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Asset management of distribution systems is an important issue for smart grid. Maintenance scheduling, as an important part
of asset management, affects the reliability of distribution equipment and power supply. This research focuses on long-term
distribution system maintenance scheduling aided by available operation information, which is a prominent advantage of smart
grid over conventional distribution systems. In this paper, the historical and future operation information in smart grid is taken
into account through a decoupled time-varying reliability model of equipment. Based on distribution system reliability assessment,
a maintenance scheduling model is proposed to determine the optimal implementation time of maintenance activities to minimize
distribution systems’ total cost, while satisfying reliability requirements. A combined algorithm that consists of particle swarm
optimization and tabu search is designed and applied to the optimization problem. Numerical result verifies that the proposed
method can schedule long-term maintenance of distribution systems in smart grid economically and effectively.

1. Introduction

As the most complex part in power networks, distribution
systems play a fundamental role and their failures result in
most interruptions of power supply. Maintenance of distri-
bution equipment can extend equipment’s service life and
reduce the duration of supply outage [1]. Therefore, the reli-
ability analysis and maintenance scheduling of distribution
systems have attracted wide attention [2–4]. With the devel-
opment of smart grids, the operation of distribution systems
is more flexible; meanwhile, advanced distribution equip-
ment can providemore information and better controllability
[5]. Under this circumstance, new asset management meth-
ods are needed to accommodate these technical innovations.
As an important part of asset management, distribution
systemmaintenance scheduling in smart grid confronts both
new problems and opportunities.

Distribution equipment maintenance can be generally
divided into two types: preventive maintenance (PM) and
corrective maintenance (CM). Preventive maintenance is
conducted before equipment’s failure and can be sched-
uled, whereas corrective maintenance is performed after
the occurrences of failures and it has very few optional

schedules. According to different scheduling principles, pre-
ventive maintenance scheduling can be divided into sev-
eral types: predetermined periodic maintenance, reliability-
centred maintenance (RCM), and risk-based maintenance
(RBM) [6–8]. Conventional RCM focuses on maximizing
system reliability, but it seldom considers maintenance bene-
fits and costs. With the deregulation of electric industry, dis-
tribution maintenance scheduling should consider economic
rewards and penalties from customers according to different
reliability levels of power supply [3]. A good maintenance
schedule should be a reasonable balance of operation cost
and reliability [9]. Therefore, risk-based maintenance (RBM)
[10], which formulates maintenance schedules to minimize
failure probability and its consequences, is more applicable in
practice and becomes themost studiedmaintenance schedul-
ing method.

Some research has proposed somemodels and algorithms
for distribution maintenance scheduling. Mixed-integer pro-
gramming is applied in [4] to schedule maintenance for over-
head transmission lines. References [6, 11] assess the impact
of different distribution components and maintenance tasks
on system reliability and then select critical components and
maintenance tasks to make maintenance schedules. Based
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on the risk analysis of distribution components, [9, 12] uses
ordinal optimization and dynamic programming to schedule
maintenance for multiple components. Distribution mainte-
nance with limited information of equipment’s condition is
studied in [13], using fuzzy theory and integer programming
to maximize system reliability.

For maintenance scheduling, the foremost and funda-
mental task is to form the equipment reliability model and
obtain equipment’s failure rates. In conventionalmaintenance
models, equipment’s condition is discretized into a few states
[4, 11, 14, 15], while state-transition probabilities are set to
constants. However, these assumptions are sometimes over-
simplified for practical use and not accurate enough to reflect
the real deterioration process. In reality, the operation con-
dition of equipment is continuously changing with time. For
example, the system load is always changing with time, so it is
reasonable to consider the influence of heavy loads on trans-
formers’ insulation aging. Moreover, each failure type has its
own development characteristic and corresponding failure
rate varying with time. In a particular period, equipment is
under different stages when evaluated according to different
deterioration mechanisms. Previous work rarely takes above
factors into consideration in maintenance scheduling.

The equipment monitoring devices in smart grid can
record the continuously changing operation data. The smart
grid framework may contain the prediction of future oper-
ation scenarios and even the preestablishment of future
operation plans, but this information is rarely incorporated
in current models. In this paper, operation information in
smart grid is used to facilitate amore reasonablemaintenance
schedule for distribution systems. In the proposed method,
the failure rate of distribution equipment is decoupled
according to different failure mechanisms. This decoupled
failure rate model is used to incorporate the information
reflecting the time-varying operation conditions and envi-
ronments, such as heavy load and adverse weather. Based on
distribution system reliability assessment, a RBM scheduling
model considering varying operation conditions is proposed
to minimize distribution systems’ outage losses and main-
tenance cost over the scheduling horizon, while satisfying
reliability requirements. Due to the fact that an accurate and
complete method for distribution system reliability assess-
ment is embedded in the maintenance model, it is difficult
to solve this nonlinear combinational optimization problem
through conventional mathematics programming methods.
Therefore, a hybrid algorithm that combines particle swarm
optimization (PSO) and tabu search (TS) is designed and
applied to solve this optimization problem.

The remainder of this paper is organized as follows. In
Section 2, equipment’s reliability model considering multiple
deterioration mechanisms, as well as operation conditions
and maintenance activities on equipment’s reliability, is
analysed. The formulation of the maintenance scheduling
optimization problem is given in Section 3. The details of
the PSO-TS hybrid algorithm are presented in Section 4.
Section 5 is a case study based on an IEEE RBTS subsystem.
Conclusions are provided in Section 6.

2. Reliability Model of Equipment

2.1. Multiple Deterioration Mechanisms and Failure Rate
Decoupling. In some reliability models of equipment [16],
two discrete states are considered: the normal state and the
failure state. In these models, the failure rate of equipment
equals the average value of the smooth running stage of
the bathtub-shaped aging curve. In some modified models
[17, 18], equipment is considered to have several deteriorated
states and a failure state during its service life, and the
transition of states is represented by the discrete Markov
process. However, these models are based on the assumption
that the probability of each state’s duration is exponentially
distributed, which is sometimes not accurate enough for
practical use. In smart grid, due to the increasing flexibility of
distribution system operation, more adaptable and accurate
reliability models for equipment are needed.

In practice, equipment in distribution systems has various
deterioration mechanisms [4, 6, 9]. For example, failures of
overhead transmission lines may result from wire damage,
insulator aging, or mechanical damage of poles. A circuit
breaker may fail due to wear in mechanical systems, aging of
insulation materials, and malfunction of internal control cir-
cuits. Other equipment such as transformers, buses, and feed-
ers also have multiple deterioration mechanisms.These dete-
riorationmechanisms are often inherently isolated from each
other and independently result in equipment’s failures [4].
Therefore, equipment’s failure rate can be decoupled into
several independent components of failure rate according
to different failure mechanisms [9]. The total failure rate of
equipment is the sum of decoupled independent component
failure rates as follows:
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in period 𝑡. 𝐷 is the number of deterioration mechanisms.
The characteristics of each failure rate component can be
described by its own failure rate curve. Each decoupled failure
rate component is modelled by the Weibull function with
different coefficients as follows:

𝜆
𝑑

𝑖
(𝑡) = ℎ

𝑑

𝑖
[

[

(
𝛽
𝑑

1,𝑖

𝛼𝑑
1,𝑖

)(
𝑡

𝛼𝑑
1,𝑖

)

𝛽
𝑑

1,𝑖
−1

+ (
𝛽
𝑑

2,𝑖

𝛼𝑑
2,𝑖

)(
𝑡

𝛼𝑑
2,𝑖

)

𝛽
𝑑

2,𝑖
−1

]

]

,

(2)

where ℎ𝑑
𝑖
, 𝛼𝑑
1,𝑖
, 𝛽𝑑
1,𝑖
, 𝛼𝑑
2,𝑖
, and 𝛽𝑑

2,𝑖
are Weibull coefficients.

Based on empirical or experimental data, these parameters’
values can be estimated through the least-square-fitting
method [19]. Referring to [4, 9], an example of the decoupled
and total failure rate curves using the Weibull function is
presented in Figure 1. Apart from theWeibull function, other
functions can also be used to fit the specific characteristics
of different deterioration processes and different equipment
when necessary.
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Figure 1: An example of decoupled failure rate curves.

2.2. The Impact of Operation Conditions—Heavy Load as an
Example. Meters and sensors in smart grids provide much
system operation information. With this information, the
condition of system components can be more accurately
assessed. A frequently occurred operation condition, heavy
load, is analyzed here as an example.

With the growth of load demand and the aggregated
load such as simultaneously charging batteries of electrical
vehicles, heavy load situations are not rare in distribution
systems. Overload situations can be recorded and sometimes
predicted by smart grid devices. Thus, their impacts on
equipment reliability can be quantified. Generally, the heavy
load will accelerate certain failure processes of electrical
equipment, resulting in corresponding increase in failure rate
components [20]. For instance, overheat due to heavy load
will accelerate the insulation aging process of transformers,
thereby increasing the insulation failure rate. According to
Arrhenius law [21], the insulation life loss of transformers can
be obtained as follows:

Δ𝑇Loss = ∫
𝑡2

𝑡1

𝑉

𝑑𝑡 = ∫

𝑡2

𝑡1

2
(𝜃𝑡,ℎ−98)/6𝑑𝑡, (3)

where 𝑉 denotes the relative aging rate. 𝜃
𝑡,ℎ

represents
the hot spot temperature of a transformer’s winding. This
temperature value, which relates to transformer parameters
and load values, can be calculated through the method
provided in [22]. (𝑡

1
, 𝑡
2
) represents the interval of the heavy

load period. Figure 2 shows the impact of the heavy load on
the insulation failure rate. The influence of other operation
conditions on equipment, such as bad weather’s influences
on pole and insulator damage, can also be similarly modelled
through modifying (2) and (3).

2.3. The Impact of Maintenance. Maintenance tasks are often
targeted at improving a certain part of equipment, such as
vegetation pruning and conductor and pole refurbishment.
Therefore, each maintenance activity only reduces one or
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Figure 2:The impact of the heavy load on the insulation failure rate
of transformers.

several corresponding failure rate components and has little
impact on other components. After maintenance, the corre-
sponding failure rate of this deterioration type returns to a
certain initial value instead of that of the brand-new state [4].
Therefore, equipment’s failure rate after maintenance can be
obtained as

𝜆
𝑑

𝑖
(𝑡) =

𝑡max
𝑡

=1

{

{

{

𝐾
𝑑

𝑖
(𝑡

+ 𝑡
𝑑

𝑖,initial − 1)

×[

[

1 −

𝑡

−1

∑

𝑛=0

𝑋
𝑑

𝑖
(𝑡 − 𝑛)]

]

}

}

}

,

(4)

where 𝐾𝑑
𝑖
(𝑡

) denotes the failure rate of deterioration type 𝑑

on equipment 𝑖 in period 𝑡. 𝑡𝑑
𝑖,initial is the initial time duration

after the previous maintenance for deterioration type 𝑑 of
equipment 𝑖.

Aided by operation information in smart grids, the
decoupled failure rate model accurately quantifies the
impacts of operation conditions and maintenance activities
on equipment reliability, serving as a basis for the distribution
maintenance scheduling model presented below.

3. Distribution System Maintenance
Scheduling Model

3.1. Objective Function. In system operation, both main-
tenance and failure may cause outages of equipment and
reduce distribution system reliability. On one hand, equip-
ment outages due to preventive maintenance may result in
load shedding, thus decreasing systems’ reliability level in
maintenance periods. On the other hand, maintenance can
reduce equipment’s failure rates and improve the system
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reliability level in the following periods. To obtain the most
economic preventivemaintenance schedule, the influences of
maintenance outages and failures should be comprehensively
evaluated. Thus, the objective function is formulated as
minimizing the total cost of the distribution system over the
whole scheduling horizon [4, 19], which consists of three
parts: the preventive maintenance cost, the corrective main-
tenance cost, and the penalty cost of lost load:

Minimize 𝑓 =

𝑇max

∑

𝑡=1
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𝑀
(𝑡) + 𝐶

𝑅
(𝑡)
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(𝑡)) ⋅ (1 + 𝑟)
−𝑡/12

} ,

(5)

(i) 𝐶𝑀(𝑡)—the preventive maintenance cost, which
includes labour resource cost and materials cost of
maintenance activities. The preventive maintenance
cost in period 𝑡 is calculated as

𝐶
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(ii) 𝐶𝑅(𝑡)—the corrective maintenance cost, which is
related to equipment’s random failures rate 𝜆𝑑

𝑖
(𝑡), so

it is a probabilistic value and varies with time. Based
on equipment’s time-varying failure rate, 𝜆𝑑
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(𝑡) in (2),

the expected value of the system’s repair cost in period
𝑡 is
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(iii) 𝐶EENS
(𝑡)—the penalty cost of lost load. The penalty

cost of lost load due to preventive maintenance,
corrective maintenance, and failures is obtained from
the reliability index Expected Energy not Served
(EENS) as follows:

𝐶
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𝑖
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(8)

where 𝐼EAR is the reliability value coefficient, which
can be obtained from load composition analysis or
customer surveys. 𝐸EENS(𝜆

𝑑

𝑖
(𝑡), 𝑋
𝑑

𝑖
(𝑡)) denotes the

expected energy not supplied in period 𝑡, which is cal-
culated through reliability assessment of distribution
systems using the network equivalence method and
theminimal pathmethod described in [23].Observed
from the corrective maintenance cost (7) and cost of
lost load (8), it can be noted that decoupled failure
rates 𝜆𝑑

𝑖
(𝑡) are important data for the assessment of

the system total cost.

3.2. Constraints

3.2.1. Maintenance Strategy Constraints. Maintenance strat-
egy constraints are the constraints of maintenance activities
[2], which include maintenance time window constraints,
budget constraints, and labour constraints.

(i) Maintenance time window constraint: the starting
period of preventive maintenance must be within a
specific interval:

𝑇
EAR
(𝑖, 𝑑
𝑖
) ≤ 𝑇 (𝑖, 𝑑

𝑖
) ≤ 𝑇

LAT
(𝑖, 𝑑
𝑖
) 𝑖 = 1, 2, . . . , 𝑁. (9)

For corrective maintenance, however, due to its high
level of priority after a failure’s occurrence, there is no
time window constraint for it.

(ii) Budget constraint: cost in each period should be
within the following budget:

𝐶
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(10)

(iii) Labour constraint: the maximum number of staff for
preventive and corrective maintenance is limited:
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(11)

3.2.2. System Operation Constraints. During maintenance, it
is important to ensure a certain level of power supply reliabil-
ity. The reliability indices—the System Average Interruption
Frequency Index (SAIFI) and the System Average Interrup-
tion Duration Index (SAIDI), which, respectively, represent
the frequency and duration of supply interruption, reflect
the average level of power supply reliability in smart grid.
In maintenance scheduling, system operation constraints are
presented as follows.

(i) SAIFI constraint: to guarantee a certain power supply
reliability level, SAIFI in each period should not
exceed its limit 𝐼max

SAIFI:
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𝑖
(𝑡)) is SAIFI in period 𝑡.

(ii) SAIDI constraint: SAIDI in each period should not
also exceed its limit 𝐼max

SAIDI:
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where 𝐼SAIDI(𝜆
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𝑖
(𝑡), 𝑋
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𝑖
(𝑡)) is SAIDI in period 𝑡.

In smart grid, the values of 𝐼max
SAIFI and 𝐼

max
SAIDI can be set

to required reliability levels, which leads to different sizes
of optimization (feasible) space for maintenance scheduling.
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The calculation of SAIFI and SAIDI involves complete proce-
dures of distribution system reliability assessment as provided
in [23, 24]. Required data include the equipment reliability
model in Section 2 and system configuration information. In
addition, the power flow in some components of distribution
systems is strictly limited. For these components, the over-
load constraint (14) should be satisfied during maintenance
periods:

𝑓𝑖 (𝑡)
 ≤ 𝑓

max
𝑖

𝑡 = 1, 2, . . . , 𝑇max, (14)

where 𝑓max
𝑖

is power flow limit of component 𝑖. 𝑓
𝑖
(𝑡) is the

power flow value of component 𝑖 in the peak-load mode
during maintenance period 𝑡.

Distinguished from existingmodels that seldom consider
various operation conditions, (1)–(14) presented a main-
tenance scheduling model that incorporated time-varying
operation information and aimed to minimize the total cost,
while subjected to power supply reliability requirements. To
solve this model, a hybrid algorithm that derives from PSO
and TS is designed and described as follows.

4. The PSO-TS Hybrid Algorithm for
the Maintenance Scheduling Model

If the maintenance start time 𝑇(𝑖, 𝑑
𝑖
) is a discrete value for

computational convenience, the above problem is an integer
programming problem. Due to that 𝜆𝑑

𝑖
(𝑡) is a nonlinear

function of 𝑡 as shown in (2), constraint (11) is a nonlinear
constraint. Moreover, since the reliability indices in the pro-
posed model (𝐸EENS(𝜆

𝑑

𝑖
(𝑡), 𝑋
𝑑

𝑖
(𝑡)), 𝐼SAIFI(𝜆

𝑑

𝑖
(𝑡), 𝑋
𝑑

𝑖
(𝑡)), and

𝐼SAIDI(𝜆
𝑑

𝑖
(𝑡), 𝑋
𝑑

𝑖
(𝑡))) involve the reliability assessment on the

distribution system, they are nonlinear functions of 𝑡. So the
formulated problem is an integer optimization problem with
both nonlinear constraints and nonlinear objective function,
to which conventional mathematical programming methods
are difficult to apply. Metaheuristic methods, such as particle
swarm optimization (PSO) and tabu search (TS), are suit-
able for solving this kind of nonlinear integer optimization
problem.The PSO algorithm has the advantages of simplicity
and high searching efficiency [25, 26], but it also has some
drawbacks such as premature and immersing in local opti-
mum [27]. Tabu search (TS) algorithm can easily generate
many candidate solutions and expand the searching space
[28]. So it has a strong and robust searching ability both
globally and locally [29, 30], but its convergence is slow due to
its relatively low searching efficiency and strong dependence
on initial values.

Hybridized metaheuristic algorithms are considered to
be effective and efficient in solving large-scale optimization
problems [31]. Based on the principles of hybridizing meta-
heuristic algorithms and the characteristics of the mainte-
nance scheduling model, this paper proposes the solving
process of a PSO-TS hybrid algorithm for the maintenance
scheduling problem, which is presented in Figure 3.

Details of some steps are explained below.

Step (1). Input the problem data and the algorithm param-
eters. The required data include equipment data of the

distribution system, load data, operation condition data, and
system configuration information. The equipment data con-
sist of equipment deterioration data, preventive maintenance
data, and corrective maintenance data. Load data include
node load data and required power supply reliability (i.e.,
CAIFI and CAIDI) constraints.

Step (2). Particles’ positions, velocities, and the tabu list are
initialized considering constraints in (9)–(14). The position
vector of a particle denotes maintenance starting periods of
different equipment.

Step (5). Particles’ positions and velocities are updated
according to (15), while considering constraints in (9)–(14).
Particles remain motionless if they do not satisfy constraints
after being updated:
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𝑖
) .

(15)

A difference between the PSO part in this algorithm and
PSO in current research [27, 32] is the adaptive inertia weight,
the formulation of which is presented in (16). To improve
PSO’s searching ability, the inertia weight 𝜔 in this paper
decreases nonlinearly as iterations increase and the particles’
dispersion degreeΔ decreases, both of which affect the inertia
weight simultaneously in the iterative process:

𝜔 =
1

{1 + exp [((𝑎 + 𝑏) ⋅ (1 − Δ) ⋅ 𝑠/𝐼max
iter ) − 𝑏]}

,

𝜔 ∈ [𝜔min, 𝜔max] ,

(16)

where 𝑠 is the iteration number and 𝐼max
iter is themaximum iter-

ation number. Coefficients 𝑎 and 𝑏 can be calculated suppos-
ing𝜔 = 𝜔max at the beginning of iteration (i.e., 𝑠 = 0) and𝜔 =
𝜔min at the end of iteration (i.e., 𝑠 = 𝐼max

iter ) [33]. Δ describes
the current dispersion degree of the particle swarm, which
is calculated as follows:

Δ =
(𝑀MaxDist −𝑀MeanDist)

𝑀MaxDist
, (17)

where 𝑀MeanDist and 𝑀MaxDist denote the average and the
maximumdistance of current particles from the best position
obtained, which are calculated as follows, respectively:

𝑀MeanDist =

{∑
𝑁𝑃

𝑗=1
√∑
𝑁

𝑖=1
(𝑇𝑠,Best(𝑖, 𝑑

𝑖
) − 𝑇𝑠
𝑗
(𝑖, 𝑑
𝑖
))
2

}

𝑁
𝑃

(18)

𝑀MaxDist = max
𝑗=1,2,...,𝑁𝑃

{

{

{

√

𝑁

∑

𝑖=1

(𝑇𝑠,Best(𝑖, 𝑑
𝑖
) − 𝑇𝑠
𝑗
(𝑖, 𝑑
𝑖
))
2}

}

}

.

(19)



6 Journal of Applied Mathematics

Input data

Code and initialize particles 

Calculate objective function based on reliability evaluation
and form tabu list

Generate neighborhood solutions

Are all candidate solutions in the tabu list? 

Retain the best solution 
from candidate solutions

Is convergence criterion satisfied?

Output maintenance schedule

Yes

No

No

Yes

Yes

No

Calculate current objective function through reliability 
evaluation and update tabu list

Build decoupled time-varying failure rate model based on 
different deterioration mechanisms

Update solution and tabu list

Amend 𝜔 and update particles’ velocities and positions

Is current solution improved in the last K steps?

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(9)

(10)

(11)

(12)

(13)

Figure 3: The solving flow chart through the PSO-TS hybrid algorithm for maintenance scheduling.

Step (8). In forming neighbourhood solutions, each element
(maintenance starting period) of the particle is assigned
a new and random value which is within its permitted
maintenance interval. When all the elements are moved
successively, all the obtained feasible and nontabooed solu-
tions are the current particle’s neighbourhood solutions. The
neighbourhood move of TS pulls the solution out of local
optimum and improves the global searching ability.

Steps (9-10).These two steps describe the aspiration criterion,
which amnesties the tabooed solution and is used to update
the current solution. The aspiration criterion in this algo-
rithm is satisfying one of the two conditions. (a) A candidate
solution, whose objective value is smaller than that of the
current optimum solution, is amnestied. (b) When all the
candidate solutions are in the tabu list, the solution with the
minimum objective value is amnestied.

Step (12). The optimization process stops when one of the
following termination criteria is satisfied. (a) The number of
iterations exceeds its limit. (b) The objective function value
does not change during a given number of iterations.

The PSO-TS hybrid algorithm inherits PSO’s advantage of
fast optimization speed, while adopting the neighbourhood

move and the tabu list of TS to escape from local cycle
to enhance its global searching ability, thus facilitating fast
and continuous improvement of the solution during the
optimization process.

5. Case Study

5.1. Case Data

5.1.1. SystemData. Thedistribution system formed by Feeder
1 and Feeder 2 on Bus 6 in IEEE RBTS [34] (referred to
as the F1 and F2 distribution systems) is selected as the
test system. The scheduling time horizon is 60 months. The
proposed model and algorithm are assumed to serve as a
function component of the asset managementmodule, which
constitutes part of the smart grid control centre for the F1
and F2 distribution systems. The load curve of every month
is obtained by modifying the load data given by [35] with
an annual increase of 5%. According to the equipment data
provided by [36], the isolation switches’ operation time is one
hour.The reliability rates of fuses and breakers are 1.0 and 0.8,
respectively. The electricity price and the annual interest rate
are 50 $ ⋅MWh−1 and 10%, respectively. The cost of per unit
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Table 1: Deteriorationmechanisms data of 11 kV feeder distribution
system.

Deterioration
mechanism type Coefficient Line Transformer Breaker

Type 1 (Tp1)

𝛼1 11.47 11.47 11.47
𝛽1 0.2651 0.2651 0.2651
𝛼2 76.262 79.452 75.452
𝛽2 4.4792 4.4792 4.2792
ℎ 0.00866 0.00866 0.00866

Type 2 (Tp2)

𝛼1 16.38 15.38 15.38
𝛽1 0.3759 0.3559 0.3559
𝛼2 98.045 92.045 87.045
𝛽2 5.964 5.064 4.4792
ℎ 0.02673 0.02673 0.02673

Type 3 (Tp3)

𝛼1 25.64 25.64 25.64
𝛽1 0.2873 0.2873 0.2873
𝛼2 94.12 90.36 90.294
𝛽2 5.954 5.028 5.028
ℎ 0.03512 0.03512 0.03512

lost load is set to 400 $⋅MWh−1 [37].Themaintenance of lines,
transformers, and breakers is considered. It is assumed that,
for lines, transformers, and breakers, each has three types of
deterioration mechanisms. Weibull distribution parameters
of these deterioration mechanisms are provided by [19] as
shown in Table 1.

5.1.2. Maintenance Data and Algorithm Coefficients. The
preventive and correctivemaintenance data of the test system
are shown in Table 2.

Despite the fact that the proposed method is also capable
of solving a large-scale problem that considers all equipment’s
maintenance and all their deterioration processes, not all
equipment’s maintenance arrangements are considered in
this case for simplicity. The maintenance-needed equipment
and constraints are shown in Tables 3 and 4, respectively.The
number of particles is 30. The size of the tabu list is set to 7
(the integer near √𝑁). Parameters of the algorithm in (16)–
(19) are set as follows: 𝑐1 and 𝑐2 are both set to 2.0 according
to [38]. 𝜔min and 𝜔max are set to 0.4 and 0.9, respectively [33].
Based on (16) and the common assumption that 𝜔 starts with
𝜔max = 0.9 and decreases to 𝜔min = 0.4 through the course
of run [33], values of 𝑎 and 𝑏 in (16) can be obtained as 0.4
and 2.2, respectively. Considering the searching performance
and computation time of PSO and TS algorithm, 𝐾, the
maximum iteration number of PSO without improvement in
the objective value before turning to the TS searching mode,
is set to 5.

5.2. Maintenance Scheduling Based on Historical Operation
Information. Based on historical operation data and equip-
ment’s deterioration characteristics, the expected change of
equipment’s reliability can be calculated. As an example,
transformer T13’s time-varying failure rate curves are shown
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Figure 4: Reliability model of the transformer T13.

in Figure 4. The three lines in Figure 4 denote the three dete-
rioration mechanisms’ failure rate components of T13 after
previous maintenance. The tagged line segments represent
the three failure development processes from the beginning
of the scheduling horizon.

The maintenance scheduling is optimized based on
equipment’s reliability model in Section 2 and the mainte-
nance scheduling model proposed in Section 3. The model
and algorithm are implemented in C++ and run on a PCwith
Core2 E7300 CPU and 3.5GB RAM. The total running time
is about 87 minutes, most of which is used for the reliability
assessment in each maintenance period. Since long-term
maintenance scheduling horizons for distribution systems are
usually several years, this computational time is acceptable in
engineering application. The compositions of the total cost
during iterations are shown in Figure 5.

It can be noted that in the early stage, the PSO algorithm
has high search efficiency and the system total cost decreases
rapidly. However, particles may immerse into the local near-
optimal solution cycles after several PSO iterations, and the
accuracy of the solution cannot be further improved. For
example, from the 12th to the 16th iteration step, a near-
optimal solution cycle emerges, in which the total cost of
the distribution system is $307,025. From the 16th step, the
algorithm turns to the TS mode and generates candidate
solutions to expand the searching space through adding the
local optimum to the tabu list. The neighbourhood move of
TS helps to jumpout of local optimumandfindmore accurate
global optimum simultaneously. After the 17th iteration step
(TS iteration), the solution gets rid of the local solution
cycle and the total cost declines to $304,804. In the 29th
iteration step, the objective value decreases to $281,929. This
value remains unchanged during the next five PSO iterations
and five TS iterations as shown in Figure 5, indicating the
satisfaction of the termination criterion (b).The optimization
result of maintenance scheduling and the reliability indices
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Table 2: Maintenance data of different deterioration mechanism types and equipment.

Equipment Duration (h) Labour (p-h) Materials cost ($)
Tp1 Tp2 Tp3 Tp1 Tp2 Tp3 Tp1 Tp2 Tp3

Preventive maintenance
Line (per km) 2 4 6 3 10 20 12.5 50 125
Transformer 4 8 10 5 15 33 30 70 300
Breaker 3 6 9 4 12 24 25 60 250

Corrective maintenance
Line (per km) 7 10 14 8 15 30 25 100 275
Transformer 10 15 20 12 25 50 60 190 600
Breaker 9 13 18 10 20 40 50 150 500

Table 3: Preventive maintenance (PM) needed equipment.

Maintenance type Equipment to be scheduled for preventive maintenance

PM Tp1 Bus: B3
Line: L2, L3, L4, L5, L6, L8, L9, L10,
L11, L12, L13, L16, L17, L18, L21,
L22, L24, L25, L26

Transformer: T7, T9, T11,
T15, T25, T29, T31, T35

PM Tp2 Bus: B4 Line: L7, L15, L20, L23 Transformer: T5, T23
PM Tp3 Line: L1, L14, L19 Transformer: T13, T27, T33

Table 4: Maintenance and system operation constraints in one
period.

Constraints Limit value
Budget constraints ($) 30,000
Labour constraints (person-hour) 85
SAIFI (interruption⋅month−1) 1.75
SAIDI (h⋅month−1) 10

of the optimum solution are shown in Table 5 and Figure 6,
respectively.

Since this algorithm is a stochastic algorithm, 30 indepen-
dent runs have been performed.The mean value of the result
is $282,630 and the standard deviation is $853. The relative
error is about 0.3%. The results indicate that the algorithm
has good accuracy and can guarantee to obtain the optimal
solution.

5.3. The Maintenance Scheduling Result Incorporating Future
Operation Information. In smart grids, some future opera-
tion information is available through forecasting or preset-
ting. Here, a future heavy load scenario is taken, for instance.
It is assumed that the load on node 5 is 2.1 times of its original
value during periods 12 and 13. Based on calculation through
(3), if no maintenance is performed on T13 over the planning
horizon, its time-varying failure rate due to insulation aging
is shown by the dotted line in Figure 7.

The optimal maintenance schedule considering future
heavy load scenario is presented in Table 6. Through the
comparison of Tables 5 and 6, the maintenance starting
period of T13 was moved from period 22 to period 7. This
transition shows that the preventive maintenance of some
equipment should be performed in advance in case of
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Figure 5: Composition of the total cost in the iteration process.

predictable future heavy load scenarios, because preventive
maintenance before heavy load avoids equipment reaching
its late aging stage in which the failure rate increases sharply
during heavy load periods, thus reducing system failure risks
and the total cost.The result verifies that the incorporation of
future operation information intomaintenance scheduling in
smart grids helps to obtain a more economical solution.

5.4. Sensitivity Analysis on Reliability Requirements. In
Figure 8, the point-linked lines represent the reliability
indices of the maintenance scheduling result with ordinary
power supply reliability requirements. In order to analyse the
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Table 5: Maintenance scheduling result (𝑇MS stands for the maintenance starting period).

Number 𝑇MS Number 𝑇MS Number 𝑇MS Number 𝑇MS Number 𝑇MS Number 𝑇MS

L1 4 L8 46 L15 35 L22 9 T9 17 T29 22
L2 28 L9 27 L16 9 L23 15 T11 23 T31 43
L3 39 L10 20 L17 46 L24 16 T13 22 T33 4
L4 46 L11 44 L18 33 L25 33 T15 20 T35 27
L5 9 L12 28 L19 15 L26 29 T23 3 B4 22
L6 21 L13 29 L20 21 T5 27 T25 21 B3 40
L7 44 L14 3 L21 11 T7 5 T27 3

Table 6: Maintenance scheduling result with future heavy load scenarios.

Number 𝑇MS Number 𝑇MS Number 𝑇MS Number 𝑇MS Number 𝑇MS Number 𝑇MS

L1 10 L8 52 L15 27 L22 31 T9 27 T29 20
L2 4 L9 27 L16 37 L23 5 T11 31 T31 22
L3 1 L10 25 L17 41 L24 19 T13 7 T33 6
L4 16 L11 7 L18 48 L25 50 T15 36 T35 13
L5 17 L12 11 L19 9 L26 22 T23 15 B4 37
L6 42 L13 30 L20 14 T5 15 T25 16 B3 39
L7 17 L14 16 L21 47 T7 28 T27 2
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Figure 6: EENS of each period of the scheduling result.

sensitivity of the result to reliability requirements, SAIFI and
SAIDI are further constrained to 1.5 interruptions⋅month−1
and 8 h⋅month−1, respectively, to simulate a higher reliability
requirement. Reliability indices in each period of the new
scheduling result are represented by the grey columns in
Figure 8. A comparison on the total system costs over
the scheduling horizon between two schedules is shown in
Table 7.

As shown in Figure 8, when the reliability constraints
are stricter, the number of maintenance activities in each
period will be further limited. As a result, the values of
system reliability indices are more evenly distributed over the
scheduling horizon.However, as shown inTable 7, despite the
fact that the maximum values of SAIFI and SAIDI decrease
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Figure 7: T13’s insulation failure rate change with heavy load and
maintenance.

as reliability constraints become stricter, the penalty cost of
lost load and total cost over the whole scheduling horizon
increase by 4.33% and 4.30%, respectively. This indicates that
higher reliability requirements would result in an increase of
the total cost over the planning horizon. This quantitative
analysis would help the pricing of electricity supply with
different levels of reliability for electricity retailers. Under the
framework of smart grids, it also provides basic information
on reliability/economy for the interaction between customers
and smart grids.
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Table 7: System cost with different reliability requirements.

Cost Ordinary constraints ($)
(SAIFI ≤ 1.75 month−1, SAIDI ≤ 10 h⋅month−1)

Stricter constraints ($)
(SAIFI ≤ 1.5 month−1, SAIDI ≤ 8 h⋅month−1)

Lost load penalty 257,278.0 268,927.0
Corrective maintenance 22,495.7 23,531.1
Preventive maintenance 2,156.0 2,137.5
Total 281,929.7 294,595.6
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Figure 8: Reliability indices of each period with stricter reliability
constraints.

6. Conclusions

This paper proposed a long-term distribution maintenance
scheduling model for asset management in smart grid to
minimize the total cost over the maintenance scheduling
horizon. Based on data collected by smart meters and sensors
in distribution systems, the decoupled failure rate model is
more adaptable and accurate to represent the time-varying
failure rates due to different deterioration mechanisms. It is
proved that the incorporation of operation conditions into
maintenance scheduling helps to make a more economic and
reasonable schedule. The PSO-TS hybrid algorithm used in
this paper avoids the local optimumof PSOand low searching
efficiency of TS, showing good applicability to the nonlinear
integer programming problem. Numerical results show that
the proposed model and algorithm have good potential for
long-term distribution system maintenance scheduling in
smart grid.

Notations

𝐶budget(𝑡): Maximum budget provided in period 𝑡
𝐶
𝑑,𝑀

p-h : The cost of one person-hour in preventive
maintenance type 𝑑

𝐶
𝑑,𝑅

p-h: The cost of one person-hour in corrective
maintenance type 𝑑

𝑑: The deterioration type index (i.e.,
preventive and corrective maintenance
type index)

𝐷: The number of deterioration types (i.e.,
number of preventive and corrective
maintenance types)

𝐿ava(𝑡): Labour resources (in person-hours)
available in period 𝑡

𝐿
𝑑,𝑀

𝑖
: Labour resources (in person-hours)

required in preventive maintenance
type 𝑑 on equipment 𝑖

𝐿
𝑑,𝑅

𝑖
: Labour resources (in person-hours)

required in corrective maintenance type
𝑑 on equipment 𝑖

𝑁: The number of maintenance-needed
equipment

𝑁
𝑝
: The size of the particle swarm in PSO

𝑟: The annual interest rate
𝑆
𝑑,𝑀

𝑀,𝑖
: The materials cost required in

preventive maintenance type 𝑑 on
equipment 𝑖

𝑆
𝑑,𝑅

𝑀,𝑖
: The materials cost required in corrective

maintenance type 𝑑 on equipment 𝑖
𝑇max: The time horizon of maintenance

scheduling
𝑇
EAR
(𝑖, 𝑑
𝑖
): The earliest feasible starting period of

preventive maintenance type 𝑑 on
equipment 𝑖

𝑇
LAT
(𝑖, 𝑑
𝑖
): The latest feasible starting period of

preventive maintenance type 𝑑 on
equipment 𝑖

𝑇(𝑖, 𝑑
𝑖
): The starting period of preventive

maintenance type 𝑑 on equipment 𝑖
𝑇
𝑗
(𝑖, 𝑑
𝑖
): The starting period of preventive

maintenance type 𝑑 on equipment 𝑖 in
particle 𝑗

𝑇
𝑠,Best
𝑗

(𝑖, 𝑑
𝑖
): The starting period of preventive
maintenance type 𝑑 on equipment 𝑖 in
historical optimal solution of particle 𝑗

𝑇
𝑠,Best

(𝑖, 𝑑
𝑖
): The starting period of preventive
maintenance type 𝑑 on equipment 𝑖 in
historical optimal solution of the
particle swarm

𝑋
𝑑

𝑖
(𝑡): A binary ancillary variable, which

equals 1 if preventive maintenance type
𝑑 on equipment 𝑖 is conducted in period
𝑡 and equals 0 otherwise.
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