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A new two-part parametric linearization technique is proposed globally to a class of nonconvex programming problems (NPP).
Firstly, a two-part parametric linearizationmethod is adopted to construct the underestimator of objective and constraint functions,
by utilizing a transformation and a parametric linear upper bounding function (LUBF) and a linear lower bounding function
(LLBF) of a natural logarithm function and an exponential function with e as the base, respectively. Then, a sequence of relaxation
lower linear programming problems, which are embedded in a branch-and-bound algorithm, are derived in an initial nonconvex
programming problem. The proposed algorithm is converged to global optimal solution by means of a subsequent solution to a
series of linear programming problems. Finally, some examples are given to illustrate the feasibility of the presented algorithm.

1. Introduction

In this paper, we consider a class of nonconvex programming
problems as follows:

(NPP)
{{{

{{{

{

min 𝑓
0 (𝑥)

s.t. 𝐴𝑥 ⩽ 𝑏,

𝑓
𝑗 (𝑥) ⩽ 𝑒𝑗,

𝑥 ∈ 𝑋0 = [𝑥, 𝑥] ⊂ 𝑅𝑛,

(1)

where

𝑓
𝑗
(𝑥) =

𝐾𝑗

∑
𝑘=1

𝑓
𝑗𝑘
(𝑥) =

𝐾𝑗

∑
𝑘=1

𝑡
𝑗𝑘

𝐾𝑗𝑘

∏
𝑚=1

(𝑐
T
𝑗𝑘𝑚
𝑥 + 𝑑
𝑗𝑘𝑚
)
𝛼𝑗𝑘𝑚
,

𝑗 = 0, 1, . . . , 𝑝,

(2)

and 𝑏 ∈ 𝑅q, 𝑐
𝑗𝑘𝑚
∈ 𝑅
𝑛
, 𝑒
𝑗
, 𝑡
𝑗𝑘
, 𝑑
𝑗𝑘𝑚
, 𝛼
𝑗𝑘𝑚

are real numbers,
𝐴 is 𝑞 × 𝑛 matrix, 𝑥 > 0, and 𝑥, 𝑥 are finite. 𝑐𝑇

𝑗𝑘𝑚
𝑥 +

𝑑
𝑗𝑘𝑚

> 0 for all 𝑥 ∈ 𝑋0. (NPP) contains various variants
such as a sum or product of a finite number of ratios in
linear functions, generalized linear multiplicative programs,

general polynomial programming, quadratic programming,
and generalized geometric programming. So, (NPP) with
its special form has attracted considerable attention to the
literature because of its large number of practical applications
in various fields of study, including transaction cost [1], finan-
cial optimization [2], robust optimization [3], VLISI chip
design [4], data mining/pattern recognition [5], queueing-
location problems [6, 7], bond portfolio optimization [8, 9],
and elastic-plastic finite element analysis of metal forming
processes [10]. From a researching point of view, (NPP)
poses significant theoretical and computational challenges.
It follows that it possesses multiple local optima that are not
globally optimal. Recently, Jiao [11] and Shen et al. [12] have
proposed a branch-and-bound algorithm globally to a class
of nonconvex programming problems (NPP). By utilizing
tangential hypersurfaces, convex envelope approximations of
exponential function, and concave envelope approximations
of logarithmic function, a two-stage linear relaxation tech-
nique was given. Then, the relaxation linear programming
of original problem can be constructed with a branch-and-
bound algorithm proposed for globally solving (NPP).
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For all 𝑗 = 0, 1, . . . , 𝑝, 𝑘 = 1, 2, . . . , 𝐾
𝑗
, if 𝛼
𝑗𝑘𝑚
= 1, (NPP)

can be reduced to the linear multiplicative programming
(LMP) [15, 16]. When 𝐾

𝑗
= 1 for any 𝑗 = 0, 1, . . . , 𝑝,

(NPP) is called multiplicative programming problems with
exponent (MPE) [17, 18]; by utilizing logarithmic property,
one can obtain an equivalent problem of (MPE), and a linear
relaxation of equivalent problem is received by tangential
hypersurfaces and concave envelope approximations. Then,
a new branch-and-bound algorithm is given via solving a
sequence of linear relaxations over partitioned subsets in
order to find a global optimal solution to problem (MPE).
If, for all 𝑗 = 0, 1, . . . , 𝑝, 𝑘 = 1, 2, . . . , 𝐾

𝑗
, 𝐾
𝑗
> 1 and

𝛼
𝑗𝑘𝑚

= 1, the problem is called generalized linear multi-
plicative programs (GLMP) [19]. A greedy branching rule
for rectangular branch-and-bound algorithms is proposed for
solving problem (GLMP).

Assume that 𝐾
𝑗𝑘
= 2 for all 𝑗, 𝑘, and, without loss

of generality, let 𝛼
𝑗𝑘1

= 1 and 𝛼
𝑗𝑘2

= −1; (NPP) can
be reduced to a linear sum-of-ratios fractional program. It
is a global optimization problem; that is, it is known to
generally possess multiple local optima that are not globally
optimal [20]. Furthermore, it is NP-hard [21], and the
objective function is neither quasiconvex nor quasiconcave.
A number of algorithms have been proposed for globally
solving a linear sum-of-ratios fractional program. They can
be classified as follows: parametric simplex methods [22,
23], outer approximation methods [24, 25], the branch-and-
bound approaches [13, 26–29], a duality-boundsmethod [30],
an iteratively searching method [31], and so forth. Readers
can find the applications, theory, and algorithms of the sum-
of-ratios fractional programming in [32]. If there exist some
𝛼
𝑗𝑘𝑚

< 0 and 𝐾
𝑗𝑘

> 2, (NPP) is called generalized
linear fractional programming problems. Shen and Wang
[14] used a transformation and a two-part linearization
technique to systematically convert the generalized linear
fractional program into a series of linear programming
problems.

When 𝛼
𝑗𝑘𝑚

= 1 for all 𝑗, 𝑘, and 𝑚, (NPP) can be
reduced to the general polynomial programming problem
earlier investigated in [33–35]. Most recently, Lasserre [36,
37] developed a class of positive semidefinite relaxations
for polynomial programming with the property that any
polynomial program can be approximated as closely as
desired by semidefinite program of this class.

In this paper, a new global optimization method is pre-
sented to (NPP) by solving a sequence of linear programming
problems over partitioned subsets. By using a transformation
and a two-part parametric linearization technique, we can
systematically convert (NPP) into a series of linear program-
ming problems. The solutions to these converted problems
can be sufficiently closed to the global optimum of (NPP) by
a successive refinement process. Some examples show that
the proposed method can achieve all of the test problems
in finding globally optimal solutions within a prespecified
tolerance.

The organization and content of this paper can be sum-
marized as follows. In Section 2, we first discuss parametric
linear estimation of the natural logarithm function and
the exponential function with 𝑒 as the base, respectively.

Then, two-part parametric linearization method is presented
for generating the relaxation lower linear programming of
(NPP). In Section 3, the proposed branch-and-bound algo-
rithm in which the relaxed subproblems are embedded is
described, and the convergence of the algorithm is estab-
lished. Some numerical results are reported in Section 4.
Finally, concluding remarks are given in Section 5.

2. Parametric Linear Relaxation of (NPP)

Now, we derive an equivalent form of the function 𝑓
𝑗
(𝑥) by

transformation. First, for any 𝑥 ∈ 𝑋0, since 𝑐𝑇
𝑗𝑘𝑚
𝑥 + 𝑑
𝑗𝑘𝑚
> 0,

we assume that

𝑐
𝑇

𝑗𝑘𝑚
𝑥 + 𝑑
𝑗𝑘𝑚
= exp (𝑦

𝑗𝑘𝑚
) . (3)

Then, for all 𝑗 = 0, 1, . . . , 𝑝, the function 𝑓
𝑗
(𝑥) can be

rewritten as

𝑓
𝑗
(𝑥) = 𝑓

𝑗
(𝑦
𝑗
) =

𝐾𝑗

∑
𝑘=1

𝑓
𝑗𝑘
(𝑦
𝑗𝑘
)

=

𝐾𝑗

∑
𝑘=1

𝑡
𝑗𝑘
exp(

𝐾𝑗𝑘

∑
𝑚=1

𝛼
𝑗𝑘𝑚
𝑦
𝑗𝑘𝑚
) =

𝐾𝑗

∑
𝑘=1

𝑡
𝑗𝑘
exp (𝑌

𝑗𝑘
) ,

(4)

where

𝑦
𝑗𝑘𝑚
= ln (𝑐𝑇

𝑗𝑘𝑚
𝑥 + 𝑑
𝑗𝑘𝑚
) , 𝑌

𝑗𝑘
=

𝐾𝑗𝑘

∑
𝑚=1

𝛼
𝑗𝑘𝑚
𝑦
𝑗𝑘𝑚
. (5)

In order to construct underestimator of function 𝑓
𝑗
(𝑥) for all

𝑗, we adopt two-part parametric linearization method. We
will firstly derive a linear upper bounding function (LUBF)
and a linear lower bounding function (LLBF) of 𝑡

𝑗𝑘
exp(𝑌

𝑗𝑘
)

about the variable 𝑦
𝑗𝑘
, respectively. Then, in the second

part, an LUBF about primal variable 𝑥 will be constructed
ultimately.

2.1. Parametric Linear Estimation of Logarithm and Exponen-
tial Functions. We first construct parametric linear overesti-
mation and underestimation of a natural logarithm function
and an exponential function with 𝑒 as the base in interval
vector𝑋 ⊆ 𝑋0, respectively.

Let𝑋 = [𝑥, 𝑥] = {𝑥 ∈ 𝑅𝑛 | 𝑥 ⩽ 𝑥 ⩽ 𝑥}, for all 𝑥 = (𝑥
𝑖
)
𝑛×1

,
where 𝑥 and 𝑥 are called the lower bound and upper bound,
respectively. For any 𝑥 ∈ 𝑋, we denote

𝑥 (𝜎) = 𝑥 + 𝜎 ⋅ (𝑥 − 𝑥) , (6)

where 𝜎 ∈ {0, 1}
𝑛 is an 𝑛-dimensional vector with com-

ponents 𝜎
𝑖
equal to 0 or 1. For convenience, we denote by

0 ∈ {0, 1}
𝑛 the vector with all components equal to 0 and by

1 ∈ {0, 1}
𝑛 the vector with all components equal to 1.Then, we

have 𝑥(0) = 𝑥 and 𝑥(1) = 𝑥.The following theorem illustrates
how to construct the lower and upper bound linear functions
of natural logarithm function and the exponential function
with 𝑒 as the base, respectively.
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Theorem 1. For any interval vector 𝑋, 𝑋 ⊆ 𝑋0 ⊂ 𝑅𝑛, one
assumes that the vertices of 𝑋 are 𝑥(𝜎), in form of (6). Let
Φ(𝑥) = ln(∑𝑛

𝑖=1
𝛾
𝑖
𝑥
𝑖
+ 𝑑) or Φ(𝑥) = exp(∑𝑛

𝑖=1
𝛾
𝑖
𝑥
𝑖
+ 𝑑) and its

gradient function Φ󸀠(𝑥) = ((𝜕Φ(𝑥)/𝜕𝑥
1
), . . . , (𝜕Φ(𝑥)/𝜕𝑥

𝑛
))
𝑇

over 𝑋. Then there exist vectors 𝑧, 𝑧 ∈ 𝑅𝑛 such that the linear
functions

Φ
𝑙
(𝑥; 𝑋, 𝜎) := 𝑧(𝜎)

𝑇
⋅ 𝑥 + Φ (𝑥 (𝜎)) − 𝑧(𝜎)

𝑇
⋅ 𝑥 (𝜎) ,

Φ
𝑢
(𝑥; 𝑋, 𝜎) := 𝑧(1 − 𝜎)

𝑇
⋅ 𝑥 + Φ (𝑥 (𝜎)) − 𝑧(1 − 𝜎)

𝑇
⋅ 𝑥 (𝜎)

(7)

satisfy, for all 𝑥 ∈ 𝑋, the inequalities

Φ
𝑙
(𝑥; 𝑋, 𝜎) ⩽ Φ (𝑥) ⩽ Φ

𝑢
(𝑥; 𝑋, 𝜎) , (8)

and moreover

Φ
𝑙
(𝑥 (𝜎) ; 𝑋, 𝜎) = Φ

𝑢
(𝑥 (𝜎) ; 𝑋, 𝜎) = Φ (𝑥 (𝜎)) , (9)

where 𝑧(𝜎), in form of (6), are vertices of the interval vector
𝑧 := [𝑧, 𝑧], and the functionsΦ𝑙(𝑥; 𝑋, 𝜎),Φ𝑢(𝑥; 𝑋, 𝜎) show that
Φ𝑙,Φ𝑢 have the argument 𝑥 and depend on the two parameters
𝑋 and 𝜎.

Proof. For function Φ(𝑥) = exp(∑𝑛
𝑖=1
𝛾
𝑖
𝑥
𝑖
+ 𝑑), this result is

shown in [38], and for Φ(𝑥) = ln(∑𝑛
𝑖=1
𝛾
𝑖
𝑥
𝑖
+ 𝑑), the proof

is similar. However, to provide a self-contained presentation,
and because this result is central to this paper, we provide a
direct proof for natural logarithm function.

By 𝑋 and Φ󸀠(𝑥) it follows that there exist vectors 𝑧 =
(𝑧
1
, . . . , 𝑧

𝑛
)
𝑇 and 𝑧 = (𝑧

1
, . . . , 𝑧

𝑛
)
𝑇 satisfying

𝑧 ⩽ Φ
󸀠
(𝑥) ⩽ 𝑧, for any 𝑥 ∈ 𝑋, (10)

where, for 𝑖 = 1, 2, . . . , 𝑛,

𝑧
𝑖
= min

{

{

{

𝛾
𝑖
(

𝑛

∑
𝑗=1

min (𝛾
𝑗
𝑥
𝑗
, 𝛾
𝑗
𝑥
𝑗
) + 𝑑)

−1

,

𝛾
𝑖
(

𝑛

∑
𝑗=1

max (𝛾
𝑗
𝑥
𝑗
, 𝛾
𝑗
𝑥
𝑗
) + 𝑑)

−1

}

}

}

,

𝑧
𝑖
= max

{

{

{

𝛾
𝑖
(

𝑛

∑
𝑗=1

min(𝛾
𝑗
𝑥
𝑗
, 𝛾
𝑗
𝑥
𝑗
) + 𝑑)

−1

,

𝛾
𝑖
(

𝑛

∑
𝑗=1

max(𝛾
𝑗
𝑥
𝑗
, 𝛾
𝑗
𝑥
𝑗
) + 𝑑)

−1

}

}

}

.

(11)

By the mean value theorem, we have, for all 𝑥 ∈ 𝑋,

Φ (𝑥) = Φ (𝑥 (𝜎)) + Φ
󸀠
(𝜉)
𝑇
⋅ (𝑥 − 𝑥 (𝜎)) , (12)

where 𝜉 = 𝜇𝑥+ (1 − 𝜇)𝑥(𝜎) for some 𝜇 ∈ [0, 1]. Then, (6) and
(10) imply that, for 𝜎 = 0, the inequalities

𝜕Φ (𝜉)

𝜕𝜉
𝑖

⩾ 𝑧
𝑖
(𝜎) , 𝑥

𝑖
− 𝑥
𝑖
(𝜎) ⩾ 0,

∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑛,

(13)

hold, where 𝑥
𝑖
(𝜎) denotes the 𝑖th component of 𝑥(𝜎). And for

𝜎 = 1 the inequalities
𝜕Φ (𝜉)

𝜕𝜉
𝑖

⩽ 𝑧
𝑖
(𝜎) , 𝑥

𝑖
− 𝑥
𝑖
(𝜎) ⩽ 0,

∀𝑥 ∈ 𝑋, 𝑖 = 1, 2, . . . , 𝑛,

(14)

are valid.
Consequently, it follows from the mean value theorem

that

Φ (𝑥) = Φ (𝑥 (𝜎)) +

𝑛

∑
𝑖=1

𝜕Φ (𝜉)

𝜕𝜉
𝑖

⋅ (𝑥
𝑖
− 𝑥
𝑖
(𝜎))

⩾ Φ (𝑥 (𝜎)) +

𝑛

∑
𝑖=1

𝑧
𝑖
(𝜎) ⋅ (𝑥

𝑖
− 𝑥
𝑖
(𝜎))

= 𝑧(𝜎)
𝑇
⋅ 𝑥 + Φ (𝑥 (𝜎)) − 𝑧(𝜎)

𝑇
⋅ 𝑥 (𝜎) .

(15)

So, Φ𝑙(𝑥; 𝑋, 𝜎) ⩽ Φ(𝑥), for all 𝑥 ∈ 𝑋, and Φ𝑙(𝑥(𝜎); 𝑋, 𝜎) =
Φ(𝑥(𝜎)).

Similarly, we can prove that
Φ
𝑢
(𝑥; 𝑋, 𝜎) ⩾ Φ (𝑥) , ∀𝑥 ∈ 𝑋,

Φ
𝑢
(𝑥 (𝜎) ; 𝑋, 𝜎) = Φ (𝑥 (𝜎)) .

(16)

Now, we show how to construct a two-part parametric
linearization method to systematically convert (NPP) into a
series of linear programming problems by utilizing a trans-
formation and a parametric linear upper bounding function
(LUBF) and a linear lower bounding function (LLBF) of a
natural logarithm function and an exponential function with
𝑒 as the base, respectively.

2.2. First-Part Parametric Linear Relaxation. In this subsec-
tion, we discuss how to obtain the first-stage relaxation LLBF
of 𝑓
𝑗𝑘
(𝑦
𝑗𝑘
) = 𝑡

𝑗𝑘
exp(𝑌

𝑗𝑘
) about the variable 𝑦

𝑗𝑘
by using

Theorem 1.
Let 𝑋 denote either the initial rectangle 𝑋0 or some

subrectangle of 𝑋0 that is generated by the proposed algo-
rithm. Without loss of generality, let 𝑋 = {𝑥 | 𝑥

𝑙

𝑖
⩽

𝑥
𝑖
⩽ 𝑥
𝑢

𝑖
, 𝑖 = 1, 2, . . . , 𝑛}. Denote the lower bound and the

upper bound of 𝑦
𝑗𝑘𝑚

by 𝑦𝑙
𝑗𝑘𝑚

and 𝑦𝑢
𝑗𝑘𝑚

which can be derived
on the presently considered rectangle 𝑋 in the algorithm.
For any 𝑗, 𝑘, fix a vector 𝜎 ∈ {0, 1}

𝐾𝑗𝑘 , and for function
𝑓
𝑗𝑘
(𝑦
𝑗𝑘
) = exp(∑𝐾𝑗𝑘

𝑚=1
𝛼
𝑗𝑘𝑚
𝑦
𝑗𝑘𝑚
) and interval vector 𝑌

𝑗𝑘
=

[𝑦𝑙
𝑗𝑘
, 𝑦𝑢
𝑗𝑘
] ⊆ 𝑅𝐾𝑗𝑘 , calculate interval vector 𝑍

𝑗𝑘
= [𝑧𝑙
𝑗𝑘
, 𝑧𝑢
𝑗𝑘
]

satisfying inequalities (7) of Theorem 1 in [38], where 𝑧𝑙
𝑗𝑘
=

(𝑧𝑙
𝑗𝑘1
, . . . , 𝑧𝑙

𝑗𝑘𝐾𝑗𝑘
)
𝑇, 𝑧𝑢
𝑗𝑘
= (𝑧𝑢
𝑗𝑘1
, . . . , 𝑧𝑢

𝑗𝑘𝐾𝑗𝑘
)
𝑇. That is, for any

𝑗 = 0, 1, . . . , 𝑝, 𝑘 = 1, . . . , 𝐾
𝑗
, and any 𝑥 ∈ 𝑋, we calculate

the following formulas:

𝑌
𝑙

𝑗𝑘
=

𝐾𝑗𝑘

∑
𝑚=1

min (𝛼
𝑗𝑘𝑚
𝑦
𝑙

𝑗𝑘𝑚
, 𝛼
𝑗𝑘𝑚
𝑦
𝑢

𝑗𝑘𝑚
) ,

𝑌
𝑢

𝑗𝑘
=

𝐾𝑗𝑘

∑
𝑚=1

max (𝛼
𝑗𝑘𝑚
𝑦
𝑙

𝑗𝑘𝑚
, 𝛼
𝑗𝑘𝑚
𝑦
𝑢

𝑗𝑘𝑚
) ,
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𝑧
𝑙

𝑗𝑘𝑚
= min {𝛼

𝑗𝑘𝑚
exp (𝑌𝑙

𝑗𝑘
) , 𝛼
𝑗𝑘𝑚

exp (𝑌𝑢
𝑗𝑘
)} ,

𝑚 = 1, 2, . . . , 𝐾
𝑗𝑘
,

𝑧
𝑢

𝑗𝑘𝑚
= max {𝛼

𝑗𝑘𝑚
exp (𝑌𝑙

𝑗𝑘
) , 𝛼
𝑗𝑘𝑚

exp (𝑌𝑢
𝑗𝑘
)} ,

𝑚 = 1, 2, . . . , 𝐾
𝑗𝑘
.

(17)

Thus, the vertices of the interval vectors 𝑌
𝑗𝑘
, 𝑍
𝑗𝑘
refer to

𝑦
𝑗𝑘 (𝜎) = 𝑦

𝑙

𝑗𝑘
+

𝐾𝑗𝑘

∑
𝑚=1

𝜎
𝑚
(𝑦
𝑢

𝑗𝑘𝑚
− 𝑦
𝑙

𝑗𝑘𝑚
) 𝑒
𝑚
,

𝑧
𝑗𝑘
(𝜎) = 𝑧

𝑙

𝑗𝑘
+

𝐾𝑗𝑘

∑
𝑚=1

𝜎
𝑚
(𝑧
𝑢

𝑗𝑘𝑚
− 𝑧
𝑙

𝑗𝑘𝑚
) 𝑒
𝑚
,

(18)

respectively, where 𝑒
𝑖
denotes the 𝑖th unit vector. Therefore,

by Theorem 1, we can derive parametric linear lower bound
functions 𝑓𝑙

𝑗𝑘
(𝑦
𝑗𝑘
) of 𝑓
𝑗𝑘
(𝑦
𝑗𝑘
) with respect to 𝑌

𝑗𝑘
as follows:

𝑓
𝑙

𝑗𝑘
(𝑦
𝑗𝑘
)

=

{{{{

{{{{

{

𝑡
𝑗𝑘
[𝑧
𝑗𝑘
(𝜎)
𝑇
⋅ 𝑦
𝑗𝑘
+ 𝑓
𝑗𝑘
(𝑦
𝑗𝑘
(𝜎))

−𝑧
𝑗𝑘(𝜎)
𝑇
⋅ 𝑦
𝑗𝑘 (𝜎)] , if 𝑡

𝑗𝑘
> 0,

𝑡
𝑗𝑘
[𝑧
𝑗𝑘
(1 − 𝜎)

𝑇
⋅ 𝑦
𝑗𝑘
+ 𝑓
𝑗𝑘
(𝑦
𝑗𝑘
(𝜎))

−𝑧
𝑗𝑘
(1 − 𝜎)

𝑇
⋅ 𝑦
𝑗𝑘
(𝜎)] , if 𝑡

𝑗𝑘
< 0.

(19)

Let 𝑋
𝑗𝑘
= 𝑐𝑇
𝑗𝑘𝑚
𝑥 + 𝑑
𝑗𝑘𝑚

. So, from (5), if 𝑡
𝑗𝑘
> 0, the first-part

LLBF of 𝑓j𝑘(𝑥) denoted by 𝑓𝑙
𝑗𝑘
(𝑥) about 𝑥 can get

𝑓
𝑙

𝑗𝑘
(𝑥) = 𝑡𝑗𝑘

[

[

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚 (𝜎) ⋅ ln (𝑋𝑗𝑘)

+𝑓
𝑗𝑘
(𝑦
𝑗𝑘 (𝜎)) − 𝑧𝑗𝑘(𝜎)

𝑇
⋅ 𝑦
𝑗𝑘 (𝜎)

]

]

,

(20)

where 𝑧
𝑗𝑘𝑚
(𝜎) denotes the 𝑚th component of 𝑧

𝑗𝑘
(𝜎). And if

𝑡
𝑗𝑘
< 0,

𝑓
𝑙

𝑗k (𝑥) = 𝑡𝑗𝑘
[

[

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚
(1 − 𝜎) ⋅ ln (𝑋

𝑗𝑘
)

+ 𝑓
𝑗𝑘
(𝑦
𝑗𝑘
(𝜎)) − 𝑧

𝑗𝑘
(1 − 𝜎)

𝑇
⋅ 𝑦
𝑗𝑘
(𝜎) ]

]

.

(21)

2.3. Second-Part Parametric Linear Relaxation. Now, by
Theorem 1, we construct the second-part LLBF of 𝑡

𝑗𝑘
ln(𝑋
𝑗𝑘
)

about the variable 𝑥. For any interval vector 𝑋 = [𝑥, 𝑥] ⊆

𝑋0 ⊂ 𝑅𝑛 and any 𝑥 = (𝑥
𝑖
)
𝑛×1

∈ 𝑋, let 𝜙
𝑗𝑘𝑚
(𝑥) =

ln(𝑐𝑇
𝑗𝑘𝑚
𝑥+𝑑
𝑗𝑘𝑚
). For convenience, the following notations and

functions of this paper are introduced:

𝑋
𝑙

𝑗𝑘𝑚
=

𝑛

∑
𝑖=1

min (𝑐
𝑗𝑘𝑚𝑖
𝑥
𝑖
, 𝑐
𝑗𝑘𝑚𝑖
𝑥
𝑖
) + 𝑑
𝑗𝑘𝑚
,

𝑋
𝑢

𝑗𝑘𝑚
=

𝑛

∑
𝑖=1

max (𝑐
𝑗𝑘𝑚𝑖
𝑥
𝑖
, 𝑐
𝑗𝑘𝑚𝑖
𝑥
𝑖
) + 𝑑
𝑗𝑘𝑚
,

𝑤
𝑗𝑘𝑚𝑖

= min {𝑐
𝑗𝑘𝑚𝑖
(𝑋
𝑙

𝑗𝑘𝑚
)
−1

, 𝑐
𝑗𝑘𝑚𝑖
(𝑋
𝑢

𝑗𝑘𝑚
)
−1

} ,

𝑤
𝑗𝑘𝑚𝑖

= max {𝑐
𝑗𝑘𝑚𝑖
(𝑋
𝑙

𝑗𝑘𝑚
)
−1

, 𝑐
𝑗𝑘𝑚i(𝑋

𝑢

𝑗𝑘𝑚
)
−1

} ,

𝑥 (𝜎) = 𝑥 +

𝑛

∑
𝑖=1

𝜎
𝑖
(𝑥
𝑖
− 𝑥
𝑖
) 𝑒
𝑖
,

𝑤
𝑗𝑘𝑚 (𝜎) = 𝑤𝑗𝑘𝑚 +

𝑛

∑
𝑖=1

𝜎
𝑖
(𝑤
𝑗𝑘𝑚𝑖

− 𝑤
𝑗𝑘𝑚𝑖
) 𝑒
𝑖
,

(22)

where 𝑒
𝑖
denotes the 𝑖th unit vector in𝑅𝑛.Then, byTheorem 1,

for any vector 𝜎 ∈ {0, 1}𝑛, we define the LLBF of 𝑡
𝑗𝑘
𝜙
𝑗𝑘𝑚
(𝑥)

by 𝑡
𝑗𝑘
𝜙𝑙
𝑗𝑘𝑚
(𝑥) below:

𝑡
𝑗𝑘
𝜙𝑙
𝑗𝑘𝑚
(𝑥)

=

{{{{{{{

{{{{{{{

{

𝑡
𝑗𝑘
[𝑤
𝑗𝑘𝑚(𝜎)

𝑇
𝑥 + 𝜙
𝑗𝑘𝑚 (𝑥 (𝜎)) ,

−𝑤
𝑗𝑘𝑚
(𝜎)
𝑇
𝑥 (𝜎)] if 𝑡

𝑗𝑘
> 0,

𝑡
𝑗𝑘
[𝑤
𝑗𝑘𝑚
(1 − 𝜎)

𝑇
𝑥 + 𝜙
𝑗𝑘𝑚
(𝑥 (𝜎)) ,

−𝑤
𝑗𝑘𝑚
(1 − 𝜎)

𝑇
𝑥 (𝜎)] if 𝑡

𝑗𝑘
< 0.

(23)

Then, if 𝑡
𝑗𝑘
> 0, we can construct the LLBF of 𝑡

𝑗𝑘
∏
𝐾𝑗𝑘

𝑚=1

(𝑐𝑇
𝑗𝑘𝑚
𝑥 + 𝑑
𝑗𝑘𝑚
)
𝛼𝑗𝑘𝑚 as follows:

𝐿𝐹
1

𝑗𝑘
(𝑥)

= 𝑡
𝑗𝑘

{

{

{

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚
(𝜎)

× [𝑤
𝑗𝑘𝑚(𝜎)

𝑇
𝑥 + 𝜙
𝑗𝑘𝑚 (𝑥 (𝜎)) −𝑤𝑗𝑘𝑚(𝜎)

𝑇
𝑥 (𝜎)]

+𝑓
𝑗𝑘
(𝑦
𝑗𝑘
(𝜎)) − 𝑧

𝑗𝑘
(𝜎)
𝑇
⋅ 𝑦
𝑗𝑘
(𝜎)
}

}

}

= 𝑡
𝑗𝑘

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚
(𝜎) [𝑤

𝑗𝑘𝑚
(𝜎)
𝑇
𝑥]

+ 𝑡
𝑗𝑘
[𝑓
𝑗𝑘
(𝑦
𝑗𝑘 (𝜎)) − 𝑧𝑗𝑘(𝜎)

𝑇
⋅ 𝑦
𝑗𝑘 (𝜎)]

+ 𝑡
𝑗𝑘

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚
(𝜎) [𝜙

𝑗𝑘𝑚
(𝑥 (𝜎)) − 𝑤

𝑗𝑘𝑚
(𝜎)
𝑇
𝑥 (𝜎)] .

(24)
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And, for 𝑡
𝑗𝑘

< 0, we can get the LLBF of 𝑡
𝑗𝑘
∏
𝐾𝑗𝑘

𝑚=1

(𝑐𝑇
𝑗𝑘𝑚
𝑥 + 𝑑
𝑗𝑘𝑚
)
𝛼𝑗𝑘𝑚 as

𝐿𝐹
2

𝑗𝑘
(𝑥)

= 𝑡
𝑗𝑘

{

{

{

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚
(1 − 𝜎)

× [𝑤
𝑗𝑘𝑚
(1 − 𝜎)

𝑇
𝑥 + 𝜙
𝑗𝑘𝑚
(𝑥 (𝜎))

−𝑤
𝑗𝑘𝑚
(1 − 𝜎)

𝑇
𝑥 (𝜎)]

+𝑓
𝑗𝑘
(𝑦
𝑗𝑘
(𝜎)) − 𝑧

𝑗𝑘
(1 − 𝜎)

𝑇
⋅ 𝑦
𝑗𝑘
(𝜎)
}

}

}

= 𝑡
𝑗𝑘

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚 (1 − 𝜎) [𝑤𝑗𝑘𝑚(1 − 𝜎)

𝑇
𝑥]

+ 𝑡
𝑗𝑘
[𝑓
𝑗𝑘
(𝑦
𝑗𝑘
(𝜎)) − 𝑧

𝑗𝑘
(1 − 𝜎)

𝑇
⋅ 𝑦
𝑗𝑘
(𝜎)]

+ 𝑡
𝑗𝑘

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚
(1 − 𝜎) [𝜙

𝑗𝑘𝑚
(𝑥 (𝜎)) .

−𝑤
𝑗𝑘𝑚(1 − 𝜎)

𝑇
𝑥 (𝜎)] .

(25)

Taken together, the LLBF of function 𝑓
𝑗
(𝑥) with respect to 𝑥

can be obtained as

𝐿𝐹
𝑗 (𝑥) = ∑

𝑡𝑗𝑘>0

𝐿𝐹
1

𝑗𝑘
(𝑥) + ∑

𝑡𝑗𝑘<0

𝐿𝐹
2

𝑗𝑘
(𝑥) , 𝑗 = 0, 1, . . . , 𝑝.

(26)

Obviously, for all 𝑥 ∈ 𝑋 ⊆ 𝑋
0, 𝑗 = 0, 1, . . . , 𝑝, 𝐿𝐹

𝑗
(𝑥) ⩽

𝑓
𝑗
(𝑥).

2.4. Approximation Relaxation Linear Programming. Conse-
quently, the approximation relaxation lower linear program-
ming (LLP) of problem (NPP) with the parametric vector 𝜎
in interval vector 𝑋 = [𝑥, 𝑥] ⊆ 𝑋0 ⊂ 𝑅𝑁 is easily obtained
like the following:

(LLP) min 𝐿𝐹
0
(𝑥)

s.t. 𝐴𝑥 ⩽ 𝑏,

𝐿𝐹
𝑗
(𝑥) ⩽ 𝑒

𝑗
,

𝑥 ∈ 𝑋.

(27)

Based on the linear underestimators, every feasible point
of (NPP) is feasible in (LLP), and the objective of (LLP) is
smaller than or equal to that of (NPP) for all points in𝑋.Thus,
(LLP) provides a valid lower bound for the solution of (NPP)
over the partition set 𝑋. It should be noted that problem
(LLP) contains only the necessary constraints to guarantee
convergence of the algorithm. The following results are key
to the convergence of the proposed algorithm.

Lemma 2. For all 𝑗 = 0, 1, . . . , 𝑝, 𝑘 = 1, 2, . . . , 𝐾
𝑗
, 𝑚 =

1, 2, . . . , 𝐾
𝑗𝑘
, and 𝑋 = [𝑥, 𝑥] ⊆ 𝑋0, let

Δ
1

𝑗𝑘𝑚
= 𝜙
𝑗𝑘𝑚
(𝑥) − [𝑤

𝑗𝑘𝑚
(𝜎)
𝑇
𝑥 + 𝜙
𝑗𝑘𝑚
(𝑥 (𝜎))

− 𝑤
𝑗𝑘𝑚
(𝜎)
𝑇
𝑥 (𝜎)] ,

Δ
2

𝑗𝑘𝑚
= [𝑤
𝑗𝑘𝑚
(1 − 𝜎)

𝑇
𝑥 + 𝜙
𝑗𝑘𝑚
(𝑥 (𝜎))

−𝑤
𝑗𝑘𝑚
(1 − 𝜎)

𝑇
𝑥 (𝜎)] − 𝜙

𝑗𝑘𝑚
(𝑥) .

(28)

Then one has lim
‖𝑥−𝑥‖→0

Δ1
𝑗𝑘𝑚
= lim
‖𝑥−𝑥‖→0

Δ2
𝑗𝑘𝑚

→ 0.

Proof. From Theorem 1 and definition of function 𝜙
𝑗𝑘𝑚
(𝑥),

for any 𝑥 ∈ 𝑋, it follows that

0 ⩽ Δ
1

𝑗𝑘𝑚
= (𝜙
󸀠

𝑗𝑘𝑚
(𝜁) − 𝑤𝑗𝑘𝑚 (𝜎))

𝑇

(𝑥 − 𝑥 (𝜎)) , ∀𝑗, 𝑘, 𝑚,

(29)

where𝜙󸀠
𝑗𝑘𝑚

is a gradient function of𝜙
𝑗𝑘𝑚

, 𝜁 = 𝜇𝑥+(1−𝜇𝑥(𝜎))
for some 𝜇 ∈ [0, 1], and 𝑥(𝜎), 𝑤

𝑗𝑘𝑚
(𝜎) are vertices of the

interval vectors𝑋 and𝑊
𝑗𝑘𝑚
:= [𝑤
𝑗𝑘𝑚
, 𝑤
𝑗𝑘𝑚
], respectively. By

(6) and proof of Theorem 1, the right-hand side in inequality
(29) satisfies for arbitrarily fixed 𝜎

(𝜙
󸀠

𝑗𝑘𝑚
(𝜁) − 𝑤𝑗𝑘𝑚 (𝜎))

𝑇

(𝑥 − 𝑥 (𝜎))

⩽

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜙
𝑗𝑘𝑚 (𝜁)

𝜕𝜁
𝑖

− 𝑤
𝑗𝑘𝑚𝑖 (𝜎)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖 (𝜎)

󵄨󵄨󵄨󵄨

⩽

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑗𝑘𝑚𝑖

(0) − 𝑤
𝑗𝑘𝑚𝑖

(1)
󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖 (𝜎)

󵄨󵄨󵄨󵄨

=

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑗𝑘𝑚𝑖

− 𝑤
𝑗𝑘𝑚𝑖

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖 (𝜎)

󵄨󵄨󵄨󵄨

=

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑘𝑚𝑖

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑋
𝑙

𝑗𝑘𝑚
)
−1

− (𝑋
𝑢

𝑗𝑘𝑚
)
−1󵄨󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖 (𝜎)

󵄨󵄨󵄨󵄨

=

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑘𝑚𝑖

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖 (𝜎)

󵄨󵄨󵄨󵄨 ⋅ (𝜅𝑗𝑘𝑚)
−1

⋅
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑢

𝑗𝑘𝑚
− 𝑋
𝑙

𝑗𝑘𝑚

󵄨󵄨󵄨󵄨󵄨

⩽

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑘𝑚𝑖

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖

󵄨󵄨󵄨󵄨 ⋅ (𝜅𝑗𝑘𝑚)
−1

⋅
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑢

𝑗𝑘𝑚
− 𝑋
𝑙

𝑗𝑘𝑚

󵄨󵄨󵄨󵄨󵄨

= (𝜅
𝑗𝑘𝑚
)
−1

(

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑘𝑚𝑖

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑥𝑖 − 𝑥𝑖

󵄨󵄨󵄨󵄨)

2

⩽ (𝜅
𝑗𝑘𝑚
)
−1

(

𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑗𝑘𝑚𝑖

󵄨󵄨󵄨󵄨󵄨
)

2

⋅
󵄩󵄩󵄩󵄩𝑥 − 𝑥

󵄩󵄩󵄩󵄩 ,

(30)

where 𝜅
𝑗𝑘𝑚

= 𝜇𝑋𝑙
𝑗𝑘𝑚

+ (1 − 𝜇)𝑋𝑢
𝑗𝑘𝑚

for some 𝜇 ∈ [0, 1]. It
shows that

lim
‖𝑥−𝑥‖→0

Δ
1

𝑗𝑘𝑚
󳨀→ 0. (31)

Similarly, we can prove that lim
‖𝑥−𝑥‖→0

Δ2
𝑗𝑘𝑚

→ 0.
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Similarly, we have Lemma 3 (also see Lemma 1 in [38]).

Lemma 3. For all 𝑗, 𝑘, 𝑌
𝑗𝑘
= [𝑦𝑙
𝑗𝑘
, 𝑦𝑢
𝑗𝑘
] ⊆ 𝑅𝐾𝑗𝑘 , let

Δ
3

𝑗𝑘
= exp(

𝐾𝑗𝑘

∑
𝑚=1

𝛼
𝑗𝑘𝑚
𝑦
𝑗𝑘𝑚
) − [𝑧

𝑗𝑘
(𝜎)
𝑇
⋅ 𝑦
𝑗𝑘
+ 𝑓
𝑗𝑘
(𝑦
𝑗𝑘
(𝜎))

−𝑧
𝑗𝑘(𝜎)
𝑇
⋅ 𝑦
𝑗𝑘 (𝜎)] ,

Δ
4

𝑗𝑘
= 𝑧
𝑗𝑘
(1 − 𝜎)

𝑇
⋅ 𝑦
𝑗𝑘
+ 𝑓
𝑗𝑘
(𝑦
𝑗𝑘
(𝜎)) − 𝑧

𝑗k(1 − 𝜎)
𝑇

⋅ 𝑦
𝑗𝑘 (𝜎) − exp(

𝐾𝑗𝑘

∑
𝑚=1

𝛼
𝑗𝑘𝑚
𝑦
𝑗𝑘𝑚
) .

(32)

Then lim
‖𝑦
𝑢
𝑗𝑘
−𝑦
𝑙
𝑗𝑘
‖→0

Δ
3

𝑗𝑘
= lim
‖𝑦
𝑢
𝑗𝑘
−𝑦
𝑙
𝑗𝑘
‖→0

Δ
4

𝑗𝑘
→ 0.

Theorem 4. For any 𝑗, 𝑘, 𝑚, let 𝛿
𝑗𝑘
= 𝑦
𝑢

𝑗𝑘
− 𝑦
𝑙

𝑗𝑘
, 𝑋 = [𝑥, 𝑥] ⊆

𝑋0, and 𝑌
𝑗𝑘
= [𝑦𝑙
𝑗𝑘
, 𝑦𝑢
𝑗𝑘
] ⊆ 𝑅𝐾𝑗𝑘 . Then, when ‖𝑥−𝑥‖ → 0, for

any 𝑥 ∈ 𝑋, the difference of 𝐿𝐹
𝑗
(𝑥) and 𝑓

𝑗
(𝑥) satisfies 𝑓

𝑗
(𝑥) −

𝐿𝐹
𝑗
(𝑥) → 0.

Proof. Firstly, notice that ‖𝑦𝑢
𝑗𝑘
−𝑦𝑙
𝑗𝑘
‖ → 0when ‖𝑥−𝑥‖ → 0.

Then, for any 𝑥 ∈ 𝑋, and for any 𝑗, let

Δ = 𝑓
𝑗
(𝑥) − 𝐿𝐹

𝑗
(𝑥) = ∑

𝑡𝑗𝑘>0

(𝑓
𝑗
(𝑥) − 𝐿𝐹

1

𝑗
(𝑥))

+ ∑
𝑡𝑗𝑘<0

(𝑓
𝑗 (𝑥) − 𝐿𝐹

2

𝑗
(𝑥)) ,

(33)

and let Δ1
𝑗𝑘
= 𝑓
𝑗
(𝑥) − 𝐿𝐹1

𝑗
(𝑥) and Δ2

𝑗𝑘
= 𝑓
𝑗
(𝑥) − 𝐿𝐹2

𝑗
(𝑥).

Therefore, we only need to prove Δ1j𝑘 → 0, Δ2
𝑗𝑘
→ 0 as

‖𝑥 − 𝑥‖ → 0.
We first prove Δ1

𝑗𝑘
→ 0. Since

Δ
1

𝑗𝑘
= (𝑓
𝑗 (𝑥) − 𝑓

𝑙

𝑗𝑘
(𝑥)) + (𝑓

𝑙

𝑗𝑘
(𝑥) − 𝐿𝐹

1

𝑗𝑘
(𝑥))

= Δ
1

𝑗𝑘1
+ Δ
1

𝑗𝑘2
,

(34)

it is obvious that we only need to prove Δ1
𝑗𝑘1

→

0 and Δ1
𝑗𝑘2

→ 0. We first consider the difference Δ1
𝑗𝑘1

. By
the definition of 𝐿𝐹1

𝑗𝑘
(𝑥), 𝑓𝑙
𝑗𝑘
(𝑥), it follows that

Δ
1

𝑗𝑘1
= 𝑓
𝑗
(𝑥) − 𝑓

𝑙

𝑗𝑘
(𝑥)

= 𝑡
𝑗𝑘
[

[

𝐾𝑗𝑘

∏
𝑚=1

(𝑐
𝑇

𝑗𝑘𝑚
𝑥 + 𝑑
𝑗𝑘𝑚
)
𝛼𝑗𝑘𝑚

− 𝑧
𝑗𝑘
(𝜎)
𝑇
⋅ 𝑦
𝑗𝑘

− 𝑓
𝑗𝑘
(𝑦
𝑗𝑘
(𝜎)) + 𝑧

𝑗𝑘
(𝜎)
𝑇
⋅ 𝑦
𝑗𝑘
(𝜎) ]

]

= 𝑡
𝑗𝑘
[

[

exp(
𝐾𝑗k

∑
𝑚=1

𝛼
𝑗𝑘𝑚
𝑦
𝑗𝑘𝑚
) − 𝑧

𝑗𝑘(𝜎)
𝑇
⋅ 𝑦
𝑗𝑘

− 𝑓
𝑗𝑘
(𝑦
𝑗𝑘 (𝜎)) + 𝑧𝑗𝑘(𝜎)

𝑇
⋅ 𝑦
𝑗𝑘 (𝜎)

]

]

= 𝑡
𝑗𝑘
Δ
3

𝑗𝑘
,

(35)

where 𝑋
𝑗𝑘
= 𝑐
𝑇

𝑗𝑘𝑚
+ 𝑑
𝑗𝑘𝑚

. Then, by Lemma 2, Δ1
𝑗𝑘1

→ 0 as
‖𝑥 − 𝑥‖ → 0.

Now, the differenceΔ1
𝑗𝑘2
= 𝑓𝑙
𝑗𝑘
(𝑥)−𝐿𝐹1

𝑗𝑘
(𝑥) is considered.

From the definition of 𝑓𝑙
𝑗𝑘
(𝑥), 𝐿𝐹1

𝑗𝑘
(𝑥), we can obtain

Δ
1

𝑗𝑘2
= 𝑓
𝑙

𝑗𝑘
(𝑥) − 𝐿𝐹

1

𝑗𝑘
(𝑥)

= 𝑡
𝑗𝑘

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚
(𝜎) [ln (𝑋

𝑗𝑘
) − 𝑤
𝑗𝑘𝑚
(𝜎)
𝑇
𝑥

−𝜙
𝑗𝑘𝑚
(𝑥 (𝜎)) + 𝑤

𝑗𝑘𝑚
(𝜎)
𝑇
𝑥 (𝜎)]

= 𝑡
𝑗𝑘

𝐾𝑗𝑘

∑
𝑚=1

𝑧
𝑗𝑘𝑚 (𝜎) ⋅ Δ

1

𝑗𝑘𝑚
.

(36)

Then, by Lemma 3, Δ1
𝑗𝑘2

→ 0 as ‖𝑥 − 𝑥‖ → 0. Therefore,
when ‖𝑥 − 𝑥‖ → 0, we can get

Δ
1

𝑗𝑘
= 𝑓
𝑗
(𝑥) − 𝐿𝐹

1

𝑗
(𝑥) = Δ

1

𝑗𝑘1
+ Δ
1

𝑗𝑘2
󳨀→ 0. (37)

By similar discussion as above, we can get

Δ
2

𝑗𝑘
= 𝑓
𝑗
(𝑥) − 𝐿𝐹

2

𝑗
(𝑥) 󳨀→ 0, as 󵄩󵄩󵄩󵄩𝑥 − 𝑥

󵄩󵄩󵄩󵄩 󳨀→ 0. (38)

It follows from (37) and (38) that 𝑓
𝑗
(𝑥) − 𝐿𝐹

𝑗
(𝑥) → 0

when ‖𝑥 − 𝑥‖ → 0.

Theorem 4 shows that as the subhyperrectangle 𝑋 ⊆

𝑋0 is small enough, the solution to (LLP)(𝑋) is sufficiently
approaching the solution of (NPP)(𝑋) and this guarantees the
global convergence of the method.

3. Algorithm and Its Convergence

In this section, a branch-and-bound algorithm is developed
to solve (NPP) based on the relaxation lower linear program-
ming in Section 2. This algorithm needs to solve a sequence
of linear programming over partitioned subsets of 𝑋 in
order to find a global optimum. Consequently, this method
needs partitioning the set 𝑋0 into subhyperrectangles, each
concerned with a node of the branch-and-bound tree, and
each node is associated with a relaxation linear subproblem
in each subhyperrectangle.

First, at any stage 𝑘 of the algorithm, suppose that we
have a collection of active nodes denoted by 𝑄

𝑘
, say, each
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associated with a subhyperrectangle𝑋 ⊂ 𝑋0, for all 𝑋 ∈ 𝑄
𝑘
.

For each node 𝑋, we will have computed a lower bound of
the optimal value of the problem ((NPP)(𝑋)) via solution
𝐿𝐵(𝑋) of problem (LLP) so that the lower bound of optimal
value of (NPP) on the whole initial box region 𝑋0 is given
by 𝐿𝐵

𝑘
= min{𝐿𝐵(𝑋) | ∀𝑋 ∈ 𝑄

𝑘
} at stage 𝑘. Whenever

the lower bounding solution to any node subproblem; that
is, the solution to the relaxation linear programming (LLP),
turns out to be feasible to (NPP), we update the upper
boundof incumbent solution𝑈𝐵 if necessary.Then, the active
nodes collection 𝑄

𝑘
will satisfy 𝑈𝐵 ⩾ 𝐿𝐵(𝑋), for all 𝑋 ∈

𝑄
𝑘
, for each stage 𝑘. We now select an active node 𝑋 ∈

𝑄
𝑘
such that 𝐿𝐵(𝑋) = 𝐿𝐵

𝑘
for further considering. The

active node 𝑋 is partitioned into two subhyperrectangles
according to the following branching rules. For these two
subhyperrectangles, the fathoming step is applied in order
to identify whether the subhyperrectangles should be elim-
inated. Finally, we obtain a collection of active nodes for the
next stage, and this process is repeated until convergence is
obtained.

3.1. Branching Rule. The critical element in guaranteeing
convergence to a global minimum means the choice of a
suitable partitioning strategy. In our paper, we choose a
simple and standard bisection rule. This method is sufficient
to ensure convergence since it drives all the intervals to
zero for the variables that are associated with the term
yielding the greatest discrepancy in the employed approxima-
tion along with any infinite branch of a branch-and-bound
tree.

Consider any node subproblem identified by the hyper-
rectangle 𝑋 = {𝑥, 𝑥} ⊆ 𝑋

0 and the selection of branching
variable 𝑥

𝑝
and partitioning of 𝑋 is then done by using the

following rule (see also [39, 40]). Let 𝑝 = argmax{𝑥
𝑖
−

𝑥
𝑖
; 𝑖 = 1, 2, . . . , 𝑛}, partitioning𝑋 by bisectioning the interval

[𝑥
𝑝
, 𝑥
𝑝
] into the subintervals [𝑥

𝑝
, (𝑥
𝑝
+ 𝑥
𝑝
)/2] and [(𝑥

𝑝
+

𝑥
𝑝
)/2, 𝑥
𝑝
].

3.2. Algorithmic Statement. The deterministic global opti-
mization algorithm is summarized as follows.

Step 0 (initialization).

(0.1) Initialize the iteration counter 𝑘 := 0, the set of all
active nodes 𝑄

0
= {𝑋0}, the upper bound 𝛽 = +∞,

and the set of feasible points 𝐹 := 0.

(0.2) Solve (LLP) with 𝑋 = 𝑋0 in order to find an optimal
solution 𝑥0 and the optimal value 𝛼(𝑋0). If 𝑥0 is
feasible to (NPP), then set 𝛽 = 𝑓(𝑥0), 𝐹 = 𝐹 ∪ {𝑥0},
and 𝛼

0
= 𝛼(𝑋0), if necessary.

(0.3) If 𝛽 ⩽ 𝛼
0
+ 𝜀, where 𝜀 > 0 is some accuracy tolerance,

then stop. 𝑥0 is global 𝜀-optimal solution to (NPP).
Otherwise, set 𝑘 = 1 and proceed to Step 1.

Step 1 (partitioning step). According to the rectangle bisection
rule, select a branching variable 𝑥

𝑝
to partition𝑋𝑘 to get two

new subhyperrectangles 𝑋𝑘,1, 𝑋𝑘,2 ⊆ 𝑅𝑛. Call the set of new
partition rectangles as𝑋𝑘 = {𝑋𝑘,1, 𝑋𝑘,2}.

Step 2 (feasibility check for (NPP) in subhyperrectangles). For
each new node 𝑋 = [𝑥, 𝑥] ∈ 𝑋

𝑘, for each 𝑙 = 1, 2, . . . , 𝑞,
compute the lower bound for any linear constraint function
∑
𝑛

𝑖=1
𝑎
𝑙𝑖
𝑥
𝑖
only according to the present considered rectangle;

that is, compute lower bound∑
𝑎𝑙𝑖>0

𝑎
𝑙𝑖
𝑥
𝑖
+∑
𝑎𝑙𝑖<0

𝑎
𝑙𝑖
𝑥
𝑖
. If there

exists some 𝑙 ∈ {1, . . . , 𝑞} such that

∑
𝑎𝑙𝑖>0

𝑎
𝑙𝑖
𝑥
𝑖
+ ∑
𝑎𝑙𝑖<0

𝑎
𝑙𝑖
𝑥
𝑖
> 𝑏
𝑙
, (39)

then the corresponding subrectangle 𝑋 is eliminated from
𝑋
𝑘; that is,𝑋𝑘 = 𝑋𝑘 \ {𝑋}, and skip to next element of𝑋𝑘.

Step 3 (bounding step). If𝑋𝑘 = 0, go to Step 5. If𝑋𝑘 ̸= 0, solve
LLP(X) to obtain 𝛼(𝑋) and 𝑥(𝑋) for each 𝑋 ∈ 𝑋𝑘. If 𝛼(𝑋) >
𝛽, set𝑋𝑘 = 𝑋𝑘 \ {𝑋}. Otherwise, if 𝑥(𝑋), is feasible to (NPP),
then update 𝛽 and 𝐹, if necessary.

Step 4 (updating the upper bound). Select the midpoint 𝑥mid

of 𝑋𝑘; if 𝑥mid is feasible to (NP)(𝑋𝑘), then 𝐹 := 𝐹 ∪ {𝑥mid}.
Define the upper bound 𝛽 := min

𝑥∈𝐹
𝑓(𝑥). If 𝐹 ̸= 𝜙, the best

known feasible point is denoted by 𝑥best := argmin
𝑥∈𝐹
𝑓(𝑥).

Step 5 (updating the lower bound). The partition set remain-
ing is now 𝑄

𝑘
:= (𝑄
𝑘
\ {𝑋𝑘}) ∪ 𝑋

𝑘 and a new lower bound is
𝛼
𝑘
:= min

𝑋∈𝑄𝑘
𝛽(𝑋).

Step 6 (convergence checking). Set 𝑄
𝑘+1
= 𝑄
𝑘
\ {𝑋 : 𝛽 − 𝛼

𝑘
⩽

𝜀,𝑋 ∈ 𝑄
𝑘
}. If 𝑄

𝑘+1
= 𝜙, then stop with 𝛽 as the solution of

(NPP) and 𝑥best as an optimal solution. Otherwise select an
active node 𝑋𝑘+1 such that 𝑋𝑘+1 = argmin

𝑋∈𝑄𝑘+1
𝛼(𝑋), 𝑥𝑘 =

𝑥(𝑋
𝑘
). Set 𝑘 := 𝑘 + 1 and go to Step 1.

3.3. Convergence of the Algorithm. By Theorem 4, global
algorithm convergence will be given inTheorem 5.

Theorem 5. The above algorithm either terminates finitely
with the incumbent solution being optimal to (NPP) or
generates an infinite sequence of iterations such that, along
with any infinite branch of the branch-and-bound tree, any
accumulation point of sequence 𝑥𝑘 will be global solution to
(NPP).

Proof. If the above proposed algorithm terminates finitely,
obviously 𝛼 is a global optimal value and 𝑥best is optimal
solution for the (NPP). If the algorithm is infinite, it generates
at least one infinite sequence {𝑋𝑘} such that 𝑋𝑘+1 ⊂ 𝑋𝑘 for
any 𝑘. Then, from [39, 40], ⋂

𝑘
𝑋𝑘 = {𝑥} for some point
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Table 1: Computational results of Examples 1–5.

Example Methods Optimal solution Optimal value Iter. 𝐿max

Example 1 [13] (0, 0, 1.25) 2.9311923 25
Ours (0, 0, 1.25) 2.9311923 15 4

Example 2 [13] (0.000, 1.111, 0.000) 4.217 31
Ours (0.000, 1.111, 0.000) 4.217 20 5

Example 3 [14] (1.5, 1.5, 0) 7.96324 52 3
Ours (3.0, 4.0, 0) 5.7606445 55 8

Example 4
[11] (1.0, 1.0) 1.3463824 26 4
[12] (1.0, 1.0) 1.3463824 1 0
Ours (1.0, 1.0) 1.3463824 24 2

Example 5
[11] (1.0, 1.0) 288.0 43 5
[12] (1.0, 1.0) 288.0 1 0
Ours (1.0, 1.0) 288.0 42 5

𝑥 ∈ 𝑅𝑛. For every iteration of the algorithm, the following
results are true:

𝛼
𝑘
⩽ min
𝑥∈𝑋
0
𝑓 (𝑥) , 𝑋

𝑘
∈ arg min
𝑋∈𝑄𝑘

𝛼 (𝑋) ,

𝑥
𝑘
= 𝑥 (𝑋

𝑘
) ∈ 𝑋

𝑘
, 𝑘 = 0, 1, . . . .

(40)

Since {𝑥𝑘} is contained in a compact set𝑋0, theremust be one
convergent subsequence {𝑥𝑠} ⊆ {𝑥𝑘} and assume lim

𝑠→∞
𝑥
𝑠
=

𝑥. Then from the proposed algorithm, there exists a decreas-
ing subsequence {𝑋𝑟} ⊂ {𝑋𝑠} where 𝑋𝑟 ∈ 𝑄

𝑟
with 𝑥𝑟 ∈

𝑋𝑟, 𝛼
𝑟
= 𝛼(𝑋𝑟) = 𝐿𝐹

0
(𝑥𝑟), and lim

𝑟→∞
𝑋𝑟 = {𝑥}. According

to Theorem 5, we have lim
𝑟→∞

𝛼
𝑟
= lim

𝑟→∞
𝐿𝐹
0
(𝑥𝑟) =

lim
𝑟→∞

𝑓
0
(𝑥𝑟) = 𝑓

0
(𝑥).

Then all what remains is to prove that 𝑥 is feasible to
(NPP)(𝑋0). First, it is obvious that 𝑥 ∈ 𝑋0 since𝑋0 is closed.
Secondly, by the algorithm, we can obtain that, for all 𝑟, 𝑥𝑟 is
feasible solution to (NPP); that is,𝐴𝑥𝑟 ⩽ 𝑏. Taking limits over
𝑟 in this inequality yields𝐴𝑥 ⩽ 𝑏. The remainder of the proof
will be by contradiction. Assume that 𝑓

𝑗
(𝑥) > 𝑒

𝑗
for some

𝑗 = 1, 2, . . . , 𝑝. Because function 𝐿𝐹
𝑗
(𝑥) is continuous and

again from Theorem 4, the sequence {𝐿𝐹
𝑗
(𝑥𝑟)} converges to

𝑓
𝑗
(𝑥); then by definition of convergence, theremust be 𝑟, such

that |𝐿𝐹
𝑗
(𝑥𝑟)−𝑓

𝑗
(𝑥)| < 𝑓

𝑗
(𝑥)−𝑒

𝑗
for any 𝑟 > 𝑟.Therefore, for

any 𝑟 > 𝑟, we have 𝑓
𝑗
(𝑥) > 𝑒

𝑗
, which implies that LLP(𝑋𝑟) is

infeasible and violating the assumption that 𝑥𝑟 = 𝑥(𝑋𝑟). This
is a contradiction, and thus the theorem is completed.

4. Numerical Experiments

To verify performance of the proposed global optimization
algorithm, some test problems were implemented. The test
problems are coded in C++ and the experiments are con-
ducted on a Pentium IV (3.06GHZ) microcomputer. Set
𝜀 = 0.000001. The results of Examples 1–5 are summarized
in Table 1. In Table 1, the notations have been used for row
headers: Iter.: number of algorithm iterations; 𝐿max: the
maximal length of the enumeration tree.

Example 1 (see [13]). Consider

min 𝑦 =
3𝑥
1
+ 5𝑥
2
+ 3𝑥
3
+ 50

3𝑥
1
+ 4𝑥
2
+ 5𝑥
3
+ 50

+
3𝑥
1
+ 4𝑥
2
+ 50

4𝑥
1
+ 3𝑥
2
+ 2𝑥
3
+ 50

+
4𝑥
1
+ 2𝑥
2
+ 4𝑥
3
+ 50

5𝑥
1
+ 4𝑥
2
+ 3𝑥
3
+ 50

s.t. 6𝑥
1
+ 3𝑥
2
+ 3𝑥
3
⩽ 10, 10𝑥

1
+ 3𝑥
2
+ 8𝑥
3
⩽ 10,

𝑥
1
, 𝑥
2
, 𝑥
3
⩾ 0.

(41)

Example 2 (see [13]). Consider

min 𝑦 =
4𝑥
1
+ 3𝑥
2
+ 3𝑥
3
+ 50

3𝑥
2
+ 3𝑥
3
+ 50

+
3𝑥
1
+ 4𝑥
3
+ 50

4𝑥
1
+ 4𝑥
2
+ 5𝑥
3
+ 50

+
𝑥
1
+ 2𝑥
2
+ 5𝑥
3
+ 50

𝑥
1
+ 5𝑥
2
+ 5𝑥
3
+ 50

+
𝑥
1
+ 2𝑥
2
+ 4𝑥
3
+ 50

5𝑥
2
+ 4𝑥
3
+ 50

s.t. 2𝑥
1
+ 𝑥
2
+ 5𝑥
3
⩽ 10, 𝑥

1
+ 6𝑥
2
+ 3𝑥
3
⩽ 10,

5𝑥
1
+ 9𝑥
2
+ 2𝑥
3
⩽ 10, 9𝑥

1
+ 7𝑥
2
+ 3𝑥
3
⩽ 10,

𝑥
1
, 𝑥
2
, 𝑥
3
⩾ 0.

(42)

Example 3 (see [14]). Consider

min (
13𝑥
1
+ 13𝑥

2
+ 13

37𝑥
1
+ 73𝑥

2
+ 13

)

−1.4

× (
63𝑥
1
− 18𝑥

2
+ 39

13𝑥
1
+ 26𝑥

2
+ 13

)

1.2

− (
𝑥
1
+ 2𝑥
2
+ 5𝑥
3
+ 50

𝑥
1
+ 5𝑥
2
+ 5𝑥
3
+ 50

)

0.5

× (
𝑥
1
+ 2𝑥
2
+ 4𝑥
3
+ 50

5𝑥
2
+ 4𝑥
3
+ 50

)

−2

s.t. 2𝑥
1
+ 𝑥
2
+ 5𝑥
3
⩽ 10, 5𝑥

1
− 3𝑥
2
= 3,

1.5 ⩽ 𝑥
1
⩽ 3, 𝑥

1
, 𝑥
2
, 𝑥
3
⩾ 0.

(43)
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Table 2: Computational results of Example 6.

Example (𝑚, 𝑛) Iter. Time
1 (10, 10) 41.8 33.7
2 (10, 20) 43.2 35.3
3 (20, 20) 69.1 46.5
4 (20, 30) 75.6 49.9
5 (30, 10) 88.7 57.0
6 (30, 20) 91.8 61.7
7 (40, 10) 118.2 78.4
8 (40, 20) 125.0 82.5
9 (50, 10) 138.6 88.9
10 (50, 20) 146.7 92.0

Example 4 (see [11, 12]). Consider

min (
𝑥
1
+ 𝑥
2
+ 1

𝑥
1
+ 𝑥
2
+ 2
)

1.1

× (
𝑥
1
+ 𝑥
2
+ 3

𝑥
1
+ 𝑥
2
+ 4
)

1.2

+ (
𝑥
1
+ 𝑥
2
+ 5

𝑥
1
+ 𝑥
2
+ 6
)

1.1

× (
𝑥
1
+ 𝑥
2
+ 7

𝑥
1
+ 𝑥
2
+ 8
)

1.2

s.t. 𝑥
1
𝑥
2

2
+ 𝑥
2

1
𝑥
2
⩽ 10,

1.0 ⩽ 𝑥
1
⩽ 2.0, 1.0 ⩽ 𝑥

2
⩽ 2.0.

(44)

Example 5 (see [11, 12]). Consider

min (2𝑥
1
+ 𝑥
2
+ 1)
2
(2𝑥
1
+ 2𝑥
2
+ 1)
2

− (𝑥
1
+ 2𝑥
2
+ 1)
2
(𝑥
1
+ 3𝑥
2
+ 3)

s.t. (2𝑥
1
+ 2𝑥
2
+ 1) (𝑥

1
+ 2𝑥
2
+ 1)
2

+ 2(𝑥
1
+ 𝑥
2
+ 1)
1.5
(2𝑥
1
+ 𝑥
2
)
2
⩽ 200,

(𝑥
1
+ 𝑥
2
+ 1)
1.1
(1.5𝑥
1
+ 𝑥
2
+ 2)
1.2

− (2𝑥
1
+ 2𝑥
2
+ 1) (2𝑥

1
+ 𝑥
2
+ 3) ⩽ 30,

1 ⩽ 𝑥
1
⩽ 3, 1 ⩽ 𝑥

2
⩽ 3.

(45)

Example 6. In this example, we solve 10 different random
instances:

min
𝐾

∑
𝑘=1

𝑡
𝑘

𝐾𝑘

∏
𝑗=1

(𝑐
𝑇

𝑘𝑗
𝑥 + d
𝑘𝑗
)
𝛼𝑘𝑗

s.t. 𝐴𝑥 ⩽ 𝑏,

𝑥 ∈ 𝑋
0
= [𝑥, 𝑥] ⊂ 𝑅

𝑛
,

(46)

where 𝐾 = 4, 𝐾
𝑘
= 3, 𝐴 is 𝑚 × 𝑛 matrix, and all elements

of 𝑡
𝑘
, 𝑐
𝑘𝑗
, 𝑑
𝑘𝑗
, 𝛼
𝑘𝑚
, 𝐴, 𝑏, 𝑥, and 𝑥 are randomly generated,

whose ranges are [−2, 2]. Table 2 summarizes our computa-
tional results. In Table 2, the following indices characterize
performance in algorithm: (𝑚, 𝑛): the dimensions of the
matrix 𝐴; Iter.: the average number of iterations; time: the
average execution time in seconds.

5. Conclusion

In this paper, a global optimization algorithm is presented to
a class of nonconvex programming problems (NPP). A trans-
formation and a two-part parametric linearization technique
are employed to initial (NPP), and (NPP) is reduced to a
parametric relaxation in lower linear programming based on
the linear lower bounding of the objective function and non-
linear constraint functions. Thus the initial (NPP) is reduced
to a sequence of linear programming problems through the
successive refinement in a linear relaxation of feasible region
in an objective function. The algorithm can obtain finite
convergence to the global minimum through the successive
refinement of the feasible region and the subsequent solutions
to a series of linear programming problems. The proposed
algorithm is applied to several test problems. In all cases,
convergence to the global minimum is achieved.
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