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We give a necessary and sufficient condition for a primitive of a distribution to have the value at a point in the sense of Łojasiewicz. A
formula defining the indefinite integral of a distribution with a basepoint is introduced, and further structural results are discussed.

1. Introduction

LetD = D(R) be the topological C-vector space of complex
valued compactly supported test functions onR, and letD =
D(R) be the space of complex valued distributions on R.
In the following discussion, a distribution 𝑓 ∈ D is also
denoted by 𝑓(𝑥), and the dual pairing between 𝑓 ∈ D

and a test function 𝜙 ∈ D is denoted by either ⟨𝑓, 𝜙⟩ or
⟨𝑓(𝑥), 𝜙(𝑥)⟩. On the other hand, the letter 𝑥

0
will always

denote a point.
According to Łojasiewicz [1], a distribution 𝑓 ∈ D has

the value 𝑐 ∈ C at 𝑥
0
if
𝑓 (𝑎𝑥 + 𝑥

0
) → 𝑐 (1)

inD as 𝑎 → 0. If such a value 𝑐 exists at 𝑥
0
, wewill say that𝑓

is evaluable at 𝑥
0
and write𝑓(𝑥

0
) = 𝑐. For𝑓 to be evaluable at

𝑥
0
, it suffices for lim

𝑎→0
𝑓(𝑎𝑥+𝑥

0
) to exist inD, as the limit

can only be a constant.We can equivalently require that there
exists 𝑐 ∈ C such that lim

𝑎→0
+𝑓(𝑎𝑥 + 𝑥

0
) = 𝑐, as this entails

lim
𝑎→0

−𝑓(𝑎𝑥 + 𝑥
0
) = 𝑐. Simply requiring the existence of

lim
𝑎→0

+𝑓(𝑎𝑥+𝑥
0
)does not suffice, as the limitmay in general

be of the form 𝑐
1
+𝑐
2
𝐻(𝑥−𝑥

0
), where𝐻 is the Heaviside step

function.
One interesting consequence of this definition is the

following.

Theorem 1 (Łojasiewicz). If a distribution𝑓 is evaluable at𝑥
0
,

then any primitive 𝐹 of 𝑓 is also evaluable at 𝑥
0
.

This result is useful in various circumstances. For ins-
tance, if a distribution 𝑓 is evaluable at 𝑎 and 𝑏, then so is

any primitive 𝐹 of 𝑓, and we may define a definite integral of
𝑓 as

∫

𝑏

𝑎

𝑓 = 𝐹 (𝑏) − 𝐹 (𝑎) . (2)

These ideas are connected with an interesting construction
of distributional integral in the work of Estrada and Vindas
[2].

In view of the simplicity and naturality of Theorem 1, the
known proof is somewhat indirect. The argument follows as
a corollary of a more difficult result of Łojasiewicz, which
is stated in Theorem 5. The first purpose of this paper is to
give a short and direct proof. We then arrive at a formula of
the indefinite integral of a distribution with a basepoint. In
fact, we can reverse the usual direction of reasoning and use
the arguments developed along these lines to give a different
proof of Theorem 5.

Theorem 5 is an example of a structure theorem, which is
interesting in its own right and has a generalization involving
the notion of the quasiasymptotic behavior [3]. In the last
section, we study how variations of the definition of the value
at a point lead to some other nice analogous structural results.

2. A Proof of Theorem 1

In order to fix our notation, we briefly recall the following
elementary notions [4]. Suppose we have a continuous family
of distributions {𝑓

𝑢
}
𝑢∈𝐼

depending on a parameter 𝑢 in an
interval 𝐼, meaning that ⟨𝑓

𝑢
, 𝜙⟩ is continuous in 𝑢 for each

𝜙 ∈ D. If ⟨𝑓
𝑢
, 𝜙⟩ is differentiable at 𝑢

0
∈ 𝐼 for each 𝜙 ∈ D,
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we say that {𝑓
𝑢
}
𝑢∈𝐼

is differentiable with respect to 𝑢 at 𝑢
0
and

define 𝜕
𝑢
𝑓
𝑢
|
𝑢=𝑢
0

by

⟨𝜕
𝑢
𝑓
𝑢
|
𝑢=𝑢
0

, 𝜙⟩ = 𝜕
𝑢
⟨𝑓
𝑢
, 𝜙⟩|
𝑢=𝑢
0

. (3)

Evidently 𝜕
𝑢
𝑓
𝑢
|
𝑢=𝑢
0

is a distribution as it is the limit of distrib-
utions given by the difference quotients. Similarly, for 𝑎, 𝑏 ∈ 𝐼,
we define ∫𝑏

𝑎
𝑓
𝑢
𝑑𝑢 by

⟨∫

𝑏

𝑎

𝑓
𝑢
𝑑𝑢, 𝜙⟩ = ∫

𝑏

𝑎

⟨𝑓
𝑢
, 𝜙⟩𝑑𝑢, (4)

which is again a distribution, being the limit of distributions
given by the Riemann sums. By pairing with test functions,
it follows from the fundamental theorem of calculus that if
{𝑓
𝑢
}
𝑢∈𝐼

and {𝐹
𝑢
}
𝑢∈𝐼

are continuous families of distributions
with 𝜕

𝑢
𝐹
𝑢
|
𝑢=𝑢
0

= 𝑓
𝑢
0

for all 𝑢
0
∈ 𝐼, then, for any 𝑎, 𝑏 ∈ 𝐼,

∫

𝑏

𝑎

𝑓
𝑢
𝑑𝑢 = 𝐹

𝑏
− 𝐹
𝑎
. (5)

Let us note that, for any distribution 𝑓(𝑥) ∈ D, both
{𝑓(𝑎𝑥)}

𝑎∈(−∞,0)
and {𝑓(𝑎𝑥)}

𝑎∈(0,∞)
are continuous families of

distributions. If 𝑓 is evaluable at 𝑥
0
= 0, namely, if 𝑓(𝑎𝑥) →

𝑐 as 𝑎 → 0, then {𝑓(𝑎𝑥)}
𝑎∈R becomes a continuous family of

distributions if we define 𝑓(0) = 𝑐. Our argument uses this
simple observation.

Proof of Theorem 1. Let 𝑓 = 𝜕𝐹 inD and suppose 𝑓 is eval-
uable at 𝑥

0
= 0. As seen above, {𝑓(𝑎𝑥)}

𝑎∈R is a continuous
family of distributions and so is the family {𝑥𝑓(𝑎𝑥)}

𝑎∈R. It is
trivial to verify that the family {𝐹(𝑎𝑥)}

𝑎∈(0,∞)
is differentiable

with respect to 𝑎 ∈ (0,∞) with 𝜕
𝑎
𝐹(𝑎𝑥)|

𝑎=𝑎
0

= 𝑥𝑓(𝑎
0
𝑥). By

(5), for 𝑢, 𝑢
0
∈ (0,∞),

∫

𝑢
0

𝑢

𝑥𝑓 (𝑎𝑥) 𝑑𝑎 = 𝐹 (𝑢
0
𝑥) − 𝐹 (𝑢𝑥) . (6)

The left-hand side is well defined for 𝑢 ∈ R and gives a con-
tinuous family as 𝑢 ranges over the real line, and thus, taking
the limit 𝑢 → 0

+ on both sides, we see that 𝐹(𝑢𝑥) → 𝐿(𝑥)

as 𝑢 → 0

+ for some 𝐿(𝑥) ∈ D. Applying 𝜕
𝑥
gives 𝑢𝑓(𝑢𝑥) →

𝐿


(𝑥), but clearly 𝑢𝑓(𝑢𝑥) → 0. We conclude that 𝐿(𝑥) is a

constant.

It also follows that if 𝐹 is a primitive of a distribution 𝑓
such that 𝑓(𝑥

0
) = 𝑐, the family {𝐹(𝑎𝑥 + 𝑥

0
)}
𝑎∈R is differ-

entiable with respect to 𝑎 and we have 𝜕
𝑎
𝐹(𝑎𝑥 + 𝑥

0
)|
𝑎=𝑎
0

=

𝑥𝑓(𝑎
0
𝑥 + 𝑥
0
). In particular, 𝜕

𝑎
𝐹(𝑎𝑥 + 𝑥

0
)|
𝑎=0
= 𝑐𝑥.

3. Distributions Integrable from a Basepoint

In the preceding proof, it is clear that the assumption that 𝑓
is evaluable at 𝑥

0
was not entirely necessary. Let us say that

𝑓 ∈ D is integrable from 𝑥
0
if the following two conditions

hold.

(i) For 𝑢
0
> 0, ∫

𝑢
0

𝑢
𝑥𝑓(𝑎𝑥+𝑥

0
)𝑑𝑎 converges inD as 𝑢 →

0

+.
(ii) 𝑎𝑓(𝑎𝑥 + 𝑥

0
) → 0 inD as 𝑎 → 0

+.

By the same argument, this definition gives a necessary and
sufficient condition for a primitive𝐹of𝑓 to be evaluable at𝑥

0
.

Indeed, if we set 𝑥
0
= 0, then (i) is equivalent to the existence

of 𝐿(𝑥) := lim
𝑢→0

+𝐹(𝑢𝑥). In this case, since 𝑢𝑓(𝑢𝑥) → 𝐿


(𝑥)

as 𝑢 → 0

+, (ii) is equivalent to 𝐿(𝑥) being a constant. We
summarize this as follows.

Proposition 2. Let 𝐹 be a distribution and let 𝑓 = 𝜕𝐹. Then 𝐹
is evaluable at 𝑥

0
if and only if 𝑓 is integrable from 𝑥

0
.

We denote byD
𝑥
0

the space of all distributions integrable
from 𝑥

0
. For 𝑓 ∈ D

𝑥
0

, we define a distribution ∫𝑥+𝑥0
𝑥
0

𝑓 by the
formula

∫

𝑥+𝑥
0

𝑥
0

𝑓 := lim
𝑢→0

+

∫

1

𝑢

𝑥𝑓 (𝑎𝑥 + 𝑥
0
) 𝑑𝑎. (7)

Let 𝐹 be a primitive of 𝑓. For any 𝑢 > 0,

∫

1

𝑢

𝑥𝑓 (𝑎𝑥 + 𝑥
0
) 𝑑𝑎 = 𝐹 (𝑥 + 𝑥

0
) − 𝐹 (𝑢𝑥 + 𝑥

0
) , (8)

and if 𝑓 is integrable from 𝑥
0
, taking the limit 𝑢 → 0

+, we
have

∫

𝑥+𝑥
0

𝑥
0

𝑓 = 𝐹 (𝑥 + 𝑥
0
) − 𝐹 (𝑥

0
) , (9)

as 𝐹(𝑥
0
) exists by Proposition 2. Replacing 𝑥 with 𝑥 − 𝑥

0
, we

define the indefinite integral of 𝑓 ∈ D
𝑥
0

with basepoint 𝑥
0
by

∫

𝑥

𝑥
0

𝑓 := lim
𝑢→0

+

∫

1

𝑢

(𝑥 − 𝑥
0
) 𝑓 (𝑎𝑥 − 𝑎𝑥

0
+ 𝑥
0
) 𝑑𝑎. (10)

It follows that we have ∫𝑥
𝑥
0

𝑓 = 𝐹(𝑥) − 𝐹(𝑥
0
) and 𝜕

𝑥
∫

𝑥

𝑥
0

𝑓 =

𝑓(𝑥). We also note that ∫𝑥
𝑥
0

𝑓 is evaluable with value 0 at 𝑥
0
.

It is easy to see that if 𝑓
𝑛
is a sequence inD

𝑥
0

, then 𝑓
𝑛
→

𝑓 inD for some 𝑓 ∈ D
𝑥
0

does not imply ∫𝑥
𝑥
0

𝑓
𝑛
→ ∫

𝑥

𝑥
0

𝑓 in
general. In order to remedy this, we introduce the following
notions.

Suppose 𝑓
𝑛
is a sequence inD

𝑥
0

. We say 𝑓
𝑛
is bounded at

𝑥
0
if, for each 𝜙 ∈ D, ⟨𝑓

𝑛
(𝑎𝑥 + 𝑥

0
), 𝜙(𝑥)⟩ is bounded

independently of 𝑛 as well as of 𝑎 ∈ (0, 1]. Let us say 𝑓
𝑛

converges boundedly to 𝑓 ∈ D
𝑥
0

if 𝑓
𝑛
→ 𝑓 in D and 𝑓

𝑛
−

𝑓 is eventually bounded at 𝑥
0
. Finally, we say 𝑓

𝑛
converges

uniformly to 𝑓 ∈ D
𝑥
0

if, for each 𝜙 ∈ D, ⟨𝑓
𝑛
(𝑎𝑥 + 𝑥

0
), 𝜙(𝑥)⟩

converges to ⟨𝑓(𝑎𝑥 + 𝑥
0
), 𝜙(𝑥)⟩ uniformly in 𝑎 ∈ (0, 1].

Clearly, uniform convergence implies bounded convergence.

Lemma 3. If a sequence 𝑓
𝑛
inD
𝑥
0

converges boundedly (resp.,
uniformly) to 𝑓 ∈ D

𝑥
0

, then the sequence ∫𝑥
𝑥
0

𝑓
𝑛
converges

boundedly (resp., uniformly) to ∫𝑥
𝑥
0

𝑓.
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Proof. Suppose 𝑓
𝑛
inD
𝑥
0

converges to 0 with 𝑓
𝑛
bounded at

𝑥
0
, and let 𝐹

𝑛
(𝑥) = ∫

𝑥

𝑥
0

𝑓
𝑛
. We have

⟨𝐹
𝑛
(𝑎𝑥 + 𝑥

0
) , 𝜙 (𝑥)⟩ = lim

𝑢→0
+

∫

1

𝑢

⟨𝑎𝑥𝑓
𝑛
(𝑎𝑏𝑥 + 𝑥

0
) , 𝜙 (𝑥)⟩ 𝑑𝑏

= lim
𝑢→0

+

∫

𝑎

𝑎𝑢

⟨𝑓
𝑛
(𝑏𝑥 + 𝑥

0
) , 𝑥𝜙 (𝑥)⟩𝑑𝑏,

(11)

which shows ⟨𝐹
𝑛
(𝑎𝑥 + 𝑥

0
), 𝜙(𝑥)⟩ is bounded independently

of 𝑛 and of 𝑎 ∈ (0, 1], and by taking the limit in 𝑛 under the
integral sign, we see that 𝐹

𝑛
converges boundedly to 0. If 𝑓

𝑛

in fact converges uniformly to 0, the uniform convergence of
𝐹
𝑛
is also apparent from the same expression.

Let us write 𝐹
𝑛
 𝐹 on Ω to mean that 𝐹

𝑛
and 𝐹 are

continuous functions on Ω such that 𝐹
𝑛
converges to 𝐹 uni-

formly onΩ. Let us also denote by ∫𝑥
𝑥
0

: D
𝑥
0

→ D
𝑥
0

the map
that sends 𝑓(𝑥) to ∫𝑥

𝑥
0

𝑓.

Lemma 4. Let 𝑓
𝑛
, 𝑓 be distributions in D

𝑥
0

. If 𝑓
𝑛
converges

boundedly to 𝑓, then, for every bounded open neighborhood
Ω of 𝑥

0
, there exists an integer 𝑘 ≥ 0 such that (∫𝑥

𝑥
0

)

𝑘
𝑓
𝑛


(∫

𝑥

𝑥
0

)

𝑘
𝑓 on Ω.

Proof. Let 𝐼 be a compact interval containingΩ. We can find
𝑘 ≥ 0 and a sequence of continuous functions 𝐹

𝑛
, 𝐹 on 𝐼 such

that 𝑓
𝑛
= 𝜕

𝑘
𝐹
𝑛
, 𝑓 = 𝜕

𝑘
𝐹 with 𝐹

𝑛
 𝐹 on 𝐼 (see [5]). Thus,

(∫

𝑥

𝑥
0

)

𝑘
𝑓
𝑛
and 𝐹

𝑛
(resp., (∫𝑥

𝑥
0

)

𝑘
𝑓 and 𝐹) differ by polynomials

𝑃
𝑛
(resp., 𝑃) of degree < 𝑘 on 𝐼. By Lemma 3, 𝑓

𝑛
→ 𝑓

boundedly implies (∫𝑥
𝑥
0

)

𝑘
𝑓
𝑛
→ (∫

𝑥

𝑥
0

)

𝑘
𝑓 in D, and since

𝐹
𝑛
→ 𝐹 inD(Ω), we have 𝑃

𝑛
→ 𝑃 inD(Ω), which is the

case only when 𝑃
𝑛
 𝑃 on Ω. Hence (∫𝑥

𝑥
0

)

𝑘
𝑓
𝑛
 (∫

𝑥

𝑥
0

)

𝑘
𝑓 on

Ω.

4. Structure Theorem of Aojasiewicz

These ideas lead to a proof of another result of Łojasiewicz
that we have already mentioned (cf. [1, 5, 6]).The proof given
below seems illustrative in the sense that the implication in
one direction is obtained by applying 𝜕

𝑥
several times, and

the converse is obtained by applying ∫𝑥
𝑥
0

several times.

Theorem 5 (Łojasiewicz). Let 𝑓 ∈ D. Then 𝑓(𝑎𝑥 + 𝑥
0
) → 𝑐

as 𝑎 → 0 if and only if 𝑓 = 𝜕𝑘𝐹 for some 𝑘 ≥ 0, where 𝐹 is
a continuous function near 𝑥

0
such that lim

𝑥→𝑥
0

(𝐹(𝑥)/(𝑥 −

𝑥
0
)

𝑘
) = 𝑐/𝑘!.

Proof. Let 𝑥
0
= 0. If 𝑓 = 𝜕𝑘𝐹 and 𝐹 is continuous near 0 with

lim
𝑥→0

𝐹(𝑥)/𝑥

𝑘
= 𝑐/𝑘!, then 𝐹(𝑎𝑥)/𝑎𝑘 → 𝑐𝑥

𝑘
/𝑘! in D as

𝑎 → 0, and applying 𝜕𝑘
𝑥
we obtain 𝑓(𝑎𝑥) → 𝑐 in D.

Conversely, suppose 𝑓(𝑎𝑥) → 𝑐 in D as 𝑎 → 0. Letting
𝑓
𝑎
(𝑥) = 𝑓(𝑎𝑥), it is easily observed that 𝑓

𝑎
(𝑥) converges

boundedly (in fact, uniformly) to 𝑐 as 𝑎 → 0. By Lemma 4,

there exist a neighborhood Ω of 0 and 𝑘 ≥ 0 such that
(∫

𝑥

0
)

𝑘
𝑓
𝑎
 (∫

𝑥

0
)

𝑘
𝑐 = 𝑐𝑥

𝑘
/𝑘! on Ω. As (∫𝑥

0
)

𝑘
𝑓
𝑎
= 𝐹(𝑎𝑥)/𝑎

𝑘 if
𝐹 := (∫

𝑥

0
)

𝑘
𝑓, we have 𝐹(𝑎𝑥)/𝑎𝑘  𝑐𝑥𝑘/𝑘! as 𝑎 → 0. For any

fixed 𝑥 ̸= 0 in Ω, we have 𝐹(𝑎𝑥)/(𝑎𝑥)𝑘 → 𝑐/𝑘! as 𝑎 → 0;
namely, lim

𝑎→0
𝐹(𝑎)/𝑎

𝑘
= 𝑐/𝑘!.

5. Further Structure Theorems

There are various notions of the value of a distribution at a
point, some defined under stricter conditions with stronger
properties while others applicable for more general distri-
butions [7–11]. When a situation or an application demands
some specific features from the evaluable distributions, one
would like to know how the values that we obtain are asso-
ciated with some structural qualities of the distributions. We
now discuss some results of this type similar to Theorem 5.

The works of Shiraishi and Itano give a notion of evalua-
tion at a point with stricter properties than that of Łojasiewicz
[7–9]. Let us call a sequence (𝑓

𝑛
) in D(R𝑑) a 𝛿-sequence if

there is a sequence of positive real numbers (𝑎
𝑛
) → 0 such

that, ∀𝑛 ∈ N,

(i) 𝑓
𝑛
(𝑥) = 0 for |𝑥| ≥ 𝑎

𝑛
,

(ii) ∫𝑓
𝑛
= 1,

(iii) ∫ |𝑓
𝑛
| is bounded independently of 𝑛 ∈ N.

We say that a distribution 𝑇 ∈ D(R𝑑) has 𝛿-value 𝑐 ∈ C at
𝑥
0
∈ R𝑑 if

⟨𝑇, 𝜏
𝑥
0

𝑓
𝑛
⟩ → 𝑐 (12)

as 𝑛 → ∞ for all𝛿-sequences (𝑓
𝑛
), where (𝜏

𝑥
0

𝑓
𝑛
)(𝑥) = 𝑓

𝑛
(𝑥−

𝑥
0
). In fact, we can restrict this condition to real nonnegative

𝛿-sequences (which are called 𝛿-sequences in, e.g., [5, 7])
without affecting the definition. By the result in [7] (see also
[12] for a proof based on ideas from nonstandard analysis),
𝑇 ∈ D(R𝑑) has 𝛿-value 𝑐 at 𝑥

0
if and only if it can be

represented as an 𝐿∞-function near 𝑥
0
which is continuous

at 𝑥
0
with value 𝑐. Thus, we have 𝑇 = 𝑐 + Ψ, with

ess sup
|𝑥−𝑥
0
|<𝑎

|Ψ (𝑥)| → 0 (13)

as 𝑎 → 0

+. As this condition is quite strong, we can regard
this as the most conservative notion of the value of a distrib-
ution at a point.

We can compare this with the previously discussed
Łojasiewicz definition, as it is immediate that the Łojasiewicz
value has the following sequential representation. A 𝛿-
sequence (𝑓

𝑛
) of the form

𝑓
𝑛
(𝑥) = 𝑎

−𝑑

𝑛
𝑓(

𝑥

𝑎
𝑛

) , (14)

where 𝑓 ∈ D(R𝑑) with ∫𝑓 = 1 and 𝑎
𝑛
> 0 with (𝑎

𝑛
) → 0,

is called a model sequence. One sees that a distribution 𝑇 has
Łojasiewicz’s value 𝑐 at 𝑥

0
if and only if ⟨𝑇, 𝜏

𝑥
0

𝑓
𝑛
⟩ → 𝑐 for all

model sequences. A structural result given byTheorem 5 tells
us that the condition imposed on 𝑇 is much weaker.
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In this section we find a continuous family of classes of
distributionsD

𝑝,𝑥
0

for 1 ≤ 𝑝 < ∞ such that, for any 1 ≤ 𝑞 ≤
𝑝 < ∞,

{

{

{

Distributions
with 𝛿-value

at 𝑥
0

}

}

}

⊆ D
𝑞,𝑥
0

⊆ D
𝑝,𝑥
0

⊆

{

{

{

Distributions with
Łojasiewicz’s value

at 𝑥
0

}

}

}

(15)

with analogous structural results involving 𝐿𝑝 functions.
These classes of distributions can be defined sequentially in
a natural way.

Definition 6. Let 1 ≤ 𝑝 < ∞ be fixed. A sequence (𝑓
𝑛
) in

D(R𝑑) is called a 𝛿
𝑝
-sequence if there exists a sequence of

positive real numbers (𝑎
𝑛
) → 0 such that, ∀𝑛 ∈ N,

(i) 𝑓
𝑛
(𝑥) = 0 for |𝑥| ≥ 𝑎

𝑛
,

(ii) ∫𝑓
𝑛
= 1,

(iii) 𝑎𝑑(𝑝−1)
𝑛

∫ |𝑓
𝑛
|

𝑝 is bounded independently of 𝑛 ∈ N.

A distribution 𝑇 ∈ D(R𝑑) is said to have 𝛿
𝑝
-value 𝑐 ∈ C

at 𝑥
0
∈ R𝑑 if

⟨𝑇, 𝜏
𝑥
0

𝑓
𝑛
⟩ → 𝑐 (16)

as 𝑛 → ∞ for all 𝛿
𝑝
-sequences (𝑓

𝑛
).

Remark 7. In the above definition, we will say that (𝑎
𝑛
) is a

contracting sequence of (𝑓
𝑛
).

For any 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞, we have (e.g., [13]) that if Ω ⊆

R𝑑 is a nonempty open subset of finite measure 𝜇(Ω) and if
𝑓 ∈ 𝐿

𝑝
(Ω), then 𝑓 ∈ 𝐿𝑞(Ω) and






𝑓




𝐿
𝑞
(Ω)
≤ 𝜇(Ω)

1/𝑞−1/𝑝




𝑓




𝐿
𝑝
(Ω)
. (17)

Let 1 ≤ 𝑞 ≤ 𝑝 < ∞, and suppose (𝑓
𝑛
) is a 𝛿

𝑝
-sequence, with

a contracting sequence (𝑎
𝑛
) → 0. From (17) we obtain

𝑎

−𝑑/𝑞

𝑛
(∫






𝑓
𝑛






𝑞

)

1/𝑞

≤ 𝑎

−𝑑/𝑝

𝑛
(∫






𝑓
𝑛






𝑝

)

1/𝑝

,
(18)

and multiplying both sides by 𝑎𝑑
𝑛
gives

(𝑎

𝑑(𝑞−1)

𝑛
∫






𝑓
𝑛






𝑞

)

1/𝑞

≤ (𝑎

𝑑(𝑝−1)

𝑛
∫






𝑓
𝑛






𝑝

)

1/𝑝

,
(19)

which shows that (𝑓
𝑛
) is also a 𝛿

𝑞
-sequence. Therefore, if a

distribution 𝑇 has 𝛿
𝑞
-value 𝑐 at 𝑥

0
, then it has the same 𝛿

𝑝
-

value at 𝑥
0
. This will also follow fromTheorem 10 (iii), as we

have, since 1 < 𝑝 ≤ 𝑞 ≤ ∞,

𝑎

−𝑑/𝑝


‖Ψ‖

𝐿
𝑝


(𝐵
𝑥
0
(𝑎))
≤ 𝑎

−𝑑/𝑞


‖Ψ‖

𝐿
𝑞


(𝐵
𝑥
0
(𝑎))

(20)

by (17).Hence, the condition of a distribution having 𝛿
𝑝
-value

at a point becomes less restrictive as𝑝 increases. As anymodel
sequence is a 𝛿

𝑝
-sequence for all 1 ≤ 𝑝 < ∞, if 𝑇 ∈ D(R𝑑)

has 𝛿
𝑝
-value 𝑐 at 𝑥

0
∈ R𝑑 for some 𝑝, then it has the same

value 𝑐 at 𝑥
0
in the sense of Łojasiewicz.

For a nonempty open set Ω ⊆ R𝑑, we let DR(Ω) ⊆

D(Ω) be the subspace of all real valued test functions and let
D(Ω)

+
⊆ DR(Ω) (resp., D(Ω)− ⊆ DR(Ω)) be the subset of

all nonnegative (resp., nonpositive) test functions. Let

D
1

𝑝
(Ω) ⊆ D (Ω) (21)

be the subset consisting of 𝑓 such that ∫ |𝑓|𝑝 = 1, and let

D
1

𝑝
(Ω)
+
= D
1

𝑝
(Ω) ∩D(Ω)

+
. (22)

For Ψ ∈ D(Ω), we define

‖Ψ‖D
𝑝
(Ω)
= sup
𝑓∈D1
𝑝
(Ω)






⟨Ψ, 𝑓⟩






,

‖Ψ‖D
𝑝
(Ω)
+

= sup
𝑓∈D1
𝑝
(Ω)
+






⟨Ψ, 𝑓⟩






,

(23)

taking values in [0,∞]. We then have the following simple
estimate.

Lemma 8. We have

‖Ψ‖D
𝑝
(Ω)
+

≤ ‖Ψ‖D
𝑝
(Ω)
≤ 4‖Ψ‖D

𝑝
(Ω)
+

. (24)

Proof. The first inequality follows trivially since D1
𝑝
(Ω)
+
⊆

D1
𝑝
(Ω). In order to see the second inequality, suppose 𝑓 ∈

DR(Ω). We can write 𝑓 = 𝑓
+
+𝑓
−
, where 𝑓

+
(𝑥) = max{𝑓(𝑥),

0} and 𝑓
−
(𝑥) = min{𝑓(𝑥), 0} for 𝑥 ∈ Ω. As 𝑓

+
and 𝑓

−
are

compactly supported continuous functions, we can find 𝑓
1
∈

D(Ω)
+
(resp., 𝑓

2
∈ D(Ω)

−
) that is as close as we want to 𝑓

+

(resp.,𝑓
−
) in the 𝐿𝑝-norm, such that𝑓 = 𝑓

1
+𝑓
2
. Hence, from






⟨Ψ, 𝑓⟩






≤






⟨Ψ, 𝑓
1
⟩






+






⟨Ψ, 𝑓
2
⟩






≤ ‖Ψ‖D
𝑝
(Ω)
+

(






𝑓
1




𝐿
𝑝
(Ω)
+






𝑓
2




𝐿
𝑝
(Ω)
) ,

(25)

since ‖𝑓
±
‖

𝐿
𝑝
(Ω)
≤ ‖𝑓‖

𝐿
𝑝
(Ω)

, we have





⟨Ψ, 𝑓⟩






≤ 2‖Ψ‖D
𝑝
(Ω)
+






𝑓




𝐿
𝑝
(Ω)
. (26)

By (26), if 𝑓 ∈ D(Ω), then since we have ‖Re(𝑓)‖
𝐿
𝑝
(Ω)

≤

‖𝑓‖

𝐿
𝑝
(Ω)

and ‖ Im(𝑓)‖
𝐿
𝑝
(Ω)
≤ ‖𝑓‖

𝐿
𝑝
(Ω)

,





⟨Ψ, 𝑓⟩






≤






⟨Ψ,Re (𝑓)⟩


+






⟨Ψ, Im (𝑓)⟩


≤ 4‖Ψ‖D
𝑝
(Ω)
+






𝑓




𝐿
𝑝
(Ω)
.

(27)

Suppose ‖Ψ‖D
𝑝
(Ω)
< ∞ for some 1 ≤ 𝑝 < ∞. SinceD(Ω)

is dense in 𝐿𝑝(Ω), Ψ extends to a continuous functional on
𝐿

𝑝
(Ω) and lies in the strong dual of 𝐿𝑝(Ω), which is isometric

to 𝐿𝑝


(Ω) [13]. We thus have Ψ ∈ 𝐿

𝑝


(Ω) and ‖Ψ‖D
𝑝
(Ω)

=

‖Ψ‖

𝐿
𝑝


(Ω)
.

Lemma 9. Let (𝑎
𝑛
) be a sequence of positive real numbers such

that (𝑎
𝑛
) → 0. Suppose we have two sequences (𝑓

𝑛
) and (𝑔

𝑛
)

inD(R𝑑) such that both 𝑎𝑑(𝑝−1)
𝑛

∫ |𝑓
𝑛
|

𝑝 and 𝑎𝑑(𝑝−1)
𝑛

∫ |𝑔
𝑛
|

𝑝 are
bounded independently of 𝑛 ∈ N. Then 𝑎𝑑(𝑝−1)

𝑛
∫ |𝑓
𝑛
+ 𝑔
𝑛
|

𝑝 is
bounded independently of 𝑛 ∈ N.
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Proof. Bymultiplying by 𝑎𝑑(𝑝−1)
𝑛

on both sides ofMinkowski’s
inequality for 𝑓

𝑛
and 𝑔

𝑛
, we obtain

𝑎

𝑑(𝑝−1)

𝑛
∫






𝑓
𝑛
+ 𝑔
𝑛






𝑝

≤ ((𝑎

𝑑(𝑝−1)

𝑛
∫






𝑓
𝑛






𝑝

)

1/𝑝

+ (𝑎

𝑑(𝑝−1)

𝑛
∫






𝑔
𝑛






𝑝

)

1/𝑝

)

𝑝

,

(28)

from which the lemma follows.

We can now give a structure theorem on our notion of 𝛿
𝑝
-

value of a distribution. The only tricky part of the following
argument seems to be that our definition is unaffected even
if we only restrict ourselves to real nonnegative 𝛿

𝑝
-sequences

(Theorem 10 (ii)).

Theorem 10. Let 𝑇 ∈ D(R𝑑). Then, the following statements
are equivalent.

(i) 𝑇 has 𝛿
𝑝
-value 𝑐 ∈ C at 𝑥

0
∈ R𝑑.

(ii) ⟨𝑇, 𝜏
𝑥
0

𝑓
𝑛
⟩ → 𝑐 as 𝑛 → ∞ for all 𝛿

𝑝
-sequences (𝑓

𝑛
)

such that 𝑓
𝑛
≥ 0.

(iii) 𝑇 = 𝑐 + Ψ, where Ψ can be represented as an 𝐿𝑝


-
function in some open ball 𝐵

𝑥
0

(𝑎) of radius 𝑎 > 0

around 𝑥
0
, and

𝑎

−𝑑/𝑝


‖Ψ‖

𝐿
𝑝


(𝐵
𝑥
0
(𝑎))
→ 0 (29)

as 𝑎 → 0

+, where 𝑝 = 𝑝/(𝑝 − 1) ∈ (1,∞] is the
Hölder conjugate of 𝑝.

Proof. As the implication (i)⇒(ii) is immediate, it only
remains to show (ii)⇒(iii)⇒(i).

Let us assume (ii). It suffices to consider the special case
𝑥
0
= 0. Let 𝑇 be a distribution such that (⟨𝑇, 𝑓

𝑛
⟩) → 𝑐 for all

nonnegative 𝛿
𝑝
-sequences (𝑓

𝑛
). ForΨ = 𝑇− 𝑐, since ∫𝑓

𝑛
= 1

and ⟨𝑇 − 𝑐, 𝑓
𝑛
⟩ = ⟨𝑇, 𝑓

𝑛
⟩ − 𝑐, we have (⟨𝑇, 𝑓

𝑛
⟩) → 𝑐 if and

only if (⟨Ψ, 𝑓
𝑛
⟩) → 0. We now claim that

𝑎

−𝑑/𝑝


‖Ψ‖D
𝑝
(𝐵
0
(𝑎))
+

→ 0 (30)

as 𝑎 → 0

+. Otherwise, for some 𝜀
0
> 0, we can find a

sequence of positive real numbers (𝑎
𝑛
) → 0 and functions

𝑔
𝑛
∈ D1
𝑝
(𝐵
0
(𝑎
𝑛
))
+
such that 𝑎−𝑑/𝑝



𝑛
|⟨Ψ, 𝑔
𝑛
⟩| ≥ 𝜀
0
for all 𝑛 ∈ N.

We note

𝑎

𝑑(𝑝−1)

𝑛
∫(𝑎

−𝑑/𝑝


𝑛
𝑔
𝑛
)

𝑝

= 𝑎

𝑑(𝑝−1)

𝑛
𝑎

−𝑑(𝑝−1)

𝑛
∫𝑔

𝑝

𝑛
= 1, (31)

and, in particular, it is bounded independently of 𝑛 ∈ N.
Applying inequality (19) to the functions 𝑎−𝑑/𝑝



𝑛
𝑔
𝑛
(with 𝑞 =

1), we obtain

∫𝑎

−𝑑/𝑝


𝑛
𝑔
𝑛
≤ 1 (32)

for all 𝑛 ∈ N. Let (ℎ
𝑛
) be any fixed nonnegative 𝛿

𝑝
-sequence

of which (𝑎
𝑛
) is a contracting sequence, such as a nonnegative

model sequence. We let

𝑓
𝑛
= 𝑎

−𝑑/𝑝


𝑛
𝑔
𝑛
+ 𝑏
𝑛
ℎ
𝑛
,

(33)

where 𝑏
𝑛
= 1 − ∫ 𝑎

−𝑑/𝑝


𝑛
𝑔
𝑛
∈ [0, 1). Observe that 𝑓

𝑛
≥ 0 with

∫𝑓
𝑛
= 1, and applying Lemma 9 to the sequences 𝑎−𝑑/𝑝



𝑛
𝑔
𝑛

and 𝑏
𝑛
ℎ
𝑛
, we see that (𝑓

𝑛
) is in fact a nonnegative𝛿

𝑝
-sequence.

Thus, we must have

(⟨Ψ, 𝑓
𝑛
⟩) → 0. (34)

But as ⟨Ψ, 𝑓
𝑛
⟩ = 𝑎

−𝑑/𝑝


𝑛
⟨Ψ, 𝑔
𝑛
⟩ + 𝑏
𝑛
⟨Ψ, ℎ
𝑛
⟩, the fact that (𝑏

𝑛
⟨Ψ,

ℎ
𝑛
⟩) → 0 implies (𝑎−𝑑/𝑝



𝑛
⟨Ψ, 𝑔
𝑛
⟩) → 0, a contradiction.

Hence, (30) follows, which implies (iii) by Lemma 8 and the
paragraph following it.

Lastly, we assume that (iii) holds for 𝑥
0
= 0. Let (𝑓

𝑛
) be

a 𝛿
𝑝
-sequence with a contracting sequence (𝑎

𝑛
) → 0. By

Hölder’s inequality,





⟨Ψ, 𝑓
𝑛
⟩






≤ ‖Ψ‖

𝐿
𝑝


(𝐵(𝑎
𝑛
))






𝑓
𝑛




𝐿
𝑝
(𝐵(𝑎
𝑛
))

= 𝑎

−𝑑/𝑝


𝑛
‖Ψ‖

𝐿
𝑝


(𝐵(𝑎
𝑛
))
(𝑎

𝑑(𝑝−1)

𝑛
∫






𝑓
𝑛






𝑝

)

1/𝑝

→ 0

(35)

as 𝑛 → ∞, and (i) follows.

It is often useful to relate a given notion of a value at a
point, usually defined through the pairing of a distribution
with test functions, to a statement revealing the internal
structure of the distribution. One such result is Theorem 5,
and the above theorem gives some others.
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