula 𝜑 is interpreted as the set |[𝜑]| of all the global
states; 𝜙 ∈ Φ satisfy 𝜑. We define the set ReachT(Init

𝛼
)

of the global states 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 from the states |[Init𝛼]| via
the transition as the smallest set such that |[Init𝛼]| ⊆

ReachT(Init
𝛼
); and {𝜙󸀠 | ∃𝜙 ⋅T(𝜙, 𝜙󸀠)} ⊆ ReachT(Init

𝛼
) if

𝜙 ⊆ ReachT(Init
𝛼
). Consider an abstract component system

S𝛼 = (Φ,T, Init𝛼), where Φ is a set of the global states, T
is the transition predicate, and Init𝛼 is the initial predicate.
The converse transition system (Φ,T−1, Init𝛼) is defined by
T−1(𝜙󸀠, 𝜙) = T(𝜙, 𝜙󸀠). For a formula 𝜑, we compute all the
successor states which are generated from the states hold 𝜑 by
spT(𝜑). spT(𝜑) = {𝜙

󸀠
| ∃𝜙 ⋅ (T(𝜙, 𝜙󸀠) ∧ 𝜑)}, where 𝜙, 𝜙󸀠 ∈ Φ

and 𝜙 holds 𝜑. Likewise, we can define spT−1(𝜑) = {𝜙
󸀠
|

∃𝜙 ⋅ (T(𝜙󸀠, 𝜙) ∧ 𝜑)}, where 𝜙, 𝜙󸀠 ∈ Φ and 𝜙 holds 𝜑.
The following lemma [17] says that if none of the states

represented by 𝜙 is backward reachable from the initial states,
then ¬𝜙 is an invariant.

Lemma 7. Let S𝛼 = ⟨Φ,T, 𝐼𝑛𝑖𝑡𝛼⟩ be a transition system and
𝜙 an arbitrary formula (or states). If 𝜑 is such that (𝑠𝑝T−1(𝜑) ∨
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𝜙) ⇒ 𝜑 and the formula 𝐼𝑛𝑖𝑡∧𝜑 is unsatisfiable, then ¬𝜑 is an
inductive invariant of S𝛼.

Corollary 8. If 𝑅𝑒𝑎𝑐ℎT−1(𝜑) ∩ 𝐼𝑛𝑖𝑡 = 0, then the formula
corresponding to the complement of the set of 𝑅𝑒𝑎𝑐ℎT−1(𝜑) is
an inductive invariant.

Theorem 9. Assume that V𝑖𝑙𝑜 is a counterexample and
V𝑖𝑙𝑜 ∧ 𝛼

−1
(𝜙) ̸= 𝑓𝑎𝑙𝑠𝑒, where 𝜙 is an abstract state of S𝛼.

If 𝑅𝑒𝑎𝑐ℎT−1(𝜙) ∩ 𝐼𝑛𝑖𝑡
𝛼

= 0, then V𝑖𝑙𝑜 is the spurious
counterexample and the complement of the set of 𝑅𝑒𝑎𝑐ℎT−1(𝜙)
is used to strengthen the invariants of 𝑆𝛼.

Inspired by the above theorem, we propose an approach,
called the invariant strengthening, to strengthen the invari-
ants from the compositional verification rule.

We first choose a counterexample and generate a fixed
point from the selected counterexample using backward
propagation. An abstract state including a counterexample is
the conjunction formula of abstract states like 𝜙 = ⋀

𝜙𝑖∈Φ
𝛼𝑖

𝑖

𝜙
𝑖
,

where 𝜙
𝑖
= 𝛼
𝑖
(at 𝑙 ∧𝜑), which is the product of abstract states

of each component. On the abstract system S𝛼, we do the
backward propagation by spT−1(𝜙) = {𝜙

󸀠
| ∃𝜙 ⋅ (T(𝜙󸀠, 𝜙) ∧

𝜙)}. Then from a counterexample, we can compute all the
global abstract system states using backward propagation. If
the intersection of the generated fixed point and the initial
states is empty, the counterexample and all of the backward
generated fixed points are not reachable from initial states.
For this case, we say the selected counterexample is spurious.
The invariant strengthening approach removes the spurious
counterexample and eliminates the unreachable states gen-
erated from the spurious counterexample to strengthen the
invariant.

For invariant strengthening, time consumes at counterex-
ample reachable global states set computation. As this set
computation is based on fixed-pointed computation and is
monotonic, so time complexity for Algorithm 1 is O(Φ),
where Φ is number of global states of abstract system and
Φ = ∏

𝑛

𝑖=1
Φ
𝑖
and Φ

𝑖
= |Φ
𝛼

𝑖
| the number of abstract states

from 𝑖th component.

4.2. Partition Refinement. In this part, we proposed a more
effective counterexample-guided method, called partition
refinement, which can accelerate abstraction refinement
mechanism. Consider the abstraction function which trans-
forms the original infinite system to the finite abstract system.
An abstract state is an aggregation of a number of original
system states. If a concrete state Φ

𝑐
is part of an abstract

state Φ, we cannot make decisions (1) whether Φ is a
counterexample, ifΦ

𝑐
is a counterexample in concrete system;

(2) whether Φ
𝑐
is reachable in concrete system, although Φ

is reachable in abstract system. We propose our refinement
approach to give the solution of the above question (Figure 1).

In the above approach, we analyze whether the remaining
counterexamples are the spurious counterexamples which
are caused by inaccurate characterization. To eliminate these
spurious counterexamples, we refine the abstract component
states by the proposed state partition approach. Consider an
abstract system state 𝜙𝛼 = at 𝑙 ∧ 𝜑 and a counterexample

𝜙
𝑒
= at 𝑙 ∧ 𝜑

𝑒
such that 𝜑

𝑒
⇒ 𝜑 (Dec

0
). We can partition

𝜙
𝛼 into two states 𝜙

𝑒
and 𝜙󸀠, 𝜙

𝑒
= at 𝑙 ∧ 𝜑

𝑒
and 𝜙󸀠 = at 𝑙 ∧ 𝜑󸀠,

where 𝜑󸀠 = 𝜑 − 𝜑
𝑒
; here we denote 𝜙

𝑒
∨ 𝜙
󸀠
= 𝜙
𝛼 and

𝜙
𝑒
∧𝜙
󸀠
= false. Assume that there exist 𝜙𝛼

1
and 𝜙𝛼
2
, fromwhich

𝜙
𝛼 is reachable such that post

𝜏1
(𝛼
−1
(𝜙
𝛼

1
)⋅𝜑)∧𝛼

−1
(𝜙
𝑒
)⋅𝜑 ̸= false

and post
𝜏2
(𝛼
−1
(𝜙
𝛼

2
) ⋅ 𝜑) ∧ 𝛼

−1
(𝜙
󸀠
) ⋅ 𝜑 ̸= false (Dec

1
) hold. We

remove 𝜙𝛼 from abstract state space Φ𝛼 and add 𝜙
𝑒
and 𝜙󸀠

into Φ𝛼.
From the above, we assume that 𝜙𝛼

1
reach the error-part

𝜙
𝑒
of 𝜙𝛼 and 𝜙𝛼

2
reach the other 𝜙󸀠. In this case, we should add

the transitions into the system. If ∃𝜙𝛼
𝑖
, ∃𝜏
𝑖
: (𝜙
𝛼

𝑖
, 𝑝
𝑖
, 𝜙
𝛼
) ∈󴁄󴀼

such that post
𝜏𝑖
(𝛼
−1
(𝜙
𝛼

𝑖
) ⋅ 𝜑) ∧ 𝛼

−1
(𝜙) ⋅ 𝜑 ̸= false (Dec

2
), we

add a transition from 𝜙
𝛼

𝑖
to 𝜙 (here, 𝜙 stands for both 𝜙

𝑒

and 𝜙󸀠); likewise, if ∃𝜙𝛼
𝑖
, and ∃𝜏

𝑖
: (𝜙
𝛼
, 𝑝
𝑖
, 𝜙
𝛼

𝑖
) ∈󴁄󴀼 such that

post
𝜏
(𝛼
−1
(𝜙)⋅𝜑)∧𝛼

−1
(𝜙
𝛼

𝑖
)⋅𝜑 ̸= false (Dec

3
), we add a transition

from 𝜙 to 𝜙𝛼
𝑖
.

Theorem 10. If S𝛼
𝑟𝑒𝑓

is a refined system returned by Algo-
rithm 2, then 𝐵𝛼

𝑟𝑒𝑓
simulates 𝐵. Moreover, if Φ𝛼 is an invariant

of 𝐵𝛼
𝑟𝑒𝑓

, then Φ = 𝛼
−1
(Φ
𝛼
) is an invariant of 𝐵.

Proof. By Lemma 5, we show that theAlgorithm 2 onlymakes
states partition and then has no effect on the simulation
relation. If (𝑙

1
, 𝑥)
𝑝

󳨀→ (𝑙, 𝑥
󸀠
) and 𝛼−1(𝜙𝛼

1
) = at 𝑙

1
∧ 𝜑
1
, then

there exists 𝜙𝛼 such that 𝛼−1(𝜙𝛼) = at 𝑙 ∧ 𝜑, (𝑙, 𝑥󸀠)𝑅𝜙𝛼, and
𝜙
𝛼

1

𝑝

󴁄󴀼 𝜙
𝛼. If 𝜑

𝑒
⇒ 𝜑 does not hold, then the abstract state 𝜙𝛼

cannot be partitioned by 𝜑
𝑒
. Otherwise, we split abstract state

𝜙
𝛼 with disjoint two parts𝜙 = 𝛼(at 𝑙∧𝜑

𝑒
) and𝜙󸀠 = 𝛼(at 𝑙∧𝜑󸀠),

and we have 𝜑
𝑒
∧𝜑
󸀠
= false and 𝜑

𝑒
∨𝜑
󸀠
= 𝜑, so we have either

𝜙
𝛼

1

𝑝

󴁄󴀼 𝜙 or 𝜙𝛼
1

𝑝

󴁄󴀼 𝜙
󸀠. Then, the refined abstract system 𝐵

𝛼

ref
simulates 𝐵. If Φ𝛼 is an invariant of 𝐵𝛼ref, then 𝛼

−1
(Φ
𝛼
) is an

invariant of 𝐵.

For partition refinementmethod, given a counterexample
Φ
𝑐
= ⋀
𝜙𝑖∈Φ
𝛼𝑖

𝑖

𝜙
𝑖
, state partition in 𝑖th component, based

on 𝜙
𝑖
, only affects one abstract state to be parted. And

a state is parted only once by 𝜙
𝑖
. As exists quantifier for

states needs examines all possible abstract state pairs and so
does the quantifier of transitions, state partition needs time
complexity as O(∑𝑛

𝑖=1
(|Φ
𝛼

𝑖
| ⋅ |󴁄󴀼
𝑖
|
2
)).

The above refinement approaches are applied on the
parallel compositional system. However, extended with
the decidable theories and symbolic representation, our
approaches can be applied on amore complex system like the
hierarchical component system.

5. Iteration Verification Framework

In this section, we present the unified verification framework
composed of compositional abstraction and our proposed
refinement techniques.

Our verification framework for component-based sys-
tems is an iterative scheme presented by Algorithm 1. In our
framework, there exists themethod of abstraction refinement
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Dec0

Dec1

Dec2

Dec3

Return splitted

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Error

ErrorError
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=

{𝜙i | Φc = 𝜙i}, splitted = false

≠ 0

Get 𝜙e (a ) ∈ error, error := error\𝜙e

𝜙𝛼 = 𝜙e ∨ 𝜙
󳰀 and

𝜑e ∨ 𝜙󳰀= false

Φ𝛼 := (Φ𝛼/𝜙𝛼) ∪ 𝜙e ∪

𝜙󳰀, splitted = true

Add 𝜙𝛼i
p
󴁄↭

p
󴁄↭

p
󴁄↭

𝜙e(or 𝜙𝛼i 𝜙󳰀) to 󴁄↭

p
󴁄↭(or 𝜙𝛼i𝜙󳰀 ) to 󴁄↭

Add 𝜙e 𝜙𝛼i

t l ∧ 𝜑e

⋀
𝜙i∈Φ

𝛼𝑖
i

Figure 1

presented by Algorithm 2, which includes the counterexam-
ple guided invariant strengthening and abstract state parti-
tioning inspired by CEGAR mechanism. In the Algorithm 1,
the unified compositional abstraction refinement for the
invariant checking problem on component-based systems is
given, which contains two phases.

At the verification phase, we apply compositional verifi-
cation to the invariant checking problem. If properties can
be proven under the current abstraction (see line 12 in Algo-
rithm 1), the verification succeeds immediately. Otherwise,
the refinement is performed (see line 16 inAlgorithm 1). If the
abstraction cannot be further refined by the current reachable
counterexample (see line 17 in Algorithm 1), then current
counterexample is a genuine counterexample. If current
counterexamples are all spurious counterexamples (see line
20 in Algorithm 1), we conclude that verification succeeds.
Otherwise, we go to line 23;we get refined abstract systemand
compute the new more concrete interaction invariant with
conjunction of strengthened inductive invariant computed
frombackward propagation of spurious counterexamples and
go back to counterexample guiding abstraction refinement,
portion of verification basis, which call for less efforts than
previous iteration processes in [11, 12].

At the refinement phase, we first strengthen the inter-
action invariant and remove the spurious counterexamples.
After the invariant is strengthened, we analyze the remaining
counterexamples and partition abstract states. When our
algorithm returns to the verification phase, added states will
induce a refined abstract model. Our refinement method (see
Algorithm 2) reconsiders information of counterexamples,
which may include ErrI and ErrII, where ErrI is unreachable
error state introduced by interaction interference and ErrII
is inaccurate local configuration caused by abstraction func-
tion.We use the invariant strengthening technique to remove
ErrI from the counterexamples and strengthen the invariant
use of the counterexample in ErrI.Weuse the counterexample
in ErrII to do the state partition refinement which refines the
abstraction until a genuine counterexample is found or the
safety property holds on abstract systems.

Theorem 11. Let S = ⟨𝛾(𝐵
1
, . . . , 𝐵

𝑛
), 𝐼𝑛𝑖𝑡⟩ be a compound

component-based system, and let Φ be a specific property
predicate.

(1) If 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑖𝑓𝑦(S, Φ) returns 𝑡𝑟𝑢𝑒, then S ⊨ Φ;
(2) if 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑖𝑓𝑦(S, Φ) returns 𝑓𝑎𝑙𝑠𝑒, then S ⊭ Φ.
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Input: Component system S = (𝛾(𝐵
1
, . . . , 𝐵

𝑛
), 𝐼𝑛𝑖𝑡), property Φ

Output: 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒
(1) Φ

𝑖
= 𝑡𝑟𝑢𝑒 for each 𝑖 = 1, . . . , 𝑛, 𝑅𝑒𝑓𝑖𝑛𝑎𝑏𝑙𝑒 := 𝑡𝑟𝑢𝑒

(2) for 𝑖 ← 1 to 𝑛 do
(3) compute the component invariant Φ󸀠

𝑖
based on 𝐵

𝑖

(4) Φ
𝑖
:= Φ
𝑖
∧ Φ
󸀠

𝑖

(5) compute the corresponding abstraction 𝐵𝛼𝑖
𝑖
based on 𝐵

𝑖
and Φ

𝑖

(6) end
(7) from 𝛾(𝐵

𝛼1

1
, . . . , 𝐵

𝛼𝑛

𝑛
), compute 𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑚

(8) for 𝑘 ← 1 to 𝑚 do
(9) Ψ

𝑘
= ⋁
𝜙∈𝐿𝑘

𝛼
−1
(𝜙)

(10) end
(11) Ψ := ⋀

𝑚

𝑘=1
Ψ
𝑘

(12) if ¬Φ ∧ Ψ ∧ (⋀𝑛
𝑖=1
Φ
𝑖
) = 𝑓𝑎𝑙𝑠𝑒 then

(13) Φ is an invariant of S
(14) return 𝑡𝑟𝑢𝑒
(15) else
(16) compute counterexample set 𝐸𝑟𝑟 := {Φ

𝑐
}

𝑅𝑒𝑓𝑖𝑛𝑎𝑏𝑙𝑒 := 𝐴𝑏𝑠𝑅𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡(S𝛼, 𝐸𝑟𝑟, Ψ)

(17) if 𝑅𝑒𝑓𝑖𝑛𝑎𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒&&𝐸𝑟𝑟 ̸= 0 then
(18) return 𝑓𝑎𝑙𝑠𝑒
(19) end
(20) if 𝐸𝑟𝑟 = 0 then
(21) return 𝑡𝑟𝑢𝑒
(22) else
(23) goto 12
(24) end
(25) end

Algorithm 1: Iteration verification.

Proof. (1) If Algorithm 1 returns true from line 14, with the
precondition¬Φ∧Ψ∧(⋀𝑛

𝑖=1
Ψ
𝑖
) = false, we get the conclusion

that the property satisfied immediately. Otherwise, if all
current counterexamples are spurious counterexamples, the
verification stops with the property satisfied at line 21. (2)
If Algorithm 1 returns false from line 18 with Refinable =

false and Err ̸= 0, we get that the abstract system is unable
to be refined any more by the current counterexample,
which means the counterexample is a real violated behavior
truly reachable from the initial configuration and cannot be
eliminated by a more concrete system. Otherwise, abstract
system should be refined by the next refinement using the
current counterexamples.

Theorem 12. Let S = ⟨𝛾(𝐵
1
, . . . , 𝐵

𝑛
), 𝐼𝑛𝑖𝑡⟩ be a compound

component-based system, and letΦ be a specific property pred-
icate. Algorithm 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑖𝑓𝑦(S, Φ) always terminates.

Proof. In each refinement iteration, either some new
strengthening invariant is added or the abstract system state
is split into new states. Note that the state space of abstract
system is finite and that the number of possible split states is
also finite. In the worst case, the algorithm finally terminated
with the refined system is just the original system. Then the
algorithm can terminate finally.

Theorem 13. Let S = ⟨𝛾(𝐵
1
, . . . , 𝐵

𝑛
), 𝐼𝑛𝑖𝑡⟩ be a compound

component-based system, and let Φ be a specific property
predicate.

(1) If S ⊨ Φ, then 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑖𝑓𝑦(S, Φ) returns 𝑡𝑟𝑢𝑒;
(2) if S ⊭ Φ, then 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑖𝑓𝑦(S, Φ) returns 𝑓𝑎𝑙𝑠𝑒.

Proof. (1) According to the second statements of Theorem 11,
if S ⊨ Φ, Algorithm 1 cannot return with false. According to
Theorem 12, Algorithm 1 always terminates. Thus, if S ⊨ Φ,
then algorithm can only terminate with true.

(2) Similarly, according to the first statement ofTheorems
11 and 12, if S ⊭ Φ, the algorithm can only terminate with
false.

6. Examples and Experiments

Wewill provide certain examples to illustrate the effectiveness
of our proposed verification framework.

6.1. Train Gate Controller. Consider the example of the train
gate controller [18], which consists of a 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟, a 𝑔𝑎𝑡𝑒, and
a number of 𝑡𝑟𝑎𝑖𝑛𝑠.Themodel presented in Figure 2 describes
only one train interactingwith the controller and the gate.The
controller operates the gate up and down when a train enters
and exits, respectively.

The 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 has four locations {𝑐
0
, 𝑐
1
, 𝑐
2
, 𝑐
3
}, one

variable 𝑧, five ports {approach, raise, exit, lower, tick},
and eight guarded transitions. The 𝑇𝑟𝑎𝑖𝑛 has three
locations {far, in, near}, a variable 𝑥, four ports
{approach, exit, 𝑡, tick}, and six guarded transitions.
The 𝐺𝑎𝑡𝑒 has four locations {𝑔

0
, 𝑔
1
, 𝑔
2
, 𝑔
3
}, a variable
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Input: Abstract system S𝛼 = (𝛾(𝐵
𝛼1

1
, . . . , 𝐵

𝛼𝑛

𝑛
), 𝐼𝑛𝑖𝑡

𝛼
),

set of counterexamples 𝐸𝑟𝑟, interaction invariant Ψ
Output: 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒

(1) 𝑅𝑒𝑓𝑖𝑛𝑒𝑑 := 𝑓𝑎𝑙𝑠𝑒, 𝐸𝑟𝑟
𝐼
:= 0, 𝐸𝑟𝑟

𝐼𝐼
:= 0

(2) foreach Φ
𝑐
∈ 𝐸𝑟𝑟 do

(3) 𝐸𝑟𝑟 := 𝐸𝑟𝑟 \ Φ
𝑐

(4) 𝐼𝑛V𝑆𝑡𝑟
Φ𝑐
:= 𝐼𝑛V𝑎𝑟𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛(S𝛼, Φ

𝑐
)

(5) if 𝐼𝑛V𝑆𝑡𝑟
Φ𝑐
= 𝑡𝑟𝑢𝑒 then

(6) 𝐸𝑟𝑟
𝐼𝐼
:= 𝐸𝑟𝑟

𝐼𝐼
∪ Φ
𝑐

(7) else
(8) 𝐸𝑟𝑟

𝐼
:= 𝐸𝑟𝑟

𝐼
∪ Φ
𝑐

(9) end
(10) end
(11) 𝐸𝑟𝑟 := 𝐸𝑟𝑟

𝐼𝐼

(12) if 𝐸𝑟𝑟
𝐼𝐼
= 0 then

(13) return 𝑓𝑎𝑙𝑠𝑒
(14) else
(15) foreach Φ

𝑐
∈ 𝐸𝑟𝑟

𝐼𝐼
do

(16) if 𝑆𝑝𝑙𝑖𝑡𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(S𝛼, Φ
𝑐
) = 𝑡𝑟𝑢𝑒 then

(17) 𝑅𝑒𝑓𝑖𝑛𝑒𝑑 := 𝑡𝑟𝑢𝑒

(18) end
(19) end
(20) from split refinement abstract systemS𝛼

𝑟𝑒𝑓
, compute

new compute interaction invariant Ψ
(21) foreach Φ

𝑐
∈ 𝐸𝑟𝑟

𝐼
do

(22) Ψ := Ψ ∧ 𝐼𝑛V𝑆𝑡𝑟
Φ𝑐

(23) end
(24) return 𝑅𝑒𝑓𝑖𝑛𝑒𝑑
(25) end

Algorithm 2: Abstraction refinement.
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Figure 2: The component-based model for train gate controller (TGC).

𝑦, four ports {lower, raise, 𝑔, tick}, and eight guarded
transitions. Three atomic components Train, Gate, and
Controller are composed with a set 𝛾 of interactions:
{𝐶.tick, 𝑇.tick, 𝐺.tick}, {𝑇.approach, 𝐶.approach}, {𝑇.exit,
𝐶.exit}, {𝐶.lower, 𝐺.lower}, and {𝐶.raise, 𝐺.raise}. In this
example, we aim to verify the TGC system by the initial
condition Init = 𝑙far ∧ (𝑥 = 3) ∧ 𝑙𝑐0 ∧ (𝑧 = 1) ∧ 𝑙𝑔0 ∧ (𝑦 = 1).
For the above three atomic components, we generate the
following predicates ΦController = (𝑙

𝑐0
∧ 𝑧 ≥ 0) ∨ (𝑙

𝑐1
∧

0 ≤ 𝑧 ≤ 1) ∨ (𝑙
𝑐2
∧ 𝑧 ≥ 1) ∨ (𝑙

𝑐3
∧ 0 ≤ 𝑧 ≤ 1),

ΦTrain = (𝑙far∧𝑥 ≥ 3)∨(𝑙near∧0 ≤ 𝑥 ≤ 5)∨(𝑙in∧3 ≤ 𝑥 ≤ 5), and
ΦGate = (𝑙𝑔0∧𝑦 ≥ 1)∨(𝑙𝑔1∧0 ≤ 𝑦 ≤ 1)∨(𝑙𝑔2∧𝑦 ≥ 0)∨(𝑙𝑔3∧0 ≤
𝑦 ≤ 2), which are, respectively, the component invariants
of Train,Gate, and Controller. Since this system has an
infinite number of reachable states. With the application
of abstraction function 𝛼, we transform the original
components (infinite) to the computed abstract components
(finite) presented in Figure 3. The computed abstract states
are {𝜙

𝑛1
, 𝜙
𝑛2
, 𝜙
𝑛3
, 𝜙in, 𝜙far, 𝜙𝑐11 , 𝜙𝑐12 , 𝜙𝑐2 , 𝜙𝑐31 , 𝜙𝑐32 , 𝜙𝑐0 , 𝜙𝑔11 , 𝜙𝑔12 ,

𝜙
𝑔2
, 𝜙
𝑔31
, 𝜙
𝑔32
, 𝜙
𝑔0
} (see Table 1).
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Table 1

Train𝛼 Controller𝛼 Gate𝛼

𝜙
𝑛1
= 𝑙near ∧ 𝑥 = 0 𝜙

𝑐11
= 𝑙
𝑐1
∧ 𝑧 = 0 𝜙

𝑔11
= 𝑙
𝑔1
∧ 𝑦 = 0

𝜙
𝑛2
= 𝑙near ∧ 1 ≤ 𝑥 ≤ 2 𝜙

𝑐12
= 𝑙
𝑐1
∧ 𝑧 = 1 𝜙

𝑔12
= 𝑙
𝑔1
∧ 𝑦 = 1

𝜙
𝑛3
= 𝑙near ∧ 3 ≤ 𝑥 ≤ 5 𝜙

𝑐2
= 𝑙
𝑐2
∧ 𝑧 ≥ 1 𝜙

𝑔2
= 𝑙
𝑔2
∧ 𝑦 ≥ 0

𝜙in = 𝑙in ∧ 3 ≤ 𝑥 ≤ 5 𝜙
𝑐31
= 𝑙
𝑐3
∧ 𝑧 = 0 𝜙

𝑔31
= 𝑙
𝑔3
∧ 𝑦 = 0

𝜙far = 𝑙far ∧ 𝑥 ≥ 3 𝜙
𝑐32
= 𝑙
𝑐3
∧ 𝑧 = 1 𝜙

𝑔32
= 𝑙
𝑔3
∧ 1 ≤ 𝑦

𝜙
𝑐0
= 𝑙
𝑐0
∧ 𝑧 ≥ 0 𝜙

𝑔0
= 𝑙
𝑔0
∧ 𝑦 ≥ 1

The interested safety property is that when the train is at
the location 𝑙in, the gate is at 𝑙𝑔2 . We apply the compositional
verification rule to check the property. In this model, the
verification rule can infer this property, so we get the
conclusion of the properties satisfied.

6.2. Temperature Control System. Consider the example of
the temperature control system [11, 12] presented in Figure 4.
The model consists of three atomic components: Controller,
Rod1, and Rod2.

The Controller has two locations {𝑙
5
, 𝑙
6
}, a variable 𝜃,

three ports {tick, cool, heat}, and four guarded transitions.
The Rod1 has two locations {𝑙

1
, 𝑙
2
}, a variable 𝑡

1
, three

ports {tick
1
, cool1, rest1}, and four guarded transitions. Like-

wise, the Rod2 has two locations {𝑙
3
, 𝑙
4
}, a variable 𝑡

2
,

three ports {tick
2
, cool2, rest2}, and four guarded transitions.

Three atomic components Controller, Rod1, and Rod2 are
composed with a set 𝛾 of interactions: {tick, tick

1
, tick
2
},

{cool, cool1}, {cool, cool2}, {heat, rest1}, and {heat, rest2}. In
this example, we aim to verify deadlock-freedom of the
temperature control system by the initial condition Init =
𝑙
5
∧ (𝜃 = 100) ∧ 𝑙

1
∧ (𝑡
1
= 3600) ∧ 𝑙

3
∧ (𝑡
2
= 3600).

For the above three atomic components, we generate the
following predicates Φ

1
= (𝑙
1
∧ 𝑡
1
≥ 0) ∨ (𝑙

2
∧ 𝑡
1
≥ 3600),

Φ
2
= (𝑙
3
∧ 𝑡
2
≥ 0) ∨ (𝑙

4
∧ 𝑡
1
≥ 3600), and Φ

3
= (𝑙
5
∧ 100 ≤

𝜃 ≤ 1000) ∨ (𝑙
6
∧ 100 ≤ 𝜃 ≤ 1000), which are, respectively,

the component invariants of Rod1,Rod2, and Controller.
Since this system has an infinite number of reachable states,
with the application of abstraction function 𝛼, we transform
the original components (infinite) to the computed abstract
components (finite) in Figure 5.The computed abstract states
are {𝜙

11
, 𝜙
12
, 𝜙
21
, 𝜙
22
, 𝜙
31
, 𝜙
32
, 𝜙
41
, 𝜙
42
, 𝜙
51
, 𝜙
52
, 𝜙
61
, 𝜙
62
}.

The interaction invariant of the component system is
generated from the concept of the trap. The sets of traps
for the abstract system are 𝐿

1
= {𝜙
21
, 𝜙
41
, 𝜙
51
, 𝜙
52
}, 𝐿
2
=

{𝜙
11
, 𝜙
12
, 𝜙
21
, 𝜙
31
, 𝜙
32
, 𝜙
41
}, 𝐿
3
= {𝜙
32
, 𝜙
41
, 𝜙
42
, 𝜙
51
}, 𝐿
4
=

{𝜙
11
, 𝜙
12
, 𝜙
31
, 𝜙
32
, 𝜙
61
, 𝜙
62
}, and 𝐿

5
= {𝜙
12
, 𝜙
21
, 𝜙
22
, 𝜙
51
}. After

the computation of traps, we generate interaction invariants
Ψ
𝑖
= ⋁
𝜙∈𝐿 𝑖

𝛼
−1
(𝜙) (𝑖 = 1, 5) and then get Ψ := ⋀

5

𝑖=1
Ψ
𝑖
.

To verify the deadlock-freedom of the temperature con-
trol system, we define a predicate 𝐷𝐼𝑆 which characterizes
the set of system states from which all interactions in 𝛾 are
disabled. In this example, DIS = (¬(𝑙

5
∧ 𝜃 < 1000))⋀(¬(𝑙

6
∧

𝜃 = 100) ∨¬𝑙
2
)⋀(¬(𝑙

6
∧𝜃 > 100))⋀(¬(𝑙

5
∧𝜃 = 1000) ∨¬(𝑙

3
∧

𝑡
2
≥ 3600))⋀(¬(𝑙

5
∧ 𝜃 = 1000) ∨ ¬(𝑙

1
∧ 𝑡
1
≥ 3600))⋀(¬(

6
∧

𝜃 = 100) ∨ ¬𝑙
4
). If the predicate ¬DIS is an invariant of

the temperature control system, then it is deadlock-free. To

check that ¬DIS is an invariant, we need a stronger invariant
Φ such that Φ ⇒ ¬DIS (equivalently, Φ ∧ DIS = false).
Based on the previous compositional verification rule, the
computed invariant isΦ = (Φ

1
∧ Φ
2
∧ Φ
3
) ∧ Ψ. To verify the

deadlock-freedom of the system, we computed the predicate
Φ ∧ Init ∧ DIS, which is reduced to

(1) Φ
𝑐1
= (𝑙
1
∧ 1 ≤ 𝑡

1
< 3600) ∧ (𝑙

3
∧ 1 ≤ 𝑡

2
< 3600) ∧

(𝑙
5
∧ 𝜃 = 1000);

(2) Φ
𝑐2
= (𝑙
1
∧1 ≤ 𝑡

1
< 3600)∧ (𝑙

4
∧𝑡
2
≥ 3600)∧ (𝑙

5
∧𝜃 =

1000);

(3) Φ
𝑐3
= (𝑙
2
∧𝑡
1
≥ 3600)∧ (𝑙

3
∧1 ≤ 𝑡

2
< 3600)∧ (𝑙

5
∧𝜃 =

1000).

As the invariantΦ = (Φ
1
∧Φ
2
∧Φ
3
)∧Ψ is the overapprox-

imate of the reachable states, some spurious counterexamples
may be included.We can strengthen invariants and refine the
abstract system by our proposed refinement approaches. At
first, we analyze the generated counterexamplesΦ

𝑐1
,Φ
𝑐2
, and

Φ
𝑐3
and check whether the counterexamples are spurious or

not by our counterexample-guided invariant strengthening.
The abstract states Φ

2
= 𝜙
12
∧ 𝜙
42
∧ 𝜙
52

and Φ
3
= 𝜙
21
∧

𝜙
32
∧ 𝜙
52
, which include Φ

𝑐2
and Φ

𝑐3
, are unreachable from

the initial abstract states. Since Φ
2
and Φ

3
are unreachable

from the initial abstract states, we can conclude that Φ
𝑐2
and

Φ
𝑐3
are spurious counterexamples. However, we cannotmake

decisions whether Φ
𝑐1

is reachable from the initial states,
althoughΦ

1
is reachable from the initial abstract states.

After the application of invariant strengthening on the
abstract system, we eliminate Φ

𝑐2
and Φ

𝑐3
from counterex-

amples and strengthen invariants by the generated infeasible
states. Now, we refine the abstract system and check whether
Φ
𝑐1

is genuine counterexample or not by state partition
technique. After the application of state partition technique
on the abstract system, we get the refined abstract system
presented in Figure 6. We split the state 𝜙

12
= 𝑙
1
∧ 𝑡
1
≥ 1

into 𝜙
121

= 𝑙
1
∧ 1 ≤ 𝑡

1
< 3600 and 𝜙

122
= 𝑙
1
∧ 𝑡
1
≥ 3600;

state 𝜙
32
= 𝑙
3
∧ 𝑡
2
≥ 1 into 𝜙

321
= 𝑙
3
∧ 1 ≤ 𝑡

2
< 3600 and

𝜙
322

= 𝑙
3
∧ 𝑡
2
≥ 3600; state 𝜙

52
= 𝑙
5
∧ 101 ≤ 𝜃 ≤ 1000

into 𝜙
521

= 𝑙
5
∧ 101 ≤ 𝜃 < 1000 and 𝜙

522
= 𝑙
5
∧ 𝜃 = 1000.

By the state partition technique, finally we find that Φ
𝑐1
is a

counterexample of the system.
The example is implemented as BIP models and has been

translated into timed automata using the tool BIP2UPPAAL
[19]. To illustrate effectiveness of our approach, we verify
models against property EFΦ

𝑐1
, EFΦ

𝑐2
, and EFΦ

𝑐3
, which

means “there exists a run that eventually reaches deadlock
states Φ

𝑐𝑖
.” As a comparison, we first check both original

system and abstract system. The checking results are shown
in Table 2. As EFΦ

𝑐2
and EFΦ

𝑐3
are not satisfied by the

abstract model, we conclude that Φ
𝑐2

and Φ
𝑐3

are spuri-
ous counterexamples immediately. Then we make partition
refinement withΦ

𝑐2
. During state partition refinement, states

𝑃12, 𝑃52, and 𝑃32 (refer to 𝜙
12
, 𝜙
52
, and 𝜙

32
, resp.) have

been partitioned. We verified refined abstract models against
property. As EFΦ

𝑐1
is ultimately satisfied and we cannot use

Φ
𝑐1

to partition models further, we conclude that Φ
𝑐1

is a
genuine counterexample.
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Figure 3: The abstraction for the TGC.
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Figure 4: The component-based model for temperature control system.
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Figure 6: The refined abstract model.

Table 2: Simple table.

Original Abstract Refined
Property 1 EFΦ

𝑐1

Result True True True
Time (s) 0.046 0.001 0.001
Memory (KB) 8,056 7,084 7,084
Property 2 EFΦ

𝑐2

Result False False False
Time (s) 0.044 0.001 0.001
Memory (KB) 8,060 7,088 7,072
Property 3 EFΦ

𝑐3

Result False False False
Time (s) 0.045 0.001 0.001
Memory (KB) 8,064 7,084 7,072

From the above analysis, we have shown the effectiveness
of our proposed verification framework. Using our proposed
refinement techniques, we reconsidered the counterexamples
of the system. We finally identify which are spurious coun-
terexamples and refine the abstract systems.

7. Conclusions

We have proposed a unified framework with iterative refine-
ments for compositional verification of component-based
systems. This framework extends invariant-based compo-
sitional verification rule with the counterexample-guided
invariant strength and state partition techniques. The former
removes the spurious counterexample and uses the fixed
point generated backward from the spurious to strengthen
the system invariant. The latter partitions the abstract states
according to the rest counterexamples to refine the abstract
system. Both contribute to the unified verification framework
which is proved to be sound and complete.

Compared with the invariant-based compositional verifi-
cation which is incomplete, our verification framework with
the iterative refinements can get more precise results with the
balance of the verification complexity.
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