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A finite Fourier transform is used to perform both linear and nonlinear stability analyses of a Darcy-Lapwood system of convective
rolls.Themethod shows howmanymodes are unstable, the wave number instability band within eachmode, the maximum growth
rate (most critical) wave numbers on each mode, and the nonlinear growth rates for each amplitude as a function of the porous
Rayleigh number. Single amplitude controls the nonlinear growth rates and thereby the physical flow rate and fluid velocity, on
each mode.They are called the flak amplitudes. A discrete Fourier transform is used for numerical simulations and here frequency
combinations appear that the traditional cut-off infinite transforms do not have.The discrete show a stationary solution in the weak
instability phase, but when carried past 2 unstable modes they show fluctuating motion where all amplitudes except the flak may
be zero on the average. This leads to a flak amplitude scaling process of the heat conduction, producing an eddy heat conduction
coefficient where a Nu-RaL relationship is found. It fits better to experiments than previously found solutions but is lower than
experiments.

1. Introduction

Convection in porous media is intensively studied because of
itsmany applications in science and industry. Free convection
in porous media (i.e., convection without the forcing of
horizontal temperature gradients) has been studied from
1948, [1–3] made the first experiments, and [4] treated the
stability of 2-dimensional cellular flow (rolls). Others are
investigating stability problems with increasing complexity,
for example, [5]. Modal flow and the spectral method were
used to simulate unsteady motion by [6].

The spectralmethod is used in [7] and it gives an excellent
review of approximate solutions, sometimes based on earlier
findings [8, 9]. In the review paper [7] the most general
case, the DLFB (Darcy-Lapwood-Forchheimer-Brinkman)
equation, is studied, sometimes with Coriolis force and
magnetic forces being included.

In thick natural aquifers the viscous dissipation, not
already included in Darcy-Lapwood (DL) systems, is unim-
portant in most cases and so is turbulent dissipation except

in local irregularities in the porous matrix. Porous media
flows on low Reynolds numbers are therefore mostly treated
without the terms of Forchheimer and Brinkman; they serve
as a bridge between the turbulent and viscous and Darcy
regimes. This paper is devoted to the case of simple DL
systems and it is shown that turbulent-like phenomena can be
encountered in such flow even though dissipation is strictly
Darcy-laminar. The effect of this turbulence is on the heat
flow, amplitude growth rates, and the wave length spectrum
and this is studied further.

The heat flow through a porous convective layer is
controlled by Nusselt’s number Nu. Finding it is therefore
very important in industrial applications. In [10] flow in a box
with open surface is investigated numerically for Rayleigh
numbers up to 300 and it is found that there may be more
than one flow cell. The author finds Nusselt’s numbers (Nu)
in the range of 3(Ra 70)−5(Ra 200) for this flow and in some
cases for eddy flow. He also finds single-cell flow for Ra < 60

but two cells for 100 < Ra. Multicellular flow and modal flow
are also encountered in other papers on the subject [11, 12].
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Stability analyses of the no-flow situation and the onset of
convection give important information on the structure of the
resulting flow through the composition of the eigenfunctions.
They depend upon the boundary conditions; therefore a great
variety of eigenfunctions have been found for the rolls of
the DL equation system covering different sets of boundary
conditions [12–15].

The eigenfunctions of the DL system in an infinite hori-
zontal aquifer of constant thickness and constant temperature
difference are particularly simple as they are the ordinary
trigonometric functions. This makes the Fourier transform
of the spectral method be an expansion of the temperature
function in a series of the eigenfunctions of the Sturm-
Liouville problem underlying the stability analysis [6]. This
makes the identification of the different modes and their
stability limits particularly easy and in this paper it is shown
to give rise to a new kind of non-linear stability analysis
with the starting point in an arbitrary stationary solution.
From this process the Fourier amplitudes emerge that make
up the average vertical temperature gradient, here called the
flak amplitudes. They alone control the exponential growth
rate of all amplitudes and make it possible to construct by
scaling an eddy coefficient of heat conduction, very similar to
eddy viscosity in ordinary turbulence.This eddy coefficient of
heat conduction allows the approximated solutions described
by [7] to produce realistic relationship between the porous
Rayleigh number and Nusselt’s number for DL systems and
thus give better estimates for the heat flow through the porous
layer. As the flak amplitudes appear also in DLFB systems,
it may be suggested to use the scaling procedure for them
also, but it is much more complicated and is not attempted
in this paper. Simulation grids NI × NJ = 7 × 5 up to 𝑡 = 1.5.
𝑅aL = 180.

2. The Darcy-Lapwood System

Two-dimensional nonlinear thermal convection in a homo-
geneous horizontal aquifer, uniformly heated from below and
cooled from above, is described by a differential system orig-
inally presented in [16]. In [15] it is presented in cylindrical
coordinates. Here we use the notations in [10]:
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𝜃 = 𝑇/𝑇
0
, dimensionless temperature. 𝑇

0
is the differ-

ence of the constant temperatures of top and bottom.𝜓 is
dimensionless stream function. 𝑥 and 𝑧 are dimensionless
coordinates in horizontal and vertical direction. Lapwood
(porous) Rayleigh number, where 𝑐 is heat capacity of the
porous layer (cal/(kg∘K)), 𝑘 is coefficient of permeability
(m/s), Δ𝜌 is fluid density difference (kg/m3) corresponding
to 𝑇
0
, 𝐻 is thickness of aquifer (m), and 𝜆 is coefficient of

heat conduction (cal/(ms∘K) for the porous layer.

3. The Spectral Method Using Infinite
Spectrum

3.1. Equations. The boundary conditions are 𝜓 = 𝜃 = 0 at
𝑧 = 1, 𝜃 = 1, and 𝜓 = 0 at 𝑧 = 0; then the temperature
distribution in a cellular flow is given by the following Fourier
series:

𝜃 = 1 − 𝑧 +

∞,∞

∑
𝑖,𝑗=0,1

𝑃
𝑖𝑗
cos (𝑖𝑚𝑥) sin (𝑗𝜋𝑧) , (3)

𝑚 is the basic horizontal wave number, 𝑖 is horizontal wave
number, and 𝑗 is called themode. Individual amplitudesmust
satisfy the following equations:
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𝜔 (𝑖, 𝑗) =
𝑚2𝑖2𝑅aL − (𝑚2𝑖2 + 𝜋2𝑗2)

2

𝑚2𝑖2 + 𝜋2𝑗2
. (5)

Equation (4) indicates exponential growth in the first term;
(5) shows the growth rate.The last term in (4) is a sum, that is,
a quadratic form in all the temperature amplitudes in (3).This
simple form emerges because the trigonometric functions in
(3) are the eigenfunctions of the Sturm-Liouville problem
encountered in stability analysis of the Lapwood system [6].
The quadratic form in (4) may be compared to the sums
presented in [7] developed for the DLB (Darcy-Lapwood-
Brinkman) system. They include the same amplitude com-
bination in the quadratic form and the later introduced flak
(𝑃(0, 2𝑗)) amplitudes may be found in [7, Equation (86)],
even though their system is very different.

3.2. Linear Stability Analysis. In linear stability analysis we
assume no flow to be present; this means linear temperature
gradient or that all amplitudes in (3) are zero. Using the
regular perturbation theory, we then assume a perturbation
introduced in the form of infinitesimal amplitudes. The
quadratic form in (4) will now drop out and we are left
with the exponential growth terms, that is, (4) without the
quadratic form. Stability requires all growth rates to be
negative or zero:

all 𝜔 (𝑖, 𝑗) < 0 󳨐⇒ 𝑅aL < 4𝜋
2
𝑗
2
= 𝑅aL0𝑗. (6)

𝑅aL0𝑗 is the critical Rayleigh number for the mode 𝑗 (the 𝑗th
eigenfunction). The classical value 𝑅aL,crit = 𝑅aL01 = 4𝜋2. If
Ra > 𝑅aL01 and 𝐽 is a whole number defined by

4𝜋
2
𝐽
2
< 𝑅aL0𝑗 < 4𝜋

2
(𝐽 + 1)

2
, (7)

𝐽modes are unstable and all unstable wave numbers belong-
ing to these modes will grow exponentially in a flow started
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from rest. The unstable wave numbers are within the wave
number instability band, between 𝑖

01
and 𝑖
02
in the following

equation, they are the zeros of (5)

𝑖
02

− 𝑖
01

=
1

𝑚
√𝑅aL − 𝑅aL0𝑗. (8)

Maximum growth rate wave number, sometimes called the
most critical wave number, is

𝑚𝑖max = √ 𝜋𝑗√𝑅aL −
𝑅aL0𝑗

4
,

and then 𝜔max = 𝑅aL − √𝑅aL𝑅aL0𝑗.

(9)

For 𝑅aL = 𝑅aL01 (ca. 40) we find 𝑚𝑖max = 𝜋 and it does not
become 2𝜋 until 𝑅aL = 25𝜋

2 so, in a Fourier transform with
𝑚 = 𝜋, the 𝑖 = 1 will be the fastest growing wave number in
flows between the first and second critical Rayleigh numbers.
This sets the width of the flow cell.

3.3. Nonlinear Stability Analysis. The elements in the coef-
ficient tensor in (4) can be calculated from the following
algorithm:

𝐷(𝑖, 𝑗, 𝑝, 𝑞)

=
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,

(10)

𝛿(𝑖, 𝑗) = 1 for 𝑖 = 𝑗; otherwise 𝛿 = 0.
We now assume that a stationary solution to the system

equations (4)–(10) exists. It has to fulfil the system equations
with the term 𝑑𝑃/𝑑𝑡 = 0. No matter what the value of
individual amplitudes is, this system must be stable against
all perturbations Δ𝑃(𝑖, 𝑗) also if a perturbation is placed on
only one amplitude but the others are unperturbed.This leads
to the following equation for the perturbation of the stable
amplitude 𝑃(𝑖, 𝑗):

𝑑Δ𝑃 (𝑖, 𝑗)

𝑑𝑡
= Ω (𝑖, 𝑗) Δ𝑃 (𝑖, 𝑗) . (11)

This is the same equation as the linear counterpart, only with
a different growth rate, which from (10) is found to be

Ω(𝑖, 𝑗) =
𝑚2𝑖2𝑅aL (1 + 𝜋𝑗𝑃 (0, 2𝑗)) − (𝑚2𝑖2 + 𝜋2𝑗2)

2

𝑚2𝑖2 + 𝜋2𝑗2
. (12)

This is the non-linear growth rate Ω instead of the linear one
𝜔. The only difference between the nonlinear and the linear
growth rate is that we must insert in (5) a new 𝑅aL:

𝑅̃aL = 𝑅aL (1 + 𝜋𝑗𝑃 (0, 2𝑗)) . (13)

As in the linear case stability requires

all Ω(𝑖, 𝑗) ≤ 0 󳨐⇒ 𝑅̃aL ≤ 𝑅aL0𝑗

󳨐⇒ 𝑃 (0, 2𝑗) ≤ −
1

𝜋𝑗

𝑅aL − 𝑅aL0𝑗

𝑅aL
,

(14)

where the = signmeans neutral stability. It must be noted that
this is a necessary condition for any solution to be stable, but
it is not sufficient as all amplitudes are not perturbed.

If a stable solution turns unstable (e.g., from increasing
𝑇
0
) the disturbance of one amplitude may eventually spread

to all the others. Taking 𝑃(0, 2𝑗) themselves they have this
equation
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= −4𝜋

2
𝑗
2
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1

2
𝑃
2
(𝑝, 𝑗) + ⋅ ⋅ ⋅ .

(15)

Here there are two opposing forces, the strong curbing effect
of the negative linear growth rate and the negative sum that
carries in it the total spectral energy on the 𝑗th mode. There
is infinity of other quadratic terms, not shown, but these have
a good chance of cancelling each other out in a time average,
as they would contain the correlation coefficient between the
respective amplitudes. If any amplitude on any mode gets
very big the 𝑃(0, 2𝑗) will grow strongly negative with it and
then pull it down as the nonlinear growth rate turns negative.
Such action may clearly be seen in the following simulations
and therefore we call the 𝑃(0, 2𝑗)’s flak amplitudes. The
amplitude combinations in the quadratic form of (4) reflect
the fundamental property of the trigonometric functions that
𝑒
𝜄𝑚𝑥𝑒𝜄𝑛𝑥 = 𝑒𝜄(𝑚+𝑛)𝑥. They are the same for all two-dimensional
systems having the nonlinearities in quadratic terms only.

The flak amplitudes govern the flow pattern. They grow
and diminish with the energy on the corresponding unstable
mode by controlling the nonlinear growth rates Ω of all flow
amplitudes. Later we see that they make up the horizontal
average temperature distribution and with it the Nu. They
are always negative and must not be above a certain stability
value in any stationary flow that might exist. There is a single
infinity of critical Rayleigh numbers; each time one is passed
while the fluid is heating up, the corresponding flak amplitude
has to grow to a significant value.

It may be shown that (1) and (2) have a symmetrical
solution that is even; that is, all amplitudes in (4) where
𝑖 + 𝑗 is an uneven number are zero. In [4, 7] this is used;
the consequence is that, when only one stable solution exists
for each 𝑅aL, it is even. The physical difference of uneven
and even solutions is that uneven solutions have uneven flak
amplitudes 𝑃(0, 𝑗) with 𝑗 being an uneven number. Then the
average heat flow at top and bottom is not the same and the
porous layer may be heating up or cooling down as a whole.
An even Fourier transform is more stable than the one where
uneven amplitudes are allowed. But it seems inevitable that
uneven amplitudes can participate in unsteady flow. Stability
analysis of the even solution [6] indicate that this solution
may be stable in the 𝑅aL number range 40 < 𝐴 < 160 or
between the two first critical 𝑅aL numbers.

Equation (14) does not have to hold for fluctuatingmotion
when many modes are unstable. It is however difficult to see
how fluctuating motion (Figure 4) can be maintained unless
the flak amplitudes do fluctuate around (14) value.
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3.4. The Spectral Method Using Discrete Fourier Transform.
In numerical calculations (4) cannot be truncated without
introducing systematic errors. Finite Fourier transforms will
be used instead and then new amplitude combinations appear
in the quadratic form in (4).Thenewquadratic formbecomes

NI,NJ−1
∑

−NI,−NJ+1
𝐷(𝑖, 𝑗, 𝑝, 𝑞) 𝑃 (
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󸀠
, 𝑞
󸀠
) , (16)
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󵄨󵄨󵄨󵄨 ,
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𝑝󸀠 (𝑝󸀠
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󵄨󵄨󵄨󵄨𝑝
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2
) (1 + 𝛿 (𝑝, 0))

(𝑚2𝑝󸀠2 + 𝜋2𝑞󸀠2) (1 + 𝛿 (𝑖, 0) + 𝛿 (𝑖,NI))
.

(17)

NI and NJ are the horizontal and vertical maximum wave
numbers; 𝛿 is Kronecker’s delta; 𝑠

1
and 𝑠
2
are sign control

functions that are to be taken from Table 1 as plus or minus
one.

As may be seen by comparing (10) and (17), truncation of
(3) may introduce a significant error. The discrete quadratic
equation (16) is evaluated for discrete values of 𝑥 and 𝑧

only, so it contains amplitude combinations that are not at
all present in the infinite quadratic equations (4) and (10),
as explained in [6]. If the truncation is done as a cutoff at
constant 𝑖+𝑗 these amplitude combinations are totally absent.

When an infinite transform is truncated, all the ampli-
tudes above the cut-off frequency are considered to be zero,
but discrete forms may be cut off anywhere, discrete forms
may be cut off anywhere. A discrete Fourier transform is a
process where any number of points is transformed into an
equal number of Fourier coefficients, so the transform creates
a function that goes through the entire original points exactly.
Therefore, for all situations, stable or unstable, there exists a
finite Fourier transform for any number of NI and NJ. It may
be noted that FFT algorithm is a discrete transformation so
turbulence simulations using this technique have the extra
frequency combinations included.

4. Simulations Using the Discrete Fourier
Transform

4.1. General Remarks. To simulate, 𝑚 as well as NI and
NJ has to be selected. When fluctuating motion like this
is simulated using (4) with a constant value of 𝑚, one is
actually simulating convection in a box. Simulations using
(16) and (17) may be fired up by putting a small constant on
all amplitudes (spatially distributed random noise). For low
Rayleigh numbers this leads to a stable solution where all
the uneven amplitudes disappear. In order to give a realistic
picture of the flow, simulations need to include sufficiently
manymodes, so all unstablemodes are controlled.NJ−1must
therefore be not less than two times the number of unstable
modes, at least in theory. Intuitively, onewould expect too low
NJ simulations to be unstable for high Rayleigh numbers, but

on the contrary they aremore stable.Thephysical explanation
of this is that using a discrete transform with low NI × NJ
means that we only have NI × NJ many values for the Ψ and
𝜃 and each of these values must represent the average in the
corresponding rectangle. But averaging the equations means
that a new coefficient of heat conduction, similar to the eddy
viscosity, appears on the scene (21). This is explained in the
section on scaling.

In the very weak instability phase (𝑅aL little higher than
40), only onemode is unstable and𝑚 = 𝜋 gives themaximum
growth rate of the instabilities, so in (14) the period 𝑃(1, 1)

will grow fastest when we use 𝑚 = 𝜋. This is therefore used
in all the simulations; it makes the results better comparable.

4.2. Simulations with NI × NJ Grid 2 × 3. Possible number
of amplitudes is 6, ((NJ − 1) × (NI + 1)), making 3 even
amplitudes but one of them, 𝑃(2, 2), turns out to be zero.The
two remaining are the 𝑃(1, 1) and its flak amplitude 𝑃(0, 2).

This approximation has been studied by [4], who use a
series expansion to find it, and [6] that uses (16) and (17).This
rather crude approximation can take all 𝑅aL’s and is always
stable.

The formula for this solution is

𝜃 (𝑥, 𝑧) = 1 + 𝑧 + 𝑃
11
cos𝑚𝑥 sin𝜋𝑧 − 𝑃

02
sin 2𝜋𝑧, (18)

𝑃
11

= 4√
𝑅aL − 𝑅aL01

𝑅2aL
, 𝑃

02
= −

1

𝜋

𝑅aL − 𝑅aL01
𝑅aL

,

Nu = 1 + 2
𝑅aL − 𝑅aL01

𝑅aL
.

(19)

Figure 1 shows the simulation for Rayleigh numbers 50–250.
All simulations with NJ = 3 produce the same stable result
as (18) and the flak is the same as (14) with the equal sign.
The maximum value of Nu that (18) can give is 3; this low
value of Nu shows better than the value of the amplitudes
how crude the approximation (18) is. There are in reality 5
unstable modes, but only two are in the simulation and of
their amplitudes only 𝑃

11
and 𝑃

02
are nonzero. Increasing NI

to 4 but keeping NJ = 3 changes very little. More unstable
modes are needed, Figure 2. But a stable solution is obtained
for 𝑅aL = 1000, that is, 5 unstable modes.

4.3. Simulations withNI×NJGrid 7×5. Figure 3 showsNI =
7 and NJ = 5 simulation. This grid is slightly more accurate
than the 2 × 3. It contains 2 flak amplitudes and should
therefore be able to give a realistic picture of stable stationary
flows thatmight exist up to the third critical Rayleigh number.
The possible number of amplitudes is 32 ((NJ− 1) × (NI + 1))

making 16 even amplitudes. Of them9 end upwith significant
values to the second digit in Table 2.

In Table 2 uneven amplitudes are in lighter shade. Runs
with uneven amplitudes in the spectrum show that all uneven
amplitudes diminish with time and drop out. Simulated
𝑃(0, 2) is −0.31 and Nu = 2.9; this includes some aliasing
effects from the finite transform. Equations (14) and (21)
give that 𝑃(0, 2) is −0.25 and Nu = 2.8. The results
compare favourably and show how the flak amplitudes turn
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Table 1: Sign control functions.

Range 𝑞 < 𝑗 −NJ 𝑗 − NJ < 𝑞 < 0 0 < 𝑞 < 𝑗 𝑞 > 𝑗

𝑝 < 𝑖 − NI −+ ++ +− −−

𝑖 − NI > 𝑝 > 0 −− +− ++ −+
0 > 𝑝 > 0 −− ++ +− −−

𝑝 > 𝑖 − − +− ++ −+
Name 𝑠

1
𝑠
2

𝑠
1
𝑠
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𝑠
1
𝑠
2

𝑠
1
𝑠
2

3

2.5

2

1.5

1

0.5

0

−0.5
0 2000 4000 6000 8000 10000 12000

A
A

100
200

A
m

pl
itu

de
P

(0
,2

) a
nd

 N
U

A 50–250 NI/NJ 2/3

t in batches of 500∗(dt = 0.001)

Figure 1: Simulations using NI = 2 and NJ = 3 showing oscillating
approach to the stable asymptotes of Nu and 𝑃(0, 2).
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Figure 2: Simulation using NI = 4 and NJ = 3. 𝑅aL = 1000.

the unstable modes into stationary motion. Figure 3 shows
the time history of the simulation.

The slight increase in A from 180 to 190 changes this
completely. Now we have a stable periodically fluctuating
solution, Figure 4. The 7 × 5 grid approximation does not
render stable solutions for higher Rayleigh numbers.

4.4. Simulations with NI × NJ Grid 9 × 7. Here we look for
how the solutions in the 7 × 5 grid look in a slightly more
accurate grid that contains 3 flak amplitudes and examine
the fluctuating motion more closely. The possible number of
amplitudes is 60 making 30 even amplitudes.

Table 2: Amplitude array grid 7 × 5,𝑅aL = 180 to 𝑡 = 1.5.

𝑖/𝑗 1 2 3 4
0 0.00 −0.31 0.00 0.03
1 −0.29 0.00 0.06 0.00
2 0.00 −0.16 0.00 −0.06
3 0.05 0.00 0.02 0.00
4 0.00 0.01 0.00 0.00
5 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00
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Figure 3: Simulation grids NI×NJ = 7× 5 up to 𝑡 = 1.5. 𝑅aL = 180.

Simulations in a 9×7 grid are a littlemore unstable than in
the 7×5 grid. Fluctuating periodic flow is reached at𝑅aL = 165

and can be maintained until 𝑅aL = 180; see Figure 5. The
average amplitude array of 𝑅aL = 165 is shown in Table 3,
and the much larger standard deviations are in Table 4. Here
we have the interesting result that the average flak amplitude
is 𝑃(0, 2) = −0.2 while all others are practically zero; this
gives Nu = 2.3. Equation (14) stability limit for 𝑃(0, 2) is
−0.2411 below the simulation value. This is to be expected as
this solution is not stationary. Noting the standard deviation
in Table 4 (0.08), it corresponds to a fluctuation of about 0.1
around the mean value. The value of this flak amplitude will
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Figure 4: Simulation grids NI × NJ = 7 × 5. 𝑅aL = 190, stable,
periodic motion to 𝑡 = 1.5.

Table 3: Average of amplitudes, 𝑅aL = 165 grid 9 × 7.

𝑖/𝑗 1 2 3 4 5 6
0 0.00 −0.20 0.00 0.01 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 −0.02 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.02 0.00 −0.01 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00

Table 4: Standard deviation of amplitudes, in Table 2 and Figure 5.

𝑖/𝑗 1 2 3 4 5 6
0 0.00 0.11 0.00 0.03 0.00 0.01
1 0.18 0.00 0.06 0.00 0.02 0.00
2 0.00 0.08 0.00 0.03 0.00 0.01
3 0.08 0.00 0.04 0.00 0.01 0.00
4 0.00 0.04 0.00 0.02 0.00 0.00
5 0.01 0.00 0.01 0.00 0.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00

therefore be between ca. −0.1 and −0.3, with these values
being on the unstable and stable side, respectively, of the
stability limit (14). Figures 4 and 5 show this flak amplitude
fluctuation clearly. Equation (21) gives Nu = 2.5 and we
see that flak amplitudes and Nu are diminished from the
stationary level but still up and active.

The simulations in the 5×7 and 9×7 grids show that stable
solutions can bemaintained only up to the second critical𝑅aL
where periodic motion begins. Similar behaviour is observed
in fluid turbulence; when the Reynolds number is increased,
fluctuatingmotion sets in.Many vortex flow fields of this type
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Figure 5: Simulation 9 × 7. 𝑅aL = 180, stable, periodic motion to
𝑡 = 5.

are very well known in fluid mechanics (Reynolds, Taylor,
Karman, and Kelvin-Helmholtz). With increasing instability
these regular flows disappear and chaotic turbulence appears
instead. This seems to happen here between the second and
the third critical Reynolds numbers. This is in accordance
with the findings in [4, 6]; stablemotion is concluded to cease
at the second critical Rayleigh number. Chaotic motion is
found in [7] for that system at high fluid Ra numbers.

5. Scaling

Theamplitudes in Tables 2 and 3 have average amplitudes and
high standard deviation. The effect of this is to create a flow
with “eddy heat conduction,” a phenomenon similar to eddy
momentum transport in fluid turbulence.

It has been shown [17] that, when a running average is
taken in the convection box (Figure 6) covering a grid area of
(𝑙 × 𝑠), the nonlinear terms in (1) will produce a net transport
of heat into the 𝑙 × 𝑠 element when the second derivative of
the average temperature distribution does not vanish. This
net heat flow may be represented as the divergence of an
eddy heat flow vector equal to 𝜆

𝑒(𝑥, 𝑧)⋅grad𝜃. This is the heat
transported by fluctuations in excess of the molecular heat
conduction and the convection by means of the average flow
velocity. To model the flow in a coarse grid (Figure 6(a)) it
is therefore necessary to include in the simulations a subgrid
model that represents this heat flow, just as it is necessary to
include a subgrid model to take care of the Reynolds stress
tensor in macroscale models of turbulent flow.

The widely popular 2 × 3 grid solution is one flow cell in
one single block, so the underlying assumption is 𝜆𝑒(𝑥, 𝑧) =
constant. This is a crude simplification, similar to Prandtl’s
mixing length theory. It is not quite correct, as 𝜆𝑒 wouldmost
likely take the highest values in the zone shown in Figure 6(b).
We must conclude that in this solution there is active eddy
heat conduction coefficient 𝜆𝑒 acting in excess of the normal
heat conduction coefficient 𝜆 so the 𝑅aL which we must use
in (16) is scaled down in the following manner:

𝑅
𝑒

aL =
𝜆

𝜆 + 𝜆𝑒
𝑅aL. (20)
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Figure 6: Averaging the flow in a net of dimensions 𝑙 and 𝑠.

In finding 𝜆𝑒 we have a closure problem just as in turbulence;
principally it must be found in experiments. From the sim-
ulations we learn that in stable and oscillatory solutions the
flak amplitudes always have significant values. By averaging
the temperature gradient given by (3) at either top or bottom
and calculating the heat flow and using the equal sign in (14)
for the flak we get

Nu = 1 + 2

𝐽

∑
1

𝑅aL − 𝑅aL0𝑗

𝑅aL

󳨐⇒
𝑅aL
𝑅𝑒aL

= 2
√𝑅aL/𝜋 − 𝜋/√𝑅aL

3
= 1 +

𝜆
𝑒

𝜆
.

(21)

This result is an approximation valid for 𝑅aL numbers larger
than the second critical Rayleigh number, If 𝑅𝑒aL is used
instead of 𝑅aL then the 2 × 3 grid solution (18) approximates
the flowfield in this region.One has to remember that the𝜆𝑒+
𝜆 has to be used instead of 𝜆 when calculating the heat flow
fromNu in (18); otherwise this approximationwill render too
low heat flow. The Nu numbers can be estimated directly by
(21); for high 𝑅aL, Nu = 2√𝑅aL/3𝜋 is a good approximation.
It should be noted that (21)means that stationary average flow
can be approximated up to 𝑅aL = 27000.

Bifurcations are known to occur in porousmedia [17].The
first bifurcation happens in DL systems at the first critical 𝑅aL
number. According to (14), the physical process in fluctuating
flow is that the flak amplitudes maintain significant values
to keep the nonlinear growth rates down and hinder the
amplitudes they control from increasing without limit. Then
theremust be a new bifurcation each time𝑅aL passes a critical
𝑅aL number. Equation (21) is the result of repeated bifurcation
each time the Rayleigh number passes a critical value and one
more mode is rendered unstable in the free convection. The
result may be seen in Figure 7.
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Figure 7: Nusselt number based on stability limits for 𝑃(0, 2𝑗) for 𝐽
unstablemodes.The triangle shows approximate location of Nu–𝑅aL
test results reported by [1–3, 7, 18, 19].

6. Laboratory Scales

To make laboratory tests of convection in porous media
one has to scale natural convection (e.g., geothermal fields)
down to laboratory dimensions; in doing this, dynamic
similarity may be a problem. One dimensionless parameter,
for example, the Rayleigh number, can be kept constant in
the model and the prototype but not more than that. Aquifer
thickness,𝐻, is typically 1000m in geothermal reservoirs but
∼1m in the laboratory. To get a flow going the aquifer rock
matrix has to be replaced by glass or plastic pearls with up to
1000-fold permeability and this brings the test from the DL
regime of the aquifer into the DLFB regime. Acknowledging
this fact [7] consequently uses Ra, not 𝑅aL. This brings up
the question of dispersion. This seems to be overlooked, but
dispersion must play a role in laboratory experiments with a
porous matrix of relatively large glass pearls. The scale effects
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in the dispersion term may be estimated from the dispersion
equation:

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
𝑖

(𝐴
𝑖𝑗

𝜕𝐶

𝜕𝑥
𝑗

+ 𝜆
𝜕𝐶

𝜕𝑥
𝑖

− 𝐶V
𝑖
) ;

[
V
𝑖
= (V, 0, 0)

𝑥
𝑖
= (𝑥
1
, 𝑥
2
, 𝑥
3
)
] ; 𝐴

𝑖𝑗
=
{

{

{

𝑎
1
V 0 0

0 𝑎
2
V 0

0 0 𝑎
2
V

}

}

}

.

(22)

This assumes the 𝑥
1
axis in the direction of the flow. 𝐴

𝑖𝑗
is

the dispersion tensor.𝐶 denotes the concentration of a solute,
in our case the mixing ration of hot water into cold, or the
dimensionless temperature 𝜃. The 𝜆 term is the molecular
diffusion, in our case the coefficient of heat conduction as
before. In natural low permeability aquifers, V is very small
and the dispersion term is negligible compared to the 𝜆 term
and generally left out. Estimating the dispersion/conduction
ratioDCR,with respect to dynamic similitude, we see that the
DCR will not be the same dimensionless number in model
and prototype regardless if DL scaling (𝑅aL constant), or
DLFB scaling (Ra constant) is used, the following equation
shows this,

DCR = D̂CR 𝑎

𝐻
𝑅aL

= D̂CR 𝑎

𝐻𝜎2
Ra; D̂CR is dimensionless DCR.

(23)

Here 𝑉
𝑠

= 𝑘Δ𝜌/𝜌 is used for the velocity scale in the
dispersion term, 𝜎 is the porosity parameter 𝐻/√𝑘 [7], 𝜎−2
is called the Darcy number by some, and Ra is the fluid
Rayleigh number (Ra = 𝑅aL𝜎

2). The parameter a is called
the dispersivity and is usually taken as proportional to length
scale; [20] suggests the order of magnitude 0.01–0.1. To use
this value, both the aquifers in nature and the laboratory
would have to be glass pearls which of course is not the
case, but if that is overlooked, 𝑅aL scaling (𝑅aL is the same in
model and prototype) would give dynamic similarity. When
Ra scaling is applied, the ratio 𝜎prototype/𝜎model can easily
be in the range 103–106; this makes the 𝑅aL values much
higher in the model than in the prototype as Ra = 𝑅aL𝜎

2.
Then heat dispersion ismore important than heat conduction
resulting in higher Nusselt’s number in the laboratory tests
than in natural aquifers of large dimensions. DLFB systems
can accordingly not be scaled to DL systems when the FB
terms have a significant effect.

6.1. Nusselt Number Compared To Experiments. Trying to
rescale laboratory results and compare computed and mea-
sured Nusselt’s numbers is impossible, except possibly for the
two-amplitude (one block) solution, where dispersion effects
may be included in the 𝜆𝑒. The 2 × 3 grid procedure can only
produce Nu numbers up to 3 in the Lapwood system. [7]
bring it up to approximately 4 in their system using a cutoff
frequency of 𝑖 + 𝑗 = 12, which corresponds to the 5 × 7

grid solution. Nusselt’s numbers in natural aquifers of large
dimensions tend to be higher.

Figure 7 showsNusselt’s number based on the assumption
that repeated bifurcation brings into the picture new flak

amplitudes for each newmode.The formula Nu = 2√𝑅aL/3𝜋
(blue line, Figure 7) is a good approximation for 𝐽 ≥ 5. Nu
values from laboratory tests are higher, but effects of eventual
scaling or forcing (see next chapter) are unknown so the
triangle for the results location is only approximate for pure
DL systems.

6.2. Effect of Forcing. Due to (2), all horizontal temperature
gradients from outside force the DL system. Forcing creates
some flow, no matter how low the 𝑅aL number is. Forced
convection is an interesting topic with many applications; in
[21] there is a review of the results in this field. When heating
and cooling are between two vertical walls, stability does not
have to be a problem and elegant solutions can be found both
analytically and numerically [22]. The work in [23] is very
interesting, showing an analytical solution of a forced system
with variable permeability.

In [24] there is a treatment of the heat transfer through
a box with heated sides using the DLFB system with added
turbulence by a 𝜅–𝜀 subgrid model and a dispersion term
included. The turbulence increases Nu significantly but the
effect of changing 𝜎

2 from 107 to 108 is even greater. They use
𝑅aL but if their Figure 4 in [24] is rescaled to Ra, the lower 𝜎2
curve (higher Darcy number, Da in their notation) produces
higher Nu numbers for the same Ra, which illustrates the
scaling difficulty mentioned above and could point to the
influence of dispersion. [25] studies the same problem and
the conclusion is that dispersion has a significant effect.

Forcing thus makes it possible to analyze numerically
and analytically situations with high heat transfers counted
in Nu numbers, situations where numerical simulations of
free convection with similar Nu numbers become unstable
because the flow fluctuates. The effect of basic processes
such as dispersion must generally have the same effect on
the magnitude of heat flow in forced and free convection
problems.

7. Discussion

The physical process of free convection flow in porous media
suggests itself to be the following. For Rayleigh 𝑅aL01 <

𝑅aL < 𝑅aL02 convection sets in as a result of a bifurcation
process when small disturbances of the spatial wave number
𝑚 = 𝜋 become unstable and start to grow exponentially
with time. For wave numbers below the second critical wave
number only one mode (the first) is unstable. The entire
energy spectrum of unstable wave numbers in that mode
participates in making the first flak amplitude 𝑃(0, 2) highly
negative. Then the nonlinear growth rates of all first mode
wave numbers turn negative and all the flow amplitudes
on the first mode start decaying. This process repeats itself
until stationary cellular flow of convective rolls is achieved
(Figure 2).

If the Rayleigh number is increased slightly above the
second critical Rayleigh number, a fluctuating flow sets in,
but the 2 × 3 grid approximation does not show fluctuations
at any Rayleigh number. In contrast hereto, the 5 × 7 and
9×7 grid discrete Fourier transforms (16) and (17) show stable
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periodic motion for 𝑅aL numbers just above the 𝑅aL02, but it
changes to fluctuating motion that resembles eddy motion
in turbulent flow when the 𝑅aL is slightly increased. In this
fluctuating flow, the flow amplitudes shift from positive to
negative indicating reversal of the flow direction in a periodic
manner, but the flak amplitude stays high and fluctuates
around the stability value (14). In this flow the average
amplitudes are less important than the standard deviations
and the correlation between amplitudes. The flak amplitudes
are the only exception.

For higher Rayleigh numbers the flow becomes chaotic.
Forcing will delay this considerably, so in laboratory experi-
ments it is very important to exclude all forcing.

This flow resembles fluid turbulence in many ways.
In spatially averaged equations the average amplitudes of
fluctuations smaller than the grid size drop out leaving an
eddy heat conduction effect.This leads to the scaling rule that
makes it possible to use the 2 × 3 grid solution and still get
realistic Nu numbers.

Turbulent fluid flow is governed by the eddy momentum
transport due to the fluctuation that results from quadratic
forms of the velocities in the Reynolds stress tensor. In
a Darcy-Lapwood system there is eddy heat flow due to
the fluctuation that results from quadratic forms of the
velocities and the temperature. The flow is very slow, the
nondimensional time interval from 0 to 1 can mean 30.000
years, [6] and heat conduction is faster than heat dispersion.

Systems governed by the fluid Rayleigh number Ra do not
in principle scale to Lapwood systems, and there are strong
indications that Ra systems (DLFB, DLB, and DL systems
with added effects of turbulence or dispersion) scaled down
to laboratorymodel size with𝑅aL = Ra/𝜎2 run on higher heat
flow due to dispersion in the pore matrix than the prototype.

As fluctuations dominate the flow at high 𝑅aL number
flows and contribute to the heat flow, stable nonfluctuating
solutions, analytical as the 2× 3 approximation or numerical,
do need something like the eddy heat flow coefficient 𝜆𝑒 to
render correct heat flow when the convection is free.

This investigation covers convective rolls. When strong
fluctuations set in, the rolls become unstable and the flow
becomes three-dimensional. The rolls are still there as a
background motion, but when 𝑅aL passes 3000–4000 they
have probably disappeared. In [26] a scaling approximation
with a boundary layer at top and bottom ∼ 𝑅−1aL is used for
𝑅aL > 1300; it gives Nu ∼ 𝑅aL, but there is fair agreement
with the results here, up to that point. To investigate three-
dimensional flow, it would be interesting to perform an
analysis with the finite Fourier transform of a two- or three-
roll system intersecting each other. But this would still
produce a quadratic form similar to what we have, so it does
not have to change much. Here it is judged unlikely that it
would suddenly change the Nu ∼ 𝑅

1/2

aL to Nu ∼ 𝑅aL, ([26],
Figure 2).

8. Conclusions

In the Darcy-Lapwood system there are 𝐽 = √𝑅aL/2𝜋
unstable modes (𝐽 nearest lower integer).

Associated with all amplitudes, 𝑃(𝑖, 𝑗) on a fixed mode
(constant 𝑗), there is a flak amplitude. It is the amplitude on
the zero frequency of themodewith the doublemodenumber
𝑃(0, 2𝑗) being the same for all horizontal wave numbers (𝑖).
The flak amplitude is always negative, independent of the sign
of the amplitudes.

Theflak amplitudes have a neutral stability value as shown
by (14). If a stationary solution exists, it is symmetrical with
all flak amplitudes not higher (less negative) than this value.

The Fourier transforms of the spectral method do have to
include active modes up to double the number of unstable
modes. Using discrete Fourier transform includes several
frequency combinations generated by the nonlinear terms of
the system (included in the Jacobian of (1)) that the truncated
infinite form does not have.

Using the discrete Fourier transform makes it possible to
use very coarse grids in numerical simulations, such as the
2 × 3 approximation, but then the flows on unstable modes
not represented in the grid are aliased on the existing modes.
For high𝑅aL coarse grids give too lowNusselt’s numbers even
though the fluid flow picture seems realistic.

Simulations above the second critical 𝑅aL result in fluc-
tuating flow. Even though the average fluctuations may have
zero average amplitude and thus do not participate in the
average fluid motion, they are active in transporting heat.

The assumption that all the flak amplitudes fluctuate
around the stability value results in the scaling rule (17)
that makes it possible to use the 2 × 3 solution to obtain
realistic heat flow (Nu) by defining an eddy heat conduction
coefficient 𝜆

𝑒 that makes up for the missing effect of the
fluctuations not present in the 2 × 3 approximate solution.

Assuming the flak amplitudes to stay on the neutral
stability value on the average results in the approximate
formula Nu = 2√𝑅aL/3𝜋 for 𝐽 > 5. Then the 2 × 3

approximation renders realistic Nu, when 𝜆𝑒 is used.Without
this scaling, Nu = 3 is maximum in the 2 × 3 approximation.
It gives a stable flow for all 𝑅aL.

With 2 unstable modes (𝑅aL > 160) fluctuating motion
sets in with the fluctuationsmore dominating in the finer grid
transforms, as finer grids bring higher growth rates into the
simulation.

Today’s research focuses on DLFB systems as this equa-
tion system ismore accurate for high permeability small scale
flow systems. Studies of these systems do not automatically
include the mathematically simpler DL system because of
scaling problems associated with the great difference in the
porosity value 𝜎 that follows the higher permeability and
smaller linear scale.

Strong forcing stabilizes flows that would be otherwise
unstable. But flow on the first mode does not stabilize the
flow in DL systems as flak amplitudes have no effect outside
their own mode. A DL system will pick up disturbances
from outside that fall into the wave number instability band
window, when the corresponding flak is in a downswing.
Natural disturbances from outside, for example, tidal and
barometric effects, will therefore start new fluctuations and
the system will by time become independent of the initial
condition thus forgetting its past and becoming chaotic.
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