
Research Article
Counterexample-Preserving Reduction for
Symbolic Model Checking

Wanwei Liu, Rui Wang, Xianjin Fu, Ji Wang, Wei Dong, and Xiaoguang Mao

School of Computer Science, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Wanwei Liu; wwliu@nudt.edu.cn

Received 12 February 2014; Accepted 14 April 2014; Published 14 May 2014

Academic Editor: Xiaoyu Song

Copyright © 2014 Wanwei Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The cost of LTL model checking is highly sensitive to the length of the formula under verification. We observe that, under some
specific conditions, the input LTL formula can be reduced to an easier-to-handle one before model checking. In such reduction,
these two formulae need not to be logically equivalent, but they share the same counterexample set w.r.t the model. In the case
that the model is symbolically represented, the condition enabling such reduction can be detected with a lightweight effort (e.g.,
with SAT-solving). In this paper, we tentatively name such technique “counterexample-preserving reduction” (CePRe, for short),
and the proposed technique is evaluated by conducting comparative experiments of BDD-based model checking, bounded model
checking, and property directed reachability-(IC3) based model checking.

1. Introduction

LTL [1] is one of the most frequently used specification
languages inmodel checking (cf. [2]). It designates properties
over a linear structure, which can be viewed as an execution of
the program.The task of LTL model checking is to search the
state space (explicitly or implicitly), with the goal of detecting
the existence of feasible traces violating the specification. If
such traces exist, the model checker will report one of them
as a “counterexample”; otherwise, themodel checker will give
an affirmative report.

It can be shown that the complexity of LTL model
checking for 𝑀 ⊨ 𝜑 is in O(|𝑀| × 2

|𝜑|
); meanwhile, the

nesting depth of temporal operatorsmight be themajor factor
affecting the cost in compiling LTL formulae. Hence, it is
reasonable to simplify the specification before conducting
model checking. For example, in [3], Somenzi and Bloem
provided a set of rewriting schemas for simplifying LTL
specifications, and these rewriting schemas preserve logical
equivalence.

One may argue that “a majority of LTL formulae used
in real applications are simple, succinct rather than compli-
cated’.’ Nevertheless, we might need to observe the following
facts.

(i) Some LTL formula, for example F(𝑝U𝑞), is usually
considered to be a “simple” one. Nevertheless, it can
be further simplified to F𝑞, and this fact tends to be
ignored (on one hand, 𝑝U𝑞 implies F𝑞, and hence
F(𝑝U𝑞) implies FF𝑞 (i.e., F𝑞); on the other hand, 𝑞
implies 𝑝U𝑞, and hence F𝑞 implies F(𝑝U𝑞)).

(ii) Indeed, people do use complicated specifications in
the real industrial field, as well as in some standard
benchmark (cf. [4]).

(iii) Last but not least, not all specifications are desig-
nated manually. Actually, some formulae are gener-
ated by specification-generaton-tools (e.g., ProSpec).
Indeed, one may find that lots of these machine-
generated specifications can be simplified.

Symbolic model checking [5] is one of the most sig-
nificant breakthroughs in model checking, and two major
fashions of symbolic model checking are widely used: one
is the BDD-based manner [6] and the other is SAT-based
manner, such as BMC [7] or PDR [8–11] algorithms.

Instead of using an explicit representation, the sym-
bolic approach represents state space with a series of
Boolean formulae. This enables implicit manipulation of
the verification process and it usually leads to an efficient

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 702165, 13 pages
http://dx.doi.org/10.1155/2014/702165

http://dx.doi.org/10.1155/2014/702165

2 Journal of Applied Mathematics

implementation [12]. Meanwhile, the symbolic encoding of
transitions and invariants of the model provides heuristic
information to simplify the specification. For example,

(i) the formulae 𝑝U𝑞 and (𝑟U𝑝)U𝑞 can be, respectively,
reduced as 𝑞 and (𝑟U𝑝) ∨ 𝑞, if we know that 𝑝 → 𝑞

holds everywhere in the model;

(ii) each occurrence of G𝜃 in the specification can be
replaced with ⊤ (i.e., logically true), if we can induc-
tively infer that the Boolean formula 𝜃 holds at each
reachable state in the model.

Actually, we can make sure of these conditions with the
following efforts.

(i) To ensure that “𝑝 → 𝑞 holds everywhere in the
model’,’ one possible way is to make sure that 𝑝 → 𝑞

is an invariant in themodel—that is, just to examine if
𝜌 ∧ ¬(𝑝 → 𝑞) is unsatisfiable (we in the latter denote
it as 𝜌 ⊢ 𝑝 → 𝑞), where 𝜌 is the Boolean encoding of
the model’s transition relation.

(ii) Likely, to justify that 𝜃 holds at each reachable state
(note that a “dead-end” has no infinite path starting
from it, and hence we may safely omit dead-ends in
the model when doing this), it suffices to ensure that
𝜃0 ⊢ 𝜃 and 𝜌 ⊢ 𝜃 → 𝜃

󸀠, where 𝜃0 is the initial
condition of the model.

We could do this because the component 𝜌 should be
satisfied at each transition step. Hence, it encloses both “local
invariants” and “transitional invariants”. For example, if 𝜌 =

𝑝 ∧ (𝑞 → 𝑞
󸀠
), then we may consider 𝑝 as a local invariant,

whereas 𝑞 → 𝑞
󸀠 is a transitional invariant.

Hence, this provides an opportunity to replace the
specification with a simpler one, accompanied with some
lightweight extra task of condition detection. Even if such
detection fails, the overhead is usually negligible. More
importantly, such reductions can be performed before start-
ing model checking. At the same time, such kind of sim-
plification is not always feasible to conduct manually; the
reason is that the scale of boolean facilities is too large to be
effectively handled by humans. Therefore, it is reasonable of
leveraging the SAT-solvers to accomplish this task.

In this paper, we systematically investigate the above
idea and tentatively name this technique counter example-
preserving reduction (CePRe, for short). To justify it, we have
extended NuSMV and implemented CePRe as an upfront
option for LTL model checking. Subsequently, we conduct
experiments over both industrial benchmarks and randomly
generated cases. Experimental results show that CePRe can
improve the efficiency significantly.

This paper is organized as follows. Section 2 revisits
some basic notions. Section 3 introduces the details of the
CePRe technique and Section 4 gives a formal treatment of
performance analysis. In Section 5, the experimental results
over industrial benchmarks and over random generated cases
are given. We summarize the whole paper with Section 6.

2. Preliminaries

We presuppose a countable set P of atomic propositions,
ranging over 𝑝, 𝑞, and so forth, and for each proposition
𝑝 ∈ P, we create a primed version 𝑝󸀠 (not belonging to P)
for it. For each set V ⊆ P, we define V󸀠 ≜ {𝑝

󸀠
| 𝑝 ∈ V}.

We use B(V) to denote the set of Boolean formulae overV.
Similarly, we denote byB(V∪V󸀠) the set of Boolean formulae
built up fromV∪V󸀠.The scope of the prime operator can be
naturally lifted to Boolean formulae over B(V), by defining

⊤
󸀠
= ⊤, ⊥

󸀠
=⊥, (¬𝜃)

󸀠
≜ ¬𝜃
󸀠
,

(𝜃1 󳨀→ 𝜃2)
󸀠
≜ 𝜃
󸀠

1 󳨀→ 𝜃
󸀠

2 .

(1)

An assignment is a subset V of P. Intuitively, it assigns
1 (or true) to the propositions belonging toV and assigns 0
(or false) to the other propositions. For eachV ⊆ U ⊆ P and
𝜃 ∈ B(U), we denote byV ⊩ 𝜃 if 𝜃 is evaluated to 1 under
the assignmentV.

A united assignment is a pair (V1,V2), where both V1
and V2 are subsets of P. It assigns 1 to the propositions
belonging toV1∪V

󸀠
2 and assigns 0 to the other propositions.

Suppose thatV1,V2 ⊆ U ⊆ P and 𝜃 ∈ B(U ∪U󸀠); we also
write (V1,V2) ⊩ 𝜃 if 𝜃 is evaluated to 1 under the united
assignment (V1,V2).

LTL formulae can be inductively defined as follows.
(i) ⊥ and ⊤ are LTL formulae.
(ii) Each proposition 𝑝 ∈ P is an LTL formula.
(iii) If both 𝜑1 and 𝜑2 are LTL formulae, so does 𝜑1 → 𝜑2.
(iv) If 𝜑 is an LTL formula, then X𝜑 and Y𝜑 are LTL

formulae.
(v) If 𝜑1 and 𝜑2 are LTL formulae, then both 𝜑1U𝜑2 and

𝜑1S𝜑2 are LTL formulae.
Semantics of an LTL formula is defined w.r.t. a linear

structure 𝜋 ∈ (2
P
)
𝜔 (i.e., 𝜋 is an infinite word over the

alphabet 2P) and a position 𝑖 ≺ 𝜔. Inductively:
(i) 𝜋, 𝑖 ⊨ ⊤ and 𝜋, 𝑖 ⊭⊥;
(ii) 𝜋, 𝑖 ⊨ 𝑝 if and only if 𝜋(𝑖) ⊩ 𝑝 (where 𝜋(𝑖) is the 𝑖th

letter of 𝜋, which can be viewed as an assignment);
(iii) 𝜋, 𝑖 ⊨ 𝜑1 → 𝜑2 if and only if either 𝜋, 𝑖 ⊭ 𝜑1 or 𝜋, 𝑖 ⊨

𝜑2;
(iv) 𝜋, 𝑖 ⊨ X𝜑 if and only if 𝜋, 𝑖 + 1 ⊨ 𝜑;
(v) 𝜋, 𝑖 ⊨ Y𝜑 if and only if 𝑖 > 0 and 𝜋, 𝑖 − 1 ⊨ 𝜑;
(vi) 𝜋, 𝑖 ⊨ 𝜑1U𝜑2 if and only if there is some 𝑗 ≥ 𝑖, s.t.

𝜋, 𝑗 ⊨ 𝜑2, and 𝜋, 𝑘 ⊨ 𝜑1 for each 𝑖 ≤ 𝑘 < 𝑗;
(vii) 𝜋, 𝑖 ⊨ 𝜑1S𝜑2 if and only if there is some 𝑗 ≤ 𝑖, s.t.

𝜋, 𝑗 ⊨ 𝜑2 and 𝜋, 𝑘 ⊨ 𝜑1 for each 𝑖 ≥ 𝑘 > 𝑗.
For the sake of convenience, we may directly write 𝜋, 0 ⊨ 𝜑

as 𝜋 ⊨ 𝜑.
As usual, we employ some derived Boolean connectives

such as
¬𝜑 ≜ 𝜑 󳨀→⊥, 𝜑 ∨ 𝜓 ≜ ¬𝜑 󳨀→ 𝜓 ,

𝜑 ∧ 𝜓 ≜ ¬ (¬𝜑 ∨ ¬𝜓)

(2)

Journal of Applied Mathematics 3

and derived temporal operators such as

F𝜑 ≜ ⊤U𝜑, Z𝜑 ≜ ¬Y¬𝜑, O𝜑 ≜ ⊤S𝜑,

G𝜑 ≜ ¬F¬𝜑, H𝜑 ≜ ¬O¬𝜑,

𝜑R𝜓 ≜ ¬ (¬𝜑U¬𝜓) , 𝜑T𝜓 ≜ ¬ (¬𝜑S¬𝜓) .

(3)

Temporal operators like X, U, F, G, and R are called
future operators, whereas Y, Z, S, O, H, and T are called past
operators. An LTL formula is said to be pure future (resp., pure
past) if it involves no past (resp., future) operators.

Theorem 1 (see [13]). Each LTL formula has an equivalent
pure future expression.

Theorem 1 tells the fact that past operators do not add any
expressive power to LTL formulae. Nevertheless, with these,
we can give a much more succinct description in defining
specifications.

Given an LTL formula 𝜑, we denote by sub(𝜑) the set
constituted with subformulae of 𝜑. Particularly, we, respec-
tively, denote by subU(𝜑) and subS(𝜑) the set consisting of “U-
subformulae” and “S-subfomulae” of 𝜑, where an U-formula
(resp., S-formula) is a formula rooted at U (resp., S). (Note
that F𝜑 is also a U-formula whereas G𝜑 is not.)

Amodel is a tuple𝑀 = ⟨V, 𝜌, 𝜃0,F⟩, where

(i) V ⊆ P is a finite set of atomic propositions,
(ii) 𝜌 ∈ B(V ∪V󸀠) is the transition relation,
(iii) 𝜃0 ∈ B(V) is the initial condition,
(iv) F ⊆ B(V) is a set of fairness constraints.

A derived linear structure of 𝑀 is an infinite word 𝜋 ∈

(2
V
)
𝜔, such that

(1) 𝜋(0) ⊩ 𝜃0;
(2) (𝜋(𝑖), 𝜋(𝑖 + 1)) ⊩ 𝜌 for each 𝑖 ≺ 𝜔;
(3) for each 𝜑 ∈ F, there are infinitely many 𝑖’s having

𝜋(𝑖) ⊩ 𝜑.

We denote by L(𝑀) the set of derived linear structures of
𝑀 and call it the language of𝑀.

For amodel𝑀 and anLTL formula𝜑, we denote as𝑀 ⊨ 𝜑

if 𝜋 ⊨ 𝜑 for each 𝜋 ∈ L(𝑀). Meanwhile, we define

CE (𝜑,𝑀) ≜ {𝜋 ∈ L (𝑀) | 𝜋 ⊭ 𝜑} (4)

and call it the counterexample set of 𝜑 w.r.t.𝑀.

3. Counterexample-Preserving Reduction

We describe the CePRe technique in this section, but first
of all, let us fix the components of the model and just let
𝑀 be ⟨V, 𝜌, 𝜃0,F⟩ in the rest of this section. For 𝑀, we
are particularly concerned about formulae having the same
counterexample set—we say that 𝜑 and 𝜓 are interreduceable
w.r.t. 𝑀 if and only if CE(𝜑,𝑀) = CE(𝜓,𝑀), denoted as
𝜑≈𝑀𝜓. Hence, 𝜑≈𝑀𝜓 implies that𝑀 ⊨ 𝜑 ⇔ 𝑀 ⊨ 𝜓.

Table 1: Reduction rules about model components.

𝜃0 ⊢ 𝜃 ⊳ 𝜃 ≈ ⊤ (Init) 𝜌 ⊢ 𝜃 ⊳ G𝜃 ≈ ⊤ (Trans)
𝜃 ∈ F ⊳ GF𝜃 ≈ ⊤ (Fair) 𝜃0 ⊢ 𝜃; 𝜌 ⊢ 𝜃 → 𝜃

󸀠
⊳ G𝜃 ≈ ⊤ (Ind)

Table 2: Reduction rules of (Conj) and (Disj).

(P𝑤𝜑 ∧ P𝑠𝜑) ≈ P𝑠𝜑 (Conj) (P𝑤𝜑 ∨ P𝑠𝜑) ≈ P𝑤𝜑 (Disj)

Table 3: Reduction rules for formulae involving nested pure future
operators.

F(𝜑U𝜓) ≈ F𝜓 (FU) 𝜑U(F𝜓) ≈ F𝜓 (UF)
FF𝜑 ≈ F𝜑 (FF) GFG𝜑 ≈ FG𝜑 (GFG)

The central part of CePRe is a series of reduction rules
being of the form

Cond ⊳ 𝜑≈𝑀𝜓 (NAME) , (5)

where “Cond” is called the additional condition.
Though the relation ≈𝑀 is actually symmetric, we always

write the reduced formula on the righthand of the “≈” sign in
a reduction rule. Since the model𝑀 is fixed, in this section,
we omit it from the subscript. In addition, if the additional
condition trivially holds, we will discard this part and directly
write the rule as 𝜑 ≈ 𝜓, and in this case we say that this rule is
“model-independent”; otherwise, we say that the underlying
reduction rule is “model-dependent.”

3.1.TheBasic Reduction Rules. In this section, we define some
basic CePRe rules. First of all, we have some elementary
reduction rules relating to model components, as depicted in
Table 1. For the rules (Init), (Ind), and (Trans), the notation
“⊢” occurring in the condition part stands for the “inferring”
relation in propositional logic (𝜌 ⊢ 𝜃 if and only if 𝜌 ∧ ¬𝜃 is
unsatisfiable), and we here require that 𝜃, 𝜃1, 𝜃2 ∈ B(V).

Subsequently, let us define a partial order “⊑” over unary
temporal operators (and their combinations) as follows:

F ⊑ GF ⊑ FG ⊑ G

F ⊑ X𝑖 ⊑ G (𝑖 ≺ 𝜔)

O ⊑ HO ⊑ OH ⊑ H,

(6)

where X0𝜑 ≜ 𝜑 and X𝑖+1𝜑 ≜ X(X𝑖𝜑).
Assume that P𝑤,P𝑠 ∈ {F, FG,GF,G,O,HO,OH,H} ∪

{X𝑖 | 𝑖 ≺ 𝜔} and P𝑤 ⊑ P𝑠; then we have two model-
indenpendent rules, as depicted in Table 2. Though these
rules seem to be trivial, they are useful in doing combina-
tional reductions (see the example given in Section 3.3).

Table 3 provides some reduction rules that can be used to
simplify nested temporal operators.

Since we always stand at the starting point when doing
model checking (i.e., the goal is to check if 𝜋, 0 ⊨ 𝜑 for each
𝜋 ∈ L(𝑀)), we can sometimes “erase” the outermost past
operators, as depicted in Table 4.

Table 5 introduces a series of rules handling formulae
involving adjacent past and future temporal operators.

4 Journal of Applied Mathematics

Table 4: Reduction rules for formulae involving (outermost) past
operators.

Y𝜑 ≈⊥ (Y) O𝜑 ≈ 𝜑 (O) 𝜑S𝜓 ≈ 𝜑 (S)

Table 5: Reduction rules for formulae involving adjacent past and
future operators.

XY𝜑 ≈ 𝜑 (XY) FH𝜑 ≈ H𝜑 (FH)
FO𝜑 ≈ F𝜑 ∨O𝜑 (FO) F(𝜑S𝜓) ≈ F𝜓 ∨ 𝜑S𝜓 (FS)

We let 𝜃1, 𝜃2, . . . range over B(V) and let 𝜑1, 𝜑2, . . . be
arbitrary LTL formulae, and then we have some model-
dependent rules. The first group of such rules is listed in
Table 6. Table 7 provides another set of model-dependent
reduction rules, and these rules are mainly concerned with
LTL formulae involving adjacent U-operators. Lastly, Table 8
provides some reduction rules that can be used to simplify
formulae with mixed usage of U and R.

3.2. Principles for Rule Generation. Actually, we may acquire
more CePRe rules by applying some principles to the existing
rules. In this section, we introduce four major principles in
our framework.

3.2.1. The Inversion Principle. We say that the temporal
opertors “U and S,” “R and T,” “G and H,” and “F and O”
are pairwise inverse operators (The inverse operator of Xmay
be Z or Y, which is judged from the context. Fortunately, in
this paper, we need not consider this case). Then, for CePRe
rules list in Table 3 and Table 6–Table 8, we may apply the
following principle:

𝜌 ⊢ 𝜃 ⊳ 𝜑 ≈ 𝜓

𝜌 ⊢ 𝜃 ⊳ inv (𝜑) ≈ inv (𝜓)
, (7)

namely, Inversion Principle. In detail:

(i) if 𝜃 ∈ B(V) then 𝜃 = 𝜃; if 𝜃 ∈ B(V ∪ V󸀠), then
𝜃 is obtained from 𝜃 by switching the primed and
unprimed propositions;

(ii) inv(𝜑) and inv(𝜓) are obtained from 𝜑 and 𝜓 by
swithing the temporal operators with their inverse
operators, respectively.

For example, one can apply this principle to (U) and (R),
and then the following two rules

𝜌 ⊢ 𝜃1 ∨ 𝜃2 ⊳ 𝜃1S𝜃2 ≈ O𝜃2 (S)

𝜌 ⊢ 𝜃
󸀠

2 󳨀→ 𝜃
󸀠

1 ∨ 𝜃2 ⊳ 𝜃1T𝜃2 ≈ 𝜃2 (T)
(8)

are immediately obtained.

3.2.2. The Duality Principle. We say that “⊤ and ⊥,” “∧ and
∨,” “F andG,” “O andH,” “Y and Z,” “X andX itself,” “U and
R,” and “T and S” are pairwise the dual operators. Then, the
duality principle could be described as follows:

Cond ⊳ 𝜑 ≈ 𝜓
Cond ⊳ dual (𝜑) ≈ dual (𝜓)

. (9)

Table 6: Reduction rules of (U) and (R).

𝜌 ⊢ 𝜃1 ∨ 𝜃2 ⊳ 𝜃1U𝜃2 ≈ F𝜃2 (U)
𝜌 ⊢ 𝜃2 → 𝜃1 ∨ 𝜃

󸀠

2
⊳ 𝜃1R𝜃2 ≈ 𝜃2 (R)

Table 7: Reduction rules for formulae involving adjacent U opera-
tors.

𝜌 ⊢ 𝜃1 → 𝜃2 ⊳ 𝜃1U𝜃2 ≈ 𝜃2 (U[1 → 2])
𝜌 ⊢ 𝜃1 → 𝜃3 ⊳ (𝜃1U𝜑2)U𝜃3 ≈ 𝜑2U𝜃3 (UU

[1 → 3])
𝜌 ⊢ 𝜃2 → 𝜃3 ⊳ (𝜑1U𝜃2)U𝜃3 ≈ 𝜃3 ∨ (𝜑1U𝜃2) (UU

[2 → 3])
𝜌 ⊢ 𝜃3 → 𝜃2 ⊳ (𝜑1U𝜃2)U𝜃3 ≈ (𝜑1 ∨ 𝜃2)U𝜃3 (UU

[3 → 2])
𝜌 ⊢ 𝜃2 → 𝜃

󸀠

3
⊳ (𝜑1U𝜃2)U𝜃3 ≈ (𝜑1 ∨ 𝜃2)U𝜃3 (UU

[2 → 3
󸀠
])

𝜌 ⊢ ¬𝜃2 → 𝜃3 ⊳ (𝜑1U𝜃2)U𝜃3 ≈ F𝜃3 (UU
[¬2 → 3])

𝜌 ⊢ 𝜃1 → 𝜃2 ⊳ 𝜃1U(𝜃2U𝜑3) ≈ 𝜃2U𝜑3 (UU[1 → 2])
𝜌 ⊢ 𝜃1 → 𝜃3 ⊳ 𝜃1U(𝜑2U𝜃3) ≈ 𝜑2U𝜃3 (UU[1 → 3])
𝜌 ⊢ 𝜃2 → 𝜃1 ⊳ 𝜃1U(𝜃2U𝜑3) ≈ 𝜃1U𝜑3 (UU[2 → 1])

Table 8: Reduction rules for formulae involving adjacent U and R
operators.

𝜌 ⊢ 𝜃1 → 𝜃3 ⊳ (𝜃1R𝜑2)U𝜃3 ≈ ((𝜃1R𝜑2) ∨ 𝜃3) ∧ F𝜃3 (UR
[1 → 3])

𝜌 ⊢ ¬𝜃1 → 𝜃3 ⊳ (𝜃1R𝜑2)U𝜃3 ≈ 𝜑2U𝜃3 (UR
[¬1 → 3])

𝜌 ⊢ 𝜃1 → 𝜃3 ⊳ 𝜃1U(𝜑2R𝜃3) ≈ 𝜑2R𝜃3 (UR [1 → 3])

We require that the condition “Cond” should be either trivial
(in this case, the rule is a model-independent one) or of the
form 𝜌 ⊢ 𝜃1 → 𝜃2, and in the latter case we have Cond =

𝜌 ⊢ 𝜃2 → 𝜃1. The formulae dual(𝜑) and dual(𝜓) are obtained
from 𝜑 and 𝜓 by switching the operators with their dual.

For example, apply the duality principle to the rules (FU),
(UF), (FF), and (GFG), one may get the following new rules:

G (𝜑R𝜓) ≈ G𝜓 (GR) , 𝜑R (G𝜓) ≈ G𝜓 (RG) ,
GG𝜑 ≈ G𝜑 (GG) , FGF𝜑 ≈ GF𝜑 (FGF) .

(10)

Note that when applying the duality principle to model-
dependent rules, besides switching the operators, we also
need to exchange the antecedent and subsequent on the
righthand of ⊢ in the condition part, in the case that the
condition is of the form 𝜌 ⊢ 𝜃1 → 𝜃2. As an example, we
may obtain the reduction rule

𝜌 ⊢ 𝜃3 󳨀→ 𝜃2 ⊳ (𝜑1R𝜃2)R𝜃3 ≈ 𝜃3 ∧ (𝜑1R𝜃2)

(RR [3 󳨀→ 2]) ,

(11)

by applying the duality principle to (UU
[2 → 3]).

3.2.3. The Composition Principle. The composition principle
can be formally described as follows:

Cond1 ⊳ 𝜑1 ≈ 𝜓1
Cond2 ⊳ 𝜑2 ≈ 𝜓2

Cond1 & Cond2 ⊳ 𝜑1 ≈ 𝜓1
𝜑
2

𝜓
2

; (12)

that is, if 𝜑𝑖 and 𝜓𝑖 are interreduceable under the conditin
Cond𝑖 (𝑖 = 1, 2), then 𝜑1 and 𝜓1

𝜑
2

𝜓
2
are also interreduceable.

In using this principle, we have the following constraints.

Journal of Applied Mathematics 5

Input:The original specification 𝜑.
Output:The reduced specification.

(1) let Γ := 0; /∗ Γmemorizes the sub-formulae with infeasible condition ∗/
(2) let Δ := {𝜓 ∈ (sub(𝜑)\Γ) such that 𝜓matches some reduction rule(s)};
(3) foreach 𝜓1, 𝜓2 ∈ Δ s.t. 𝜓1 ̸= 𝜓2 do
(4) if 𝜓1 ∈ sub(𝜓2) then
(5) Δ := Δ \ {𝜓1}; /∗ that is, we only proceed “max” subformulae ∗/
(6) end
(7) end
(8) if Δ = 0 then
(9) return 𝜑;
(10) end
(11) foreach 𝜓 ∈ Δ do
(12) let Θ := the set of rules that can be applied to 𝜓;
(13) /∗ note that we have |Θ| ≤ 5 for each 𝜓 ∗/
(14) while Θ ̸= 0 do
(15) choose𝑅 := (Cond ⊳ 𝜓 ≈ 𝜂) in Θ;
(16) if Cond is stated then
(17) 𝜑 := 𝜑

𝜓

𝜂
; /∗ 𝜑

𝜓

𝜂
is obtained from 𝜑 by replacing 𝜓 with 𝜂 ∗/

(18) break;
(19) end
(20) Θ := Θ \ {𝑅};
(21) end
(22) Δ := Δ \ {𝜓};
(23) if Θ = 0 then
(24) Γ := Γ ∪ {𝜓}; /∗ 𝜓 would be excluded in the next iteration ∗/
(25) end
(26) end
(27) goto 2;

Algorithm 1: The “max-match” rule-selection strategy.

(1) Cond2 must be 𝜃0-free; that is, it must be irrelevant to
the initial condition.

(2) If the second rule is one of these listed in Table 4
(or the inversion/duality version), then we require
that the (designated) occurrences of 𝜑2 in 𝜓1 must be
temporally outermost; that is,𝜑2 does not appear in the
scope of any temporal operators.

(3) Since 𝜂 ≈ 𝜂 trivially holds, we have the following
special case of the composition principle:

Cond ⊳ 𝜑 ≈ 𝜓
Cond ⊳ 𝜂 ≈ 𝜂𝜑𝜓

, (13)

and call it the local application of (the above) CePRe rule.
To explaint the reason why we need to impose the second

constraint, just consider the following fact: we have Y𝜑 ≈⊥

according to (Y); yet this does not imply that FY𝜑 ≈ F ⊥

holds.

3.2.4. The Decomposition Principle. The last principle, which
could be corporately used in modular model checking [14], is
described as follows:

Cond1 ⊳ 𝜑1≈𝑀
1

𝜓1

Cond2 ⊳ 𝜑2≈𝑀
2

𝜓2

Cond1 & Cond2 ⊳ 𝜑1≈𝑀
1
‖𝑀
2

𝜓1
𝜑
2

𝜓
2

, (14)

where all constraints imposed to the composition principle are
still required.𝑀1 ‖ 𝑀2 is the synchronized composition of𝑀1
and𝑀2; that is,𝑀1 ‖ 𝑀2 = ⟨V1∪V2, 𝜌1∧𝜌2, 𝜃0,1∧𝜃0,2,F1∪
F2⟩ if𝑀𝑖 = ⟨V𝑖, 𝜌𝑖, 𝜃0,𝑖,F𝑖⟩.

3.3. Reduction Strategy. We show the usage of CePRe reduc-
tion rules by illustrating the reduction process of 𝑀 ⊨

(𝜃1U𝜃2)U𝜃3; see Algorithm 1.

(1) We may first try with the rule (UU
[1 → 3]) by

inquiring the SAT-solver if 𝜌 ⊢ 𝜃1 → 𝜃3 holds.
(2) If the SAT-solver returns “unsatisfiable”with the input

𝜌 ∧ 𝜃1 ∧ ¬𝜃3, then it implies that the additional con-
dition is stated, and we may replace the specification
with 𝜃2U𝜃3.

(3) Otherwise, we will try with another reduction rule,
such as (UU

[2 → 3]).

Compositional use of reduction rules may lead to a more
aggressive reduction. For example,

(1) for the task of model checking 𝑀 ⊨ FO𝑝, we may
firstly change the goal as𝑀 ⊨ F𝑝 ∨O𝑝, according to
the rule (FO);

(2) now, the subformula O𝑝 is a temporally outermost
one; hence we may make a local application of (O),
and then the goal becomes𝑀 ⊨ F𝑝 ∨ 𝑝;

6 Journal of Applied Mathematics

(3) finally, we may change the model checking problem
into𝑀 ⊨ F𝑝 via the rule (Disj).

In the real implementation, we perform a “max-match”
rule-selection strategy, as depicted in Algorithm 1. Note that
in this algorithm, only

(1) basic rules,
(2) rules obtained from the inversion principle or the

duality principle

could be directly used (maybe in a local manner). This
guarantees the finiteness for rule selection.

In line 15, a rule having simpler condition always has
the higher precedence to be chosen. Hence, a model-
independent rule always has a higher priority than a model-
dependent one.

Lastly, we can see that the reduction can be accomplished
within O(|𝜑|) iterations.

4. Performance Analysis of CePRe
We now try to answer the question “why we can gain a better
performance during verification if CePRe is conducted first.”
To give a rigorous explanation, we briefly revisit the imple-
mentation of some symbolic model checking algorithms, and
we are mainly concerned about the following techniques:

(1) the BDD-based model checking technique,
(2) the bounded model checking technique (BMC),

for both syntactic encoding and semantic encoding
approaches,

(3) the property directed reachability (alternatively, IC3)
algorithm.

4.1. Analysis on BDD-Based Model Checking. The core proce-
dure of BDD-based LTL symbolic model checking algorithm
is to construct a tableau for the (negated) property. In the
following, we refer the tableau of ¬𝜑 as 𝑇¬𝜑, and we would
give an analysis on its major components affecting the cost of
model checking.
State Space. The state space of 𝑇¬𝜑 consists of subsets of 𝑒𝑙(𝜑),
and the set 𝑒𝑙(𝜑) can be inductively computed as follows:

(i) 𝑒𝑙(⊤) = 𝑒𝑙(⊥) = 0;
(ii) 𝑒𝑙(𝑝) = {𝑝} if 𝑝 ∈ P;
(iii) 𝑒𝑙(𝜑1 → 𝜑2) = 𝑒𝑙(𝜑1) ∪ 𝑒𝑙(𝜑2);
(iv) 𝑒𝑙(X𝜓) = {X𝜓} ∪ 𝑒𝑙(𝜓), and 𝑒𝑙(Y𝜓) = {Y𝜓} ∪ 𝑒𝑙(𝜓);
(v) 𝑒𝑙(𝜑1U𝜑2) = 𝑒𝑙(𝜑1) ∪ 𝑒𝑙(𝜑2) ∪ {X(𝜑1U𝜑2)} and

𝑒𝑙(𝜑1S𝜑2) = 𝑒𝑙(𝜑1) ∪ 𝑒𝑙(𝜑2) ∪ {Y(𝜑1S𝜑2)}.

We can see from the definition that 𝑒𝑙(𝜑) = 𝑒𝑙(¬𝜑) holds.
With symbolic representation, each formula 𝜓 ∈ 𝑒𝑙(𝜑) cor-
responds to a proposition in building the tableau. Moreover,
if 𝜓 ∈ P, then no new proposition needs to be introduced
(since it has already been introduced in building the symbolic
representation of 𝑀); otherwise, a fresh proposition 𝑝𝜓

is required. Hence the total number of newly introduced

propositions equals |𝑒𝑙(𝜑) \ P|. From an induction over
formula’s structure, we have the following claim.

Proposition 2. |𝑒𝑙(𝜑) \ P| equals the number of temporal
operators in 𝜑.

Transitions. The transition relation of 𝑇¬𝜑 is a conjunction of
a set of constraints, and each constraint is either of the form
𝑝X𝜓 ↔ (𝜎(𝜓))

󸀠 or 𝑝󸀠Y𝜂 ↔ 𝜎(𝜂), where X𝜓,Y𝜂 ∈ 𝑒𝑙(𝜑), and
the function 𝜎 can be inductively defined as follows:

(i) 𝜎(⊥) =⊥ and 𝜎(⊤) = ⊤;
(ii) 𝜎(𝑝) = 𝑝 for each 𝑝 ∈ P;
(iii) 𝜎(𝜓1 → 𝜓2) = 𝜎(𝜓1) → 𝜎(𝜓2);
(iv) 𝜎(X𝜓1) = 𝑝X𝜓

1

and 𝜎(Y𝜓2) = 𝑝Y𝜓
2

;
(v) 𝜎(𝜓1U𝜓2) = 𝜎(𝜓2)∨𝜎(𝜓1)∧𝑝X(𝜓

1
U𝜓
2
) and𝜎(𝜓1S𝜓2) =

𝜎(𝜓2) ∨ 𝜎(𝜓1) ∧ 𝑝Y(𝜓
1
U𝜓
2
).

According to the definition of 𝑒𝑙, we can see that each 𝜓 ∈

sub(𝜑) rooted at a future (resp., past) temporal operator
exactly produces one formula X𝜂 (resp., Y𝜂) in 𝑒𝑙(𝜑), and
hence a newproposition𝑝X𝜂 (resp.,𝑝Y𝜂)would be introduced.
Subsequently, each such 𝑝X𝜂 (resp., 𝑝Y𝜂) adds exactly one
constraint to the transition relation. Hence, we have the
following claim.

Proposition 3. The number of constraints in the transition
relation of 𝑇¬𝜑 equals the number of temporal operators
occurring in 𝜑 (alternatively, |𝑒𝑙(𝜑) \P|).

Fairness Constraints. According to the tableau construction,
each𝜓 ∈ subU(¬𝜑)would impose a fairness constraint to𝑇¬𝜑.
Hence, the number of fairness constraints equals |subU(¬𝜑)|.

With a case-by-case checking, we can show the following
theorem.

Theorem 4. Let “Cond ⊳ 𝜑 ≈ 𝜓” be a reduction rule; then we
have |𝑒𝑙(𝜓) \P| ≤ |𝑒𝑙(𝜑) \P| and |subU(𝜓)| ≤ |subU(¬𝜑)|.

4.2. Analysis on Bounded Model Checking. In contrast, the
cost of BMC is quite sensitive to the encoding approach. In a
broad sense, we can categorize the encoding approaches into
two fashions.
Syntactic Encodings. Such kind of encodings are inductively
produced w.r.t. the formula’s structure. The very original
one is presented in [7], and this is improved in [15] by
observing some properties of that encoding. In [16, 17], a
linear incremental syntactic encoding is suggested, and see
[18] for the translation for ECTL∗.
Semantic Encodings. In [19], an alternative BMC technique
is provided: it mimics the tableau-based model checking
process, but it expresses the fair-path detection upon the
product model with Boolean formula. (In [20], a “fixpoint”-
based encoding is proposed, and it can also be subsumed to
semantic encodings.)

For the semantic encodings, the reason that we can
benefit fromCePRe is exactly the same as that for BDD-based

Journal of Applied Mathematics 7

approach. Because, the encoding is a conjunction of a 𝑘-step
unrolling of 𝑀 and a 𝑘-step unrolling of 𝑇¬𝜑 (an unrolling
is either a partial derived linear structure or one ending with
a lasso). The former is usually in a fixed pattern, and for the
latter, we need 𝑘×|𝑒𝑙(𝜑)\P| newpropositions, and the sizes of
Boolean formulae w.r.t the transition and fairness constraints
(note that the part w.r.t. fairness constraints can be linearized)
are, respectively, O(𝑘 × |𝑒𝑙(𝜑) \P|) and O(𝑘2 × |subU(¬𝜑)|).

For a syntactic BMC encoding, one needs to generate a
Boolean formula of the form 𝐸

𝑘
𝑀 ∧ 𝐸

𝑘
¬𝜑, where 𝐸

𝑘
𝑀 is the

unrolling of𝑀 with 𝑘 steps, and 𝐸𝑘¬𝜑 describes that such 𝑘-
step unrolling would cause a violation of 𝜑. In general, 𝐸𝑘𝑀 is
almost the same in all kinds of syntactic encodings, and the
key factor affecting the cost lies in 𝐸𝑘¬𝜑.

Given a subformula 𝜓 of 𝜑, if we use ||𝐸𝑘𝜓|| to denote the
maximum length of the Boolean formula describing that 𝜓
is initially satisfied upon a 𝑘-step unrolling, then it can be
inductively computed as follows:

(i) ||𝐸𝑘⊥|| = ||𝐸
𝑘
Τ|| = 0; (this is just for the case when ⊥

or ⊤ appears as a subformula in the specification and
hence can be optimized; otherwise, we have ||𝐸𝑘⊥|| =
||𝐸
𝑘
⊤|| = 1);

(ii) ||𝐸𝑘𝑝|| = 1 for each 𝑝 ∈ P;

(iii) ||𝐸𝑘𝜑
1
→𝜑
2

|| = ||𝐸
𝑘
𝜑
1

|| + ||𝐸
𝑘
𝜑
2

|| + 1;

(iv) ||𝐸𝑘X𝜓|| = ||𝐸
𝑘
Y𝜓|| = ||𝐸

𝑘
𝜓||;

(v) ||𝐸𝑘𝜑
1
U𝜑
2

|| = ||𝐸
𝑘
𝜑
1
S𝜑
2

|| = 𝐿(𝑘)×||𝐸
𝑘
𝜑
1

||+𝑘×||𝐸
𝑘
𝜑
2

||. (Note
that this case does not imply that further blowup
would be caused with deeper nesting of temporal
operators. For example, in [17], by introducing fresh
propositions and reusing, it still leads to a linear
encoding for the whole formula.)

Here, 𝐿(𝑘) is some polynomial about 𝑘, related to the encod-
ing approach. For example, with the technique proposed in
[7, 15], we have 𝐿(𝑘) ∈ O(𝑘2), whereas 𝐿(𝑘) ∈ O(𝑘) in
[16, 17].This partly explains the reason that we tend to change
temporal nestifications with Boolean combinations, as done
in (UU

[3 → 2]) and so forth.
Another feature affecting the cost is the scale of proposi-

tions required for the encoding. If we denote by var𝑘(𝜑) the
set of additional propositions which only takes part in the
encoding of 𝐸𝑘¬𝜑, then we have the following conclusions.

(i) For the techniques proposed in [7, 15], we have
var𝑘(𝜑) = 0. i.o.w.; all propositions required in
encoding 𝐸𝑘¬𝜑 can be shared with those for 𝐸

𝑘
𝑀.

(ii) In term of the encoding presented in [17], we need
to add O(𝑘) new propositions to var𝑘(𝜑) for each U-
subformula and for each S-subformula.

Theorem 5. Let “Cond ⊳ 𝜑 ≈ 𝜓” be a reduction rule; then
we have ||𝐸𝑘𝜓|| ≤ ||𝐸

𝑘
𝜑|| and |var𝑘(𝜓)| ≤ |var𝑘(𝜑)| in syntactic

encodings.

4.3. Analysis on Property Directed Reachability Algorithm.
Property directed reachability (PDR or IC3) is probably the
most significant breakthrough in SAT basedmodel checking.
The aim of PDR is to show that the system is safe w.r.t. the
property 𝜃; that is, each reachable state satisfies the boolean
constraint 𝜃.

The process of PDR retains a sequence Γ0, . . . , Γ𝑘 of clause
sets fulfilling the following.

(1) Γ0 = {𝜃0}; and for each 𝑖 ⩽ 𝑘 we have
(2) ⊢ ∧Γ𝑖 → ∧Γ𝑖+1;
(3) ⊢ ∧Γ𝑖 ∧ 𝜌 → ∧Γ

󸀠
𝑖+1;

(4) ⊢ ∧Γ𝑖 → 𝜃.

This process stops and reports an affirmative answer if there
exists some 𝑖 > 0 having Γ𝑖 = Γ𝑖−1; and it reports failure
when some reachable “unsafe” state is detected. Therefore, it
intends to find a (intermediate) reachable-closure enclosed
(or inductive set) with 𝜃, as described in Algorithm 2.

This algorithm employees two important subroutines—
the strengthen process (Line 7) and the propagate process
(Line 10):

(i) The process strengthen aims to disprove the reacha-
bility of the point U which violates 𝜃. If it succeeds,
some new constraints would be added to some spe-
cific clause sets; if this process fails, then it implies
that we have a feasible path which leads to an “unsafe”
state. In [21], an effective strengthen algorithm is
provided, and it results in a linear complexity in time
w.r.t. the size of variable set.

(ii) Theprocess propagate is used to “compact” the clause
sets and to accelerate the termination. Its purpose is
to “push out” the clauses in a set as possible as they
can. Suppose that there is a clause 𝜂 ∈ Γ𝑖, in the
case that ⊢ ∧Γ𝑖 ∧ 𝜌 → 𝜂

󸀠 holds; since we have ⊢
∧Γ𝑖∧𝜌 → ∧Γ

󸀠
𝑖+1, it implies that ⊢ ∧Γ𝑖∧𝜌 → ∧Γ

󸀠
𝑖+1∧𝜂

󸀠

also holds. In such situation, the clause 𝜂 could be
definitely propagated to Γ𝑖+1.

Since the PDR algorithm could not directly handle
general temporal properties, we need to first translate the LTL
model checking problem to PDR solving, via the following
steps.

(1) Build the tableau 𝑇¬𝜑 from the LTL formula 𝜑, as
describled in Section 4.1.

(2) Thus, the problem is boiled down to a fair-circle
detection problem on the production of𝑀 and 𝑇¬𝜑.

(3) This problem could be further translated to 𝑛+1PRD-
solving problems, where 𝑛 is the number of fairness
constraints in the production. Interested readers may
refer to [22] for the translation details.

It could be seen that the features affecting the overhead of
PDR-solving boiled from LTL input are the following:

(1) the scale of product system, which is determined by
the number of variables in the tableau and model,

8 Journal of Applied Mathematics

Input:The componentsV, 𝜌, 𝜃0 of the model𝑀; a safety property 𝜃.
Output:The affirmative answer if𝑀 is safe w.r.t. 𝜃; otherwise, a counterexample witnessing that ¬𝜃 is reachable.

(1) let 𝑘 := 0;
(2) let Γ0 = {𝜃0};
(3) let Q := 0; /∗Q is a priority queue ∗/
(4) repeat
(5) while there exists U ⊆ V s.t.U ⊩ Γ𝑘 ∧ ¬𝜃 do
(6) add (U, 𝑘) to the head of Q;
(7) if strengthen({Γ𝑖}𝑖⩽𝑘,Q,V) fails then
(8) return counterexample extracted fromQ;
(9) end
(10) propagate({Γ𝑖}𝑖⩽𝑘);
(11) if there exists some 𝑗 ≤ 𝑘 s.t. Γ𝑗 = Γ(𝑗−1) then
(12) return “M is safe from 𝜃”;
(13) end
(14) let Γ𝑘+1 := 0;
(15) 𝑘 := 𝑘 + 1;
(16) end
(17) until 1 ̸= 1;

Algorithm 2: Framework of the PDR algorithm.

(2) the size (or number of clauses) of the transition
relation, which is a summation of these of the tableau
and the model,

(3) the number of fairness constrains in the product,
which is also the summation of constraint numbers
of the model and the tableau.

For two LTL formulae 𝜑 and 𝜓 such that 𝜑≈𝑀𝜓, since
the model is the same, the “variable number,” “number of
clauses in the transition relation,” and “the number of fairness
contraints” are determined by the tableaux 𝑇¬𝜑 and 𝑇¬𝜓.
Precisely like the analysis we have done in Section 4.1, we
have the same conclusions shown in Propositions 2 and 3
and Theorem 4, and these would explain why we can also
benefit fromCePRe when using PDR as underlying checking
approach.

5. Experimental Results

We have implemented CePRe as an upfront option in
NuSMV (the tool is available on http://sourceforge.net/
projects/nusmvwithcepre/), and we have also conducted
experiments upon both industrial benchmarks and randomly
generated cases in terms of BDD-based model checking,
bounded model checking, and PDR-based model checking.

The BMC encoding approach we adopt here is that
proposed in [15], which is the current BMC implementation
of NuSMV. Since PDR verifiers could not directly take SMV
models and/or LTL formulae as input, and they use AIGs
(the And-Inverter Graphs) as standard input format, we first
use the SMVtoAIG tool [23] to convert SMV-scripts into
AIGs and then use iimc [24] to perform the PDR-based
verification.

We conduct the experiments under such platform: CPU-
Intel CoreDuo2 E4500 2.2GHz,Mem-2GBytes, OS-Ubuntu
10.04 Linux, Cudd-v2.4.1.1, Zchaff-v2007.3.12.

5.1. Experiments upon Industrial Benchmarks. The bench-
marks we choose in this paper are suggested in [4], and most
of them come from real hardware verification.

Table 9 provides the experimental results for BDD-based
LTL symbolic model checking.The field time is the executing
time totally elapsed, and the field R.S. refers to the number
of reachable states. For the experiments “with CePRe,” both
the overheads of time and space are the summations of
preprocessing and model checking. For Table 9, we have the
following remarks.

(1) 8 out of 16 specifications could be reduced with
CePRe (and these specifications are marked with †).

(2) For the specifications that can be reduced, consider-
able improvements are made during verification. For
example, for the specification Pit.g.ltl, with CePRe,
the number of BDD nodes is decreased to 12.5% of
that without using CePRe.

(3) When a specification cannot be reduced with CePRe,
it spends a very low extra overhead for doing prepro-
cessings.

(4) Something noteworthy we do not provide here is
that in the case that a violated LTL specification
can be reduced, the newly generated counterexample
is usually shorter than that of before. Among 8
specifications that can be reduced, counterexample
lengths of Pti.nuv.ltl, Pit.g.ltl, P0.ltl and Seq.ltl are,
respectively, shortened to 15, 10, and 194, opposing
to the original values 16, 12, and 217. Meanwhile,
counterexample lengths of others are kept unchanged.

Table 10 gives the experimental results for BMC-based
model checking, and we here give some comments on that.

(1) With NuSMV, we need to preset a max-bound when
doing bounded model checking. The column max-
bound gives such values—a “star mark” means that

Journal of Applied Mathematics 9

Table 9: Comparative results of BDD-based MC with/without cepre.

Model Spec. Without cepre With cepre
BDD-
-Nodes R.S. Time

(sec.)
BDD-
-Nodes R.S. Time

(sec.)

srg5

Ptimo.ltl† 7946 720 0.024 2751 720 0.016
Ptignv.ltl† 29704 11460 0.058 5712 2880 0.012
Pti.g.ltl† 64749 130048 0.048 8119 32768 0.016

abp4

P2false.ltl 99577 559104 0.200 99625 559104 0.202
P2true.ltl† 61209 904384 0.066 56494 419296 0.064
Pold.ltl 52301 353536 0.060 52349 353536 0.064
Ptimo.ltl 78098 219616 0.080 78146 219616 0.088
Pti.g.ltl 8385 200704 0.060 8433 200704 0.062

dme3
P0.ltl† 889773 35964 5.756 527983 26316 5.096
P1.ltl 455148 8775 0.460 409432 5505 0.374

dme5

Mdl.ltl† 793942 8.64316𝑒 + 06 167.346 814494 3.2097𝑒 + 06 114.599
Wat.ltl† 412867 1.79217𝑒 + 07 302.005 967033 1.12567𝑒 + 07 286.850
Ptimo.neg 508036 1.26202𝑒 + 06 3.260 508081 1.26202𝑒 + 06 3.280

msi w-trans
Sched.ltl 2275558 7.31055𝑒 + 07 6.612 2275655 7.31055𝑒 + 07 6.632
Safety.ltl 1213308 3.6528𝑒 + 07 7.568 1213460 3.6528𝑒 + 07 7.644
Seq.ltl † 1921973 3.5946𝑒 + 07 93.570 1702585 1.7973𝑒 + 07 94.085

Table 10: Experimental results of BMC-based MC with/without cepre.

Model Spec.
Without cepre With cepre

Max-bound
N.O.C. Time

(sec.) N.O.C. Time
(sec.)

srg5

Ptimo.ltl† 272567 67.391 1371 0.143 20
Pti.gnv.ltl† 2101 0.116 299 0.024 6
Pti.g.ltl† 21 0.016 21 0.016 1

abp4

P2false.ltl 7532 3.972 7532 3.972 17
P2true.ltl† 12639 8.145 9369 7.753 20∗

Pold.ltl 7499 9.087 7499 9.488 20∗

Ptimo.ltl 6332 2.500 6332 2.512 16
Pti.g.ltl 11952 0.841 11952 0.976 20∗

dme3
P0.ltl† — — 35102 524.207 62
P1.ltl 216 0.036 167 0.048 1

dme5

Mdl.ltl† 90 0.044 90 0.048 0
Wat.ltl† 367 0.048 274 0.052 1
Ptimo.neg 367 0.050 277 0.058 1

msi w-trans
Sched.ltl 14235 1.076 14235 1.078 20∗

Safety.ltl 12439 8.441 12439 8.448 20∗

Seq.ltl† 1907 0.064 81 0.052 3

this bound does not reach the completeness thresh-
old.The field N.O.C. designates the number of clauses
generated during model checking.

(2) From Table 10, we can see that without CePRe the
specification Pti.gnv.ltl generates 2101 clauses when
the verification stops; in contrast, it only produces 299
clauses if CePRe is switched on.

(3) Another comparison is for P0.ltl upon dme3: If we
do not do any reduction, the SAT solver reports a
SEGMENTATION FAULT at Step 35. In contrast,
using CePRe, a counterexample could be found at
Step 62.

(4) Since the encoding approach we use is taken from
[15], propositions used in the encoding are only
determined by the model and the bound; thus

10 Journal of Applied Mathematics

Table 11: Experimental result of PDR-based MC with/without cepre.

Model Spec. PDR time without
cepre (sec.)

PDR time with
cepre (sec.)

Extratime for
cepre (sec.)

srg5

Ptimo.ltl† 0.117 0.056 <0.001
Pti.gnv.ltl† 0.084 0.043 <0.001
Pti.g.ltl † 0.070 0.032 <0.001

abp4

P2false.ltl 3.187 3.185 0.004
P2true.ltl† 2.996 1.239 0.004
Pold.ltl 6.937 6.939 <0.001
Ptimo.ltl 0.910 0.912 <0.001
Pti.ltl 5.812 5.816 <0.001

dme3
P0.ltl† 9.815 6.086 <0.001
P1.ltl 0.147 0.142 0.004

dme5

Mdl.ltl† 3.072 1.731 0.004
Wat.ltl† 4.575 3.043 0.004
Ptimo.neg 0.073 0.073 0.004

msi wtrans

Sched.ltl 0.135 0.136 <0.001
Safety.ltl 0.200 0.201 0.004
Seq.ltl† 0.091 0.045 0.006

the number of required propositions does not change.
For this reason, the corresponding experimental
results on proposition numbers are not provided.

Experimental results of PDR-based model checking are
shown in Table 11.

(1) For PDR-based model checking, we are mainly con-
cerned about the time-overhead. Since that the PDR
algorithm consumes memory evenly during verifica-
tion, we do not provide the space-overhead here.

(2) Because the CePRe process is done in an individual
phase in the PDR-based verification, we here also list
the overhead for doing CePRe.

(3) We can see that a significant performance improve-
ment could be made if we use CePRe in PDR-
based model checking, and the extra overhead for
preprocessing is still relatively negligible.

Note that both model-independent and model-
dependent rules contribute to the reductions. For example,
for the model srg5 and the specification Pti.g.ltl, the
rules (FS) and (S) are applied; meanwhile, for the
model msi wtrans and the specification Seq.ltl, the
application of (UU

[¬2 → 3]) is invoked.

5.2. Experiments w.r.t. RandomModels and Specifications. We
have also performed experiments upon randomly generated
models and specifications with the tool Lbtt [25] and with
the methodology suggested in [17].

For BDD-based MC and bounded model checking, we
conduct the comparison in the following manner. For each
3 ≤ ℓ ≤ 7, we randomly generate 40 specifications having

length ℓ. Subsequently, for each specification,we generate two
models, respectively, for the BDD-based model checking and
for BMC. Hence, we totally have 200 specifications and 400
models.

For the BDD-basedmodel checking, we give the compar-
ative results on (1) the scale of BDD-nodes, (2) the number
of reachable states, and (3) the time consumed, and the
experimental results are, respectively, shown in Figures 1,
2, and 3. For bounded model checking, we have set the
maximum bound to 20 and we have compared (1) the
number of clauses and (2) the executing time; the results are,
respectively, shown in Figures 4 and 5. Each value here we
provide is the average of the 40 executions.

For the BDD-basedmodel checking, there are 123 (out of
200) specifications that can be reduced, whereas for bounded
model checking, the number of specifications that can be
reduced is 118. Note that in this experiment, when CePRe
is switched on, extra overheads (such as time) have also been
taken into account.

For the PDR-based model checking, the experiments are
conducted as follows. We first generate 50 SMV models with
Lbtt and then we randomly generate LTL specifications for
each model and each designated length. Next, we batchly
do CePRe upon one group of specification copies and
then obtain the product models (for each model and each
specification). Subsequently, we convert the product models
into AIG format with SMVtoAIG.

We here compare the number of verfication obligations
that could be accomplishedwithin the preset time bound (i.e.,
600 sec.), and the results are shown in Figure 6. From that, we
can see that with the increment of the specification’s length,
the ratio (that could be done with CePRe to without CePRe)
also monotonically increases.

Journal of Applied Mathematics 11

Without CePRe
With CePRe

100

90

80

70

60

50

40

30

20

BD
D

 n
od

es
×
1
0
0
0
0

2 3 4 5 6 7 8

Length of spec.

Figure 1: Results on the scale of BDD nodes in random BDD-MC
experiments.

Without CePRe
With CePRe

30

25

20

15

10

5

0

Re
ac

ha
bl

e s
ta

te
s×

1
0
0
0

2 3 4 5 6 7 8

Length of spec.

Figure 2: Results on reachable states in random BDD-MC experi-
ments.

6. Concluding Remarks

In this paper, we present a new technique to reduce LTL
specifications’ complexity towards symbolic model checking,
namely, CePRe. The novelty in this technique is that the
reduced formula needs not be logically equivalent with
the original one but just preserves the counterexample set.
Moreover, the condition enabling such a reduction can be
usually detected with lightweight approaches, such as SAT-
solving. Hence, this technique could leverage the power of
SAT-solvers.

The central part of CePRe is a set of reduction rules, and
soundness of these reduction rules is fairly easy to check.

Without CePRe
With CePRe

40

35

30

25

20

15

10

5

0

Ti
m

e (
s)

2 3 4 5 6 7 8

Length of spec.

Figure 3: Time overhead in random BDD-MC experiments.

1

1.5

2

2.5

3

3.5

4

2 3 4 5 6 7 8
Length of spec.

Without CePRe
With CePRe

N
um

be
r o

f c
la

us
es

×
1
0
0
0
0

Figure 4: The scale of clauses in random BMC experiments.

For themodel-dependent rules, additional conditionsmainly
concern the invariants and transitions, and we do not make a
sufficient use of other features, such as fairness. In this paper,
the rules are given by enumerating all possible combinations
of (at most two) temporal operators. Indeed, there might be
some other reduction schemas we are not aware of.

From the experimental results, we can see that in a sta-
tistical perspective, a better performance and lower overhead
can be achieved with CePRe. For the future work, we would
consider how to extend our idea to symbolic model checking
upon rich assertional languages, such as PSL.

12 Journal of Applied Mathematics

30

40

50

60

70

80

90

100

110

2 3 4 5 6 7 8

Ti
m

e (
s)

Length of spec.

Without CePRe
With CePRe

Figure 5: Time overhead in random BMC experiments.

0

5

10

15

20

25

30

35

40

2 3 4 5 6 7 8

N
um

be
r o

f s
ol

ve
d

be
nc

hm
ar

ks

Length of spec.

Without CePRe
With CePRe

Figure 6: Experimental results of random PDR-based model
checking.

Conflict of Interests

A conference version of this paper [26] is firstly published in
the proceeding of ICTAC 2013, and a corresponding unpub-
lished version is put on CoRR (http://arxiv.org/abs/1301
.3299). The authors have extended more than 1/3 new
material in this submission. The authors declare that there is
no conflict of interests regarding the publication of this paper.

Acknowledgments

This paper is the extension of [26], and the authors would to
thank the anonymous reviewers for the helpful comments of
their conference version. This work is supported by NSFC
(No. 61103012), the 973 Project (no. 2014CB340703), NSFC

(nos. 61379054 and 61120106006), and the Program for New
Century Excellent Talents in University.

References

[1] A. Pnueli, “The temporal logic of programs,” in Proceedings of
the 18th Annual Symposium on Foundations of Computer Science
(FOCS ’77), pp. 46–57, IEEE Computer Society, 1977.

[2] M. Y. Vardi, “Branching vs. linear time: final showdown,”
in Tools and Algorithms for the Construction and Analysis of
Systems, vol. 2031 of Lecture Notes in Computer Science, pp. 1–
22, Springer, 2001.

[3] F. Somenzi and R. Bloem, “Efficient B üchi automata from LTL
formulae,” in Computer Aided Verification, E. A. Emerson and
A. P. Sistla, Eds., vol. 1855 of Lecture Notes in Computer Science,
pp. 53–65, Springer, 2000.

[4] A. Biere, K. Heljanko, T. Junttila, T. Latvala, and V. Schuppan,
“Linear encodings of bounded LTL model checking,” Logical
Methods in Computer Science, vol. 2, no. 5, pp. 1–64, 2006.

[5] K. L. McMillan, Symbolic model checking, an approach to
the state explosion problem [Ph.D. thesis], Carnegie Mellon
University, Kluwer Academic Publishers, 1993.

[6] E. M. Clarke, O. Grumberg, and K. Hamaguchi, “Another look
at LTL model checking,” in Formal Methods in System Design,
vol. 818 of Lecture Notes in Computer Science, pp. 415–427,
Springer, 1994.

[7] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in Proceedings of the 5th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS ’99), vol. 1579 of Lecture Notes in
Computer Science, pp. 193–207, Springer, 1999.

[8] A. R. Bradley, “SAT-based model checking without unrolling,”
inVerification, Model Checking, and Abstract Interpretation, vol.
6538 of Lecture Notes in Computer Science, pp. 70–87, Springer,
2011.

[9] F. Somenzi and A. R. Bradly, “IC3: where monolithic and incre-
mental meet,” in Proceedings of the International Conference
on Formal Methods in Computer-Aided Design (FMCAD ’11), P.
Bjesse and A. Sloodova, Eds., pp. 3–8, FMCAD, 2011.

[10] N. Een, A. Mishchenko, and R. Brayton, “Efficient implemen-
tation of property directed reachability,” in Proceedings of the
Formal Methods in Computer-Aided Design (FMCAD ’11), pp.
125–134, Austin, Tex, USA, November 2011.

[11] A. R. Bradley, “Understanding IC3,” inTheory and Applications
of Satisfiability Testing—SAT 2012, vol. 7317 of Lecture Notes in
Computer Science, pp. 1–14, Springer, 2012.

[12] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.
J. Hwang, “Symbolic model checking: 1020 states and beyond,”
Information and Computation, vol. 98, no. 2, pp. 142–170, 1992.

[13] D. Gabbay, “The declarative past and imperative future. Exe-
cutable temporal logic for interactive systems,” in Temporal
Logic in Specification, vol. 398 of Lecture Notes in Computer
Science, pp. 409–448, Springer, 1989.

[14] O. Kupferman and M. Y. Vardi, “Modular model checking,” in
Compositionality: The Significant Difference, vol. 1536 of Lecture
Notes in Computer Science, pp. 381–401, Springer, 1998.

[15] A. Cimatti,M. Pistore,M. Roveri, andR. Sebastiani, “Improving
the encoding of LTL model checking into SAT,” in Verification,
Model Checking, andAbstract Interpretation, vol. 2294 of Lecture
Notes in Computer Science, pp. 196–207, Springer.

Journal of Applied Mathematics 13

[16] T. Latvala, A. Biere, K. Heljanko, and T. Junttila, “Sim-
ple bounded LTL model checking,” in Formal Methods in
Computer-Aided Design, A. Hu and A. Martin, Eds., vol. 3312 of
Lecture Notes in Computer Science, pp. 186–200, Springer, 2004.

[17] T. Latvala, A. Biere, K. Heljanko, and T. Junttila, “Simple
is better: efficient bounded model checking for past LTL,”
in Verification, Model Checking, and Abstract Interpretation,
vol. 3385 of Lecture Notes in Computer Science, pp. 380–395,
Springer, 2005.

[18] A. Zbrzezny, “A new translation from ETCL∗ to SAT,” in
Proceedings of the International Workshop CS&P, M. Szczuka,
Ed., pp. 589–600, September 2011.

[19] E. Clarke, D. Kroening, J. Ouaknine, and O. Strichman, “Com-
pleteness and complexity of bounded model checking,” in
Verification, Model Checking, and Abstract Interpretation, vol.
2937 of Lecture Notes in Computer Science, pp. 85–96, Springer,
2004.

[20] A. Frisch, D. Sheridan, and T. Walsh, “A fixpoint encoding for
bounded model checking,” in Formal Methods in Computer-
Aided Design, vol. 2517 of Lecture Notes in Computer Science, pp.
238–255, 2002.

[21] A. R. Bradley and Z. Manna, “Checking safety by inductive
generalization of counterexamples to induction,” in Proceedings
of the Formal Methods in Computer Aided Design (FMCAD ’07),
pp. 173–180, November 2007.

[22] A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang, “An
incremental approach to model checking progress properties,”
in Proceedings of the Formal Methods in Computer-Aided Design
(FMCAD ’11), pp. 144–153, November 2011.

[23] AIGER, the SMVtoAIG toolkit, 2007, http://fmv.jku.at/aiger/.
[24] The IIMC tool, 2013, http://ecee.colorado.edu/wpmu/iimc/.
[25] H. Taurainen andK.Heljanko, “Testing LTL formula translation

into Büchi automata,” International Journal on Software Tools
For Technology Transfer, vol. 4, no. 1, pp. 57–70, 2002.

[26] W. Liu, R. Wang, X. Fu et al., “Conterexamplepreserving reduc-
tion for symbolic model checking,” in Proceedings of the 10th
International Colloquium on Theoretical Aspects of Computing
(ICTAC ’13), Z. Liu, J. Woodcock, and H. Zhu, Eds., vol. 8049
of Lecture Notes in Computer Science, pp. 249–266, Springer,
Shanghai, China, 2013.

