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Weuse a second-order learning algorithm for numerically solving a class of the algebraic Riccati equations. Specifically, the extended
Hamiltonian algorithm based on manifold of positive definite symmetric matrices is provided. Furthermore, this algorithm is
compared with the Euclidean gradient algorithm, the Riemannian gradient algorithm, and the new subspace iteration method.
Simulation examples show that the convergence speed of the extended Hamiltonian algorithm is the fastest one among these
algorithms.

1. Introduction

The algebraic Riccati equations (AREs) have been widely
used in control system syntheses [1, 2], especially in optimal
control [3], robust control [4], signal processing [5], and
the LMI-based design [6]. And, in the past several decades,
there has been an increasing interest in the solution prob-
lems of the AREs [7–9]. The lower matrix bounds for the
AREs were discussed in [10, 11]. The structure-preserving
doubling algorithm (SDA) was given under assumptions
which are weaker than stabilizability and detectability, as
well as practical issues involved in the application of the
SDA to continuous-time AREs [12]. It is the purpose of this
paper to investigate the unique (under suitable hypotheses)
symmetric positive definite solution of an algebraic Ric-
cati equation. Some effective methods, such as the Schur
method (SM) [13] and the new subspace iteration method
(NSIM) [14], were given for the numerical solution of the
algebraic Riccati equation. Recently, the Euclidean gradient
algorithm (EGA) and the Riemannian gradient algorithm
(RGA) for the numerical solution of the algebraic Riccati
equation with a cost function of the Riemannian distance
on the curved Riemannian manifold were proposed in
[15].

It is well known that the Euclidean gradient algorithm
(EGA) and the Riemannian gradient algorithm (RGA) are
first-order learning algorithms; hence the convergence speeds

of the EGA and RGA are very slow. The inclusion of a
momentum term had been found to increase the rate of
convergence dramatically [16, 17]. Based on this, the extended
Hamiltonian algorithm (EHA) on manifolds was developed
in [18], while its numerical implementation was discussed
in [19]. Furthermore, the EHA is a second-order learning
algorithm and converges faster than the first-order learning
algorithm for optimization problem if certain conditions are
satisfied.

In this paper, we will apply the EHA to give the numerical
solution of the AREs. Furthermore, we give two simulations
to show the efficiency of our algorithm.

Briefly, the rest of the paper is organized as follows.
Section 2 is concluded with some fundamental knowledge on
manifold that will be used throughout the paper. Section 3
introduces the extended Hamiltonian algorithm onmanifold
of positive definite symmetric matrices and Section 4 illus-
trates the convergence speeds of the EHA compared with
other algorithms using two numerical examples. Section 5
concludes the paper.

2. Preliminaries

In this section we recall some differential geometric facts of
the space of positive definite symmetric matrices that will be
used in the present analysis.More details can be found in [20–
23].
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2.1. The Frobenius Inner Product and the Euclidean Distance.
Let 𝑀(𝑛) be the set of 𝑛 × 𝑛 real matrices and GL(𝑛) be its
subset containing all the nonsingular matrices. GL(𝑛) is a Lie
group, that is, a group which is also a differentiable manifold
and for which the operations of group multiplication and
inverse are smooth.The tangent space at the identity is called
the corresponding Lie algebra denoted by gl(𝑛). It is the space
of all linear transformations in R𝑛, that is,𝑀(𝑛).

On𝑀(𝑛), we use the Euclidean inner product, known as
the Frobenius inner product and defined by

⟨𝑃, 𝑄⟩
𝐹
= tr (𝑃𝑇𝑄) , (1)

where tr stands for the trace of the matrix and superscript
𝑇 denotes the transpose. The associated norm ‖𝑃‖

𝐹
=

[tr(𝑃𝑇𝑃)]1/2 is used to define the Euclidean distance on𝑀(𝑛)
by

d
𝐹
(𝑃, 𝑄) = ‖𝑃 − 𝑄‖

𝐹
. (2)

2.2. Geometry of Positive Definite Symmetric Matrices. We
denote by

Sym (𝑛) = {𝑠 ∈ 𝑀 (𝑛) | 𝑠 = 𝑠
𝑇

} (3)

the vector space of symmetric matrices and denote by

PD (𝑛) = {𝑥 ∈ Sym (𝑛) | 𝑥 > 0} (4)

the set of all 𝑛×𝑛 positive definite symmetric matrices, which
is a differentiable manifold of dimension 𝑛(𝑛+1)/2. Here 𝑥 >
0 means the quadratic form 𝑧

𝑇

𝑥𝑧 > 0 for all 𝑧 ∈ R𝑛 \ {0}.
Furthermore, PD(𝑛) is an open convex cone; namely, if𝑥

1
and

𝑥
2
are in PD(𝑛), so is 𝑥

1
+ 𝑡𝑥
2
for any 𝑡 > 0.

The exponential of any symmetric matrix is a positive
definite symmetric matrix and the (principal) logarithm
of any positive definite symmetric matrix is a symmetric
matrix. Thus the exponential map from Sym(𝑛) to PD(𝑛)
is one-to-one and onto. It follows that Sym(𝑛) provides a
parameterization of PD(𝑛) via the exponential map.

2.3. Metric and Distances on PD(𝑛). Let 𝑔 denote the Rie-
mannian metric on manifold PD(𝑛). For any 𝑥 ∈ PD(𝑛) the
tangent space𝑇

𝑥
PD(𝑛) is identifiedwith Sym(𝑛). On𝑇

𝑥
PD(𝑛)

we define the inner product and the corresponding norm as
follows:

𝑔
𝑥
(𝑢, V) = ⟨𝑢, V⟩

𝑥
= tr (𝑥−1𝑢𝑥−1V) ,

‖V‖
𝑥
= [tr ((𝑥−1V)

2

)]

1/2

,

(5)

which depend on the point 𝑥. The positive definiteness of
this metric is a consequence of the positive definiteness of the
Frobenius inner product for

𝑔
𝑥
(V, V) = ⟨V, V⟩

𝑥
= tr (𝑥−1/2V𝑥−1/2𝑥−1/2V𝑥−1/2)

= ⟨𝑥
−1/2V𝑥−1/2, 𝑥−1/2V𝑥−1/2⟩ .

(6)

Compared to manifold PD(𝑛) with the Frobenius inner
product (1) resulting in a flat Riemannianmanifold, manifold
PD(𝑛) with the Riemannian metric (5) becomes a curved
Riemannian manifold.

To measure closeness of two positive definite symmetric
matrices 𝑥

1
and 𝑥

2
one can use the Euclidean distance (2) of

the ambient space𝑀(𝑛); that is,

d
𝐹
(𝑥
1
, 𝑥
2
) =

󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩𝐹
. (7)

It will be more appropriate to use the Riemannian distance
induced from (5), which is intrinsic to PD(𝑛) and defined by

d
𝑅
(𝑥
1
, 𝑥
2
) =

󵄩󵄩󵄩󵄩󵄩
log (𝑥−1/2

1
𝑥
2
𝑥
−1/2

1
)
󵄩󵄩󵄩󵄩󵄩𝐹
= (

𝑛

∑

𝑖=1

ln2𝜆
𝑖
)

1/2

, (8)

where𝜆
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are the positive eigenvalues of𝑥−1

1
𝑥
2
.

The positivity of the 𝜆
𝑖
is a consequence of the similarity

between the (in general nonsymmetric) matrix 𝑥−1
1
𝑥
2
and

the positive definite symmetric matrix 𝑥−1/2
1
𝑥
2
𝑥
−1/2

1
. It is

straightforward to see that the Riemannian distance (8) is
invariant under inversion, that is,

d
𝑅
(𝑥
−1

1
, 𝑥
−1

2
) = d
𝑅
(𝑥
1
, 𝑥
2
) (9)

and is also invariant under congruent transformations; that
is,

d
𝑅
(𝑥
1
, 𝑥
2
) = d
𝑅
(𝑃
𝑇

𝑥
1
𝑃, 𝑃
𝑇

𝑥
2
𝑃) , (10)

where 𝑃 ∈ GL(𝑛).
Now, we discuss the geodesics on manifold PD(𝑛) under

the different metrics. The geodesic passing through 𝑥 in the
direction of V ∈ Sym(𝑛) with respect to the Euclidean metric
(2) is given by

𝛾 (𝑡) = 𝑥 + 𝑡V, 0 ≤ 𝑡 < 𝛿 (11)

for some positive number 𝛿 > 0. The restriction that 𝑡 is not
too large is necessary in order to ensure that the line stays
within PD(𝑛). Similarly, the geodesic passing through 𝑥 in
the direction of V ∈ Sym(𝑛) with respect to the Riemannian
metric (5) is expressed by

𝛾 (𝑡) = 𝑥
1/2 exp (𝑥−1/2V𝑥−1/2𝑡) 𝑥1/2, (12)

which does not suffer the previous restriction. Let the
exponential map Exp: Sym(𝑛) → PD(𝑛); then

𝑥
2
= Exp

𝑥
1

(V) = 𝑥1/2
1

exp (𝑥−1/2
1

V𝑥−1/2
1
) 𝑥
1/2

1
. (13)

Notice that the geodesic (12) is defined for all values of
𝑡, which is called geodesic completeness. The Hopf-Rinow
theorem states that a geodesic complete manifold is also
a complete metric space. And, manifold PD(𝑛) with the
Riemannian metric (5) has nonpositive sectional curvature.
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3. The Extended Hamiltonian Algorithm for
the Solution of AREs

3.1. Problem Formulation. The infinite time state regulator,
namely, the state equation of linear time-invariant system, is
in the form

̇𝑦 (𝑡) = 𝐴𝑦 (𝑡) + 𝐵𝑤 (𝑡) , 𝑦 (𝑡
0
) = 𝑦
0
, (14)

where 𝑦(𝑡) ∈ R𝑛 and 𝑤(𝑡) ∈ R𝑚 are the state and the
control vector, respectively, 𝐴 and 𝐵 are constant matrices of
appropriate dimensions, and the terminal time 𝑡

𝑓
= ∞. The

problem would be to find an optimal control 𝑤(𝑡) satisfying
(14) while minimizing the quadratic performance index as
follows:

𝐽 =
1

2
∫

∞

0

[𝑦
𝑇

(𝑡) 𝑄𝑦 (𝑡) + 𝑤
𝑇

(𝑡) 𝑅𝑤 (𝑡)] d𝑡, (15)

where the designed parameters satisfy that both 𝑄 and 𝑅 are
positive definite symmetric matrices. It has been proved that
the optimal control𝑤∗(𝑡) of the cost function (15) is uniquely
given by [24]

𝑤
∗

(𝑡) = −𝑅
−1

𝐵
𝑇

𝑥𝑦 (𝑡) (16)

and the quadratic optimal performance index is gotten by

𝐽
∗

(𝑦 (𝑡
0
)) =

1

2
𝑦
𝑇

(𝑡
0
) 𝑥𝑦 (𝑡

0
) , (17)

where 𝑥 is a positive definite symmetric matrix satisfying the
AREs; that is,

𝑥𝐴 + 𝐴
𝑇

𝑥 − 𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 + 𝑄 = 0. (18)

It is assumed that the pair (𝐴, 𝐵) is completely con-
trollable and that the pair (𝐴,𝐷) is completely observable,
where 𝐷𝐷𝑇 = 𝑄. Under these assumptions, (18) is known
to have a unique positive definite solution 𝑥 [25]. There
are, of course, other solutions to (18), but for the algorithm
presented in this paper the emphasis will be on computing the
positive definite one. Moreover, the optimal trajectory 𝑦(𝑡)
satisfies the following optimal asymptotically stable closed-
loop system:

̇𝑦 (𝑡) = (𝐴 − 𝐵𝑅
−1

𝐵
𝑇

𝑥) 𝑦 (𝑡) = (𝐴 − 𝐵𝐾) 𝑦 (𝑡) , (19)

where the state-feedback gain 𝐾 is given by

𝐾 = 𝑅
−1

𝐵
𝑇

𝑥. (20)

In order to solve (18), our purpose is to seek amatrix 𝑥 on
manifold PD(𝑛) such that the matrix 𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥
is as close as possible to the given matrix 𝑄.

3.2. Distances and Gradients. In fact, the idea of formulating
an equation on a manifold as a minimal-distance problem
was suggested previously in [26]. Hence we use the two

distance functions (7) and (8), and the difference between 𝑄
and 𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥 can be expressed as follows:

𝐽
𝐹
=
1

2
d2
𝐹
(𝑄, 𝑥𝐵𝑅

−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)

=
1

2
tr [(𝑄 + 𝑥𝐴 + 𝐴𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇𝑥)

2

] ,

(21)

𝐽
𝑅
=
1

2
d2
𝑅
(𝑄, 𝑥𝐵𝑅

−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)

=
1

2

󵄩󵄩󵄩󵄩󵄩
log (𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2)󵄩󵄩󵄩󵄩󵄩

2

𝐹

=
1

2
tr {log2 [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]} .

(22)

Let 𝐽 : PD(𝑛) → R be a scalar function of 𝑛 × 𝑛matrix.
The Riemannian gradient of 𝐽 at 𝑥, denoted by ∇

𝑥
𝐽, is a map

from PD(𝑛) to Sym(𝑛) that satisfies ⟨∇
𝑥
𝐽, 𝑠⟩
𝑥
= ⟨𝜕
𝑥
𝐽, 𝑠⟩
𝐹
, for

every 𝑠 ∈ Sym(𝑛), where 𝜕
𝑥
𝐽 is the Euclidean gradient of 𝐽 at

𝑥. It follows from the inner product (5) that [27]
∇
𝑥
𝐽 = 𝑥 (𝜕

𝑥
𝐽) 𝑥. (23)

Next, we will state some known facts, which are very
helpful in computing 𝜕

𝑥
𝐽
𝐹
and ∇

𝑥
𝐽
𝑅
.

Lemma 1 (see [28]). Let 𝐴, 𝐵 denote two constant matrices
and let 𝑋,𝑌 denote matrix functions. One has the following
properties:

(1) d tr (𝑋) = tr(d𝑋),
(2) d(𝐴) = 0,
(3) d(𝐴𝑋𝐵) = 𝐴(d𝑋)𝐵,
(4) d(𝑋 ± 𝑌) = d𝑋 ± d𝑌,
(5) d(𝑋𝑌) = (d𝑋)𝑌 + 𝑋(d𝑌),

where d denotes the differential of a matrix (scalar) function.

Lemma 2 (see [28]). Let 𝑓(𝑥) be a scalar function of 𝑛 × 𝑛
matrix 𝑥, if

d𝑓 (𝑥) = tr (𝑊d𝑥) (24)

holds; then

𝜕
𝑥
𝑓 (𝑥) = 𝑊

𝑇

, (25)

where 𝜕
𝑥
𝑓(𝑥) denotes the gradient of 𝑓(𝑥) and𝑊 denotes the

derivative of 𝑓(𝑥).

Theorem 3. Let 𝐽
𝐹
(𝑥) be a scalar function of 𝑛× 𝑛matrix 𝑥, if

𝐽
𝐹
(𝑥) =

1

2
tr [(𝑄 + 𝑥𝐴 + 𝐴𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇𝑥)

2

] (26)

holds; then
𝜕
𝑥
𝐽
𝐹
(𝑥)

= (𝐴 − 𝐵𝑅
−1

𝐵
𝑇

𝑥) (𝑄 + 𝑥𝐴 + 𝐴
𝑇

𝑥 − 𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥)

+ (𝑄 + 𝑥𝐴 + 𝐴
𝑇

𝑥 − 𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥) (𝐴
𝑇

− 𝑥𝐵𝑅
−1

𝐵
𝑇

) .

(27)
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Proof. Since𝑄+𝑥𝐴+𝐴𝑇𝑥−𝑥𝐵𝑅−1𝐵𝑇𝑥 is symmetric, we have
from Lemma 1 that
d𝐽
𝐹
(𝑥)

=
1

2
d {tr [(𝑄 + 𝑥𝐴 + 𝐴𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇𝑥)

2

]}

=
1

2
tr [d(𝑄 + 𝑥𝐴 + 𝐴𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇𝑥)

2

]

= tr [(𝑄 + 𝑥𝐴 + 𝐴𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇𝑥)

×d (𝑄 + 𝑥𝐴 + 𝐴𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇𝑥)]

= tr [(𝑄 + 𝑥𝐴 + 𝐴𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇𝑥)

× (d𝑥𝐴 + 𝐴𝑇d𝑥 − d𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇d𝑥)]

= tr {[(𝐴 − 𝐵𝑅−1𝐵𝑇𝑥) (𝑄 + 𝑥𝐴 + 𝐴𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇𝑥)

+ (𝑄 + 𝑥𝐴 + 𝐴
𝑇

𝑥 − 𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥)

× (𝐴
𝑇

− 𝑥𝐵𝑅
−1

𝐵
𝑇

)] d𝑥} .
(28)

Using the above Lemma 2, we have

𝜕
𝑥
𝐽
𝐹
(𝑥)

= [ (𝐴 − 𝐵𝑅
−1

𝐵
𝑇

𝑥) (𝑄 + 𝑥𝐴 + 𝐴
𝑇

𝑥 − 𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥)

+ (𝑄 + 𝑥𝐴 + 𝐴
𝑇

𝑥 − 𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥) (𝐴
𝑇

− 𝑥𝐵𝑅
−1

𝐵
𝑇

)]
𝑇

= (𝐴 − 𝐵𝑅
−1

𝐵
𝑇

𝑥) (𝑄 + 𝑥𝐴 + 𝐴
𝑇

𝑥 − 𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥)

+ (𝑄 + 𝑥𝐴 + 𝐴
𝑇

𝑥 − 𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥) (𝐴
𝑇

− 𝑥𝐵𝑅
−1

𝐵
𝑇

) .

(29)

Therefore, it is shown that (27) is valid.

Theorem 4. Let 𝐽
𝑅
(𝑥) be a scalar function of 𝑛×𝑛matrix 𝑥, if

𝐽
𝑅
(𝑥) =

1

2
tr {log2 [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]}

(30)

holds; then

∇
𝑥
𝐽
𝑅
(𝑥)

= 𝑥 {(𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

× log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]

× (𝑥𝐵𝑅
−1

𝐵
𝑇

− 𝐴
𝑇

)

− (𝐵𝑅
−1

𝐵
𝑇

𝑥 + 𝐴) (𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

× log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2] } 𝑥.
(31)

Proof. Since 𝑥𝐵𝑅−1𝐵𝑇 − 𝑥𝐴 − 𝐴𝑇𝑥 is symmetric, it follows
immediately from Lemma 1 that

d𝐽
𝑅
(𝑥)

=
1

2
d {tr log2 [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]}

=
1

2
tr {d log2 [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]}

= tr {log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]

×d log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]}

= tr {log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]

× [𝑄
−1/2

(𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)𝑄
−1/2

]
−1

× 𝑄
−1/2d (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2}

= tr {log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]

× (𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

× (d𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐵𝑅−1𝐵𝑇d𝑥 − d𝑥𝐴 − 𝐴𝑇d𝑥)}

= tr {[(𝐵𝑅−1𝐵𝑇𝑥 − 𝐴)

× log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]

× (𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

− log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]

× (𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

× (𝑥𝐵𝑅
−1

𝐵
𝑇

+ 𝐴
𝑇

)] d𝑥} .
(32)

Using the above Lemma 2, we have

𝜕
𝑥
𝐽
𝑅
(𝑥)

= { (𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝐴)

× log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]

× (𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

− log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]

× (𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

(𝑥𝐵𝑅
−1

𝐵
𝑇

+ 𝐴
𝑇

)}

𝑇
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= (𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

× log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2]

× (𝑥𝐵𝑅
−1

𝐵
𝑇

− 𝐴
𝑇

)

− (𝐵𝑅
−1

𝐵
𝑇

𝑥 + 𝐴) (𝑥𝐵𝑅
−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

× log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2] .
(33)

Combining (23) and (33), (31) is established. This completes
the proof of Theorem 4.

3.3. The Extended Hamiltonian Algorithm on 𝑃𝐷(𝑛). The
Euclidean gradient algorithm (EGA) and the Riemannian
gradient algorithm (RGA) are first-order learning algorithms
and inherit some drawbacks that are well known about
gradient-based optimization like, for instance, the slow-
learning phenomenon in presence of plateau in the error
surface. In order to overcome this difficulty, Fiori generalized
EGA and RGA and proposed the extended Hamiltonian
algorithm onmanifold. In particular, on manifold PD(𝑛), the
extended Hamiltonian algorithm can be expressed by [18]

𝑥̇ = V,

V̇ = V𝑥−1V − ∇
𝑥
𝑉 − 𝜇V,

(34)

where 𝑥 ∈ PD(𝑛), V denotes the instantaneous learning
velocity, 𝑉 : PD(𝑛) → R denotes a cost function, ∇

𝑥
𝑉

denotes the Riemannian gradient of 𝑉, and the constant 𝜇 >
0 denotes a viscosity term. The function 𝐾

𝑥
: 𝑇
𝑥
PD(𝑛) ×

𝑇
𝑥
PD(𝑛) → R denotes the kinetic energy of the particle

in a point 𝑥 and has the corresponding expression 𝐾
𝑥
=

(1/2) tr[(V𝑥−1)2].
System (34) may be implemented by [19]

𝑥
𝑘+1
= 𝑥
1/2

𝑘
exp (𝜂𝑥−1/2

𝑘
V
𝑘
𝑥
−1/2

𝑘
) 𝑥
1/2

𝑘
,

V
𝑘+1
= 𝜂 [V

𝑘
𝑥
−1

𝑘
V
𝑘
− ∇
𝑥
𝑘

𝑉] + (1 − 𝜂𝜇) V
𝑘
,

(35)

where 𝜂 is a small positive number known as the learning rate.
The effectiveness of the algorithm is ensured if and only if

√2𝜆max < 𝜇 <
1

𝜂
, (36)

where 𝜆max denotes the largest eigenvalue of the Hessian
matrix of the cost function 𝑉(𝑥). See [19] for more details.

Since the Riemannian distance is the shortest one on
manifold PD(𝑛), we take the Riemannian distance (22) as the
cost function 𝑉(𝑥) of (18); that is,

𝑉 (𝑥) =
1

2
d2
𝑅
(𝑄, 𝑥𝐵𝑅

−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)

=
1

2

󵄩󵄩󵄩󵄩󵄩
log (𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2)󵄩󵄩󵄩󵄩󵄩

2

𝐹

.

(37)

In order to apply (35) to solve (18), we plug (31) into
(34) and get the final extended Hamiltonian algorithm on
manifold PD(𝑛) as follows:
𝑥̇ = V,

𝑎
def
= (𝑥𝐵𝑅

−1

𝐵
𝑇

𝑥 − 𝑥𝐴 − 𝐴
𝑇

𝑥)
−1

× log [𝑄−1/2 (𝑥𝐵𝑅−1𝐵𝑇𝑥 − 𝑥𝐴 − 𝐴𝑇𝑥)𝑄−1/2] ,

𝑏
def
= 𝑥 [𝑎 (𝑥𝐵𝑅

−1

𝐵
𝑇

− 𝐴
𝑇

) − (𝐵𝑅
−1

𝐵
𝑇

𝑥 + 𝐴) 𝑎] 𝑥,

V̇ = V𝑥−1V − 𝑏 − 𝜇V,

(38)

which is implemented by

𝑥
𝑘+1
= 𝑥
1/2

𝑘
exp (𝜂𝑥−1/2

𝑘
V
𝑘
𝑥
−1/2

𝑘
) 𝑥
1/2

𝑘
,

𝑎
𝑘

def
= (𝑥
𝑘
𝐵𝑅
−1

𝐵
𝑇

𝑥
𝑘
− 𝑥
𝑘
𝐴 − 𝐴

𝑇

𝑥
𝑘
)
−1

× log [𝑄−1/2 (𝑥
𝑘
𝐵𝑅
−1

𝐵
𝑇

𝑥
𝑘
− 𝑥
𝑘
𝐴 − 𝐴

𝑇

𝑥
𝑘
)𝑄
−1/2

] ,

𝑏
𝑘

def
= 𝑥
𝑘
[𝑎
𝑘
(𝑥
𝑘
𝐵𝑅
−1

𝐵
𝑇

− 𝐴
𝑇

) − (𝐵𝑅
−1

𝐵
𝑇

𝑥
𝑘
+ 𝐴) 𝑎

𝑘
] 𝑥
𝑘
,

V
𝑘+1
= 𝜂 (V

𝑘
𝑥
−1

𝑘
V
𝑘
− 𝑏
𝑘
) + (1 − 𝜂𝜇) V

𝑘
,

(39)

where 𝜂 > 0 denotes the learning rate and the constant 𝜇
denotes a viscosity term.

Now, based on the above discussion, we give the iterative
formula of the EHA for the numerical solution of (18).

Algorithm 5 (EHA). For any 𝑥 belonging to the considered
manifold PD(𝑛), the extended Hamiltonian algorithm is
given by the following.

(1) Set 𝑥
0
as an initial input matrix 𝑥 and V

0
as an initial

direction of V, and then choose a desired tolerance 𝜀 >
0.

(2) Compute 𝑉(𝑥
𝑘
).

(3) If 𝑉(𝑥
𝑘
) < 𝜀 then stop.

(4) Update 𝑥 and V by (39) and return to step (2).

4. Simulations

In this section, we give two computer simulations to demon-
strate the effectiveness and performance of the proposed
algorithm.

Example 1. First consider a second-order algebraic Riccati
equation. In the present experiment, 𝜂 = 0.01, 𝜇 = 3, and
𝜀 = 10

−8. Moreover, 𝐴, 𝐵, 𝑄, 𝑅, and𝐷 used in this simulation
are as follows:

𝐴 = (
0 0

1 0
) , 𝐵 = (

1

0
) ,

𝑄 = (
2 0

0 2
) , 𝑅 =

1

2
, 𝐷 = (

√2 0

0 √2
) ,

(40)

which satisfy the unique definite solution condition.
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Figure 1: Comparison of convergence speeds of the EGA, the RGA,
the NSIM, and the EHA.

To study the performance differences among the EHA,
the EGA, the RGA, and the NSIM, these algorithms are,
respectively, applied to solve (18). In this paper, the optimal
step size 𝜂, which corresponds to the best convergence speed
in each algorithm, is obtained by numerical experiments.
For instance, it can be found that the iterations will reduce
gradually as the step size changes from 0.01 to 0.1, while the
algorithm will be divergent once the step size is bigger than
0.1. Thus this optimal step size 𝜂 is convenient to be obtained
experimentally. Based on (36), the constant 𝜇 > 0 depends
on the selection of initial value. That is to say, different initial
values will be corresponding to different 𝜇; hence the best 𝜇
is also obtained by the experiment.

As Figure 1 shows, the behavior of the cost function
is shown. Clearly, in the early stages of learning, the EHA
decreases much faster than the EGA, the RGA, and the
NSIM with the same learning step size. The result shows
that the EHA has the fastest convergence speed among four
algorithms and needs 28 iterations to obtain the numerical
solution of the ARE as follows:

(
1.4142136 0.9999999

1.0000000 2.8284271
) . (41)

However, RGA realizes the given error through 36 iterations
and the slowest one among them is the EGA with 88 steps.
And Figure 2 shows that the kinetic energy function finally
converges to 0.

Example 2. A third-order ARE is considered following the
similar procedure as Example 1. In this experiment, 𝜂 = 0.01,
𝜇 = 2.5, and 𝜀 = 10−8, and
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Figure 2: Kinetic energy in the EHA.
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Figure 3: Comparison of convergence speeds of the EGA, the RGA,
the NSIM, and the EHA.

𝐴 = (

0 1 0

1 0 1

0 1 0

) , 𝐵 = (

1

0

0

) ,

𝑄 = (

1 0 0

0 1 0

0 0 1

) , 𝑅 = 1, 𝐷 = (

1 0 0

0 1 0

0 0 1

) .

(42)

As Figure 3 shows, the convergence speed of the EHA is
still the fastest one among four algorithms. Finally, we get the
numerical solution of the ARE as follows:

(

3.6502815 6.1622776 5.0644951

6.1622776 13.7792717 12.3245553

5.0644951 12.3245553 12.3650582

) . (43)
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Figure 4: Kinetic energy in the EHA.

Moreover, the kinetic energy function also converges to 0
in the Figure 4.

5. Summary

In this paper, a second-order learning method called the
extended Hamiltonian algorithm is recalled from literature
and applied to solve the numerical solution for the algebraic
Riccati equation. And, the convergence speed of the provided
algorithm is compared with the EGA, the RGA, and the
NSIM using two simulation examples. It is shown that the
convergence speed of the extended Hamiltonian algorithm is
the fastest one among these algorithms.
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