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Accurate wind speed forecasting is important for the reliable and efficient operation of the wind power system. The present study
investigated singular spectrum analysis (SSA) with a reduced parameter algorithm in three time series models, the autoregressive
integrated moving average (ARIMA) model, the support vector machine (SVM) model, and the artificial neural network (ANN)
model, to forecast the wind speed in Shandong province, China. In the proposedmodel, the weather research and forecastingmodel
(WRF) is first employed as a physical background to provide the elements of weather data. To reduce these noises, SSA is used
to develop a self-adapting parameter selection algorithm that is fully data-driven. After optimization, the SSA-based forecasting
models are applied to forecasting the immediate short-term wind speed and are adopted at ten wind farms in China. Finally,
the performance of the proposed approach is evaluated using observed data according to three error calculation methods. The
simulation results from ten cases show that the proposed method has better forecasting performance than the traditional methods.

1. Introduction

Entering the 21st century, countries worldwide face the
dual pressures of environmental protection and economic
growth. To reduce energy-related toxic emissions in the
current energy infrastructure, renewable energy should
be utilized with the goal of maintaining sustainable
development and creating a better ecological environment.
In its “Special Report on Renewable Energy Sources”
the IPCC 2011 states that renewable energies are
affordable and economically viable options for meeting
the electricity needs of people in developing countries
[1]. The extensive use of principal energy sources has
raised concerns about future security and the impact
they have had on climate. To overcome the challenges
of improving or maintaining energy security and mit-
igating climate change, low-carbon emission technologies
have attracted considerable interest worldwide, resulting in
increased electricity generation from renewable sources. Un-
questionably, renewable energies have huge potential, but
how quickly their benefits can meet the growth of global
energy demand hinges on government support to make

renewable energy cost-competitive in energy markets.
As fossil fuel prices increase and renewable technologies
mature, renewable energies are becoming increasingly
competitive; a global effort will be required to construct
a low-carbon society [2]. For instance, the International
Energy Agency anticipates a rapid expansion of renewables
such as hydroelectricity, wind, solar, and geothermal energy;
production will rise from 840 million tons of oil equivalent
in 2008 to nearly 3250 million tons of oil equivalent in
2035 [3]. The “Global Wind Energy Outlook 2010” projects
that world wind energy production will increase more than
tenfold by 2030, emphasizing the importance of wind as a
key contributor to improving energy security and reducing
greenhouse gas emissions [4].

Among the various renewable energies, wind energy
is the most promising. Wind energy has been the fastest
growing renewable energy technology in the last ten years.
Furthermore, it has been playing a crucial role in everyday
life for people in developing countries, who account for
one-third of the world’s total population. Wind energy also
supports developed countries; as one source of clean energy,
it helps them meet the 21st century energy demands [5].
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Because of its economic and ecological advantages, wind
power has recently become one of the most popular alter-
native energies, accounting for approximately 10% of the
national power usage in European countries, and this fig-
ure exceeds 15% in Spain, Germany, and the USA [6].
According to the GlobalWind Energy Council Report (2011),
the world’s wind power capacity grew by 22.5% in 2010,
adding 35,802MW to bring total installations to 194,390MW.
Almost half of these additions were made in China, which
experienced an annual growth rate of approximately 65% [7].
The world’s total installed capacity of wind power reached
254GW in June 2012 [8]. However, the main obstacle facing
wind industry development is that wind is an intermittent
energy source, which means that there is large variability in
the production of energy due to various factors such as wind
speed, air density, and turbine characteristics. Specifically,
horizontal air motion is defined as wind [9], and wind is
driven by uneven cooling and heating on the earth’s surface,
as well as the rotation of the earth. Thus, the occurrence
of wind has strong uncertainty, in both space and time.
The nondeterminacy seriously limits wind power penetration
and threatens grid security. Although wind power drives the
turbines that generate electricity, the complex fluctuations of
wind make it difficult to predict the power output. The theo-
retical amount of energy thatmight be generated fromwind is
proportional to the cube of thewind speed, and slight changes
in the wind speed might cause significant changes in the
total amount of electricity generated from the wind; this also
causes obstacles for power transportation [10]. To guarantee
the security of the grid system, the dispatching department
must balance the grid’s production and consumption within
very small time intervals [11]. Moreover, due to the lack of
accurate information about wind occurrence, the efficiency
of wind turbines can also be limited [12]. Several academic
works addressing wind energy attest to the increasing interest
in this important theme.

Generally, there are two ways to solve this problem
in wind power generation. One is the large-scale transfor-
mation of the existing electrical power system; the most
popular method is smart grid transformation, which consists
of a digitally enabled power system [13]. The core of a
smart grid is the integration of secure and high-speed data
communication—based on advanced computers, electronic
equipment, intelligent components, and more—to operate
the mixture system intelligently and effectively [14, 15]. Using
the real-time information, a smart grid can facilitate the
development of wind power. When wind-generated power
is insufficient, other forms of energies can be used to
supplement power for a short time through a smart grid.
However, currently, there is no widely accepted standard-
ized communication/network infrastructure that could be
applied to power transformation through a smart grid [16].
Another possible solution is to improve wind power tech-
niques, including wind-prediction techniques, wind turbine
techniques, wind energy storage techniques, and combined
dispatching. Accurate wind information is important for
estimating the wind power output. Accurate estimations can
benefit not only increasing wind power penetration and
maintaining a stable grid system but also the combined

dispatching in a mixture power grid. Under current electrical
systems, developing wind-prediction techniques can be an
effective way to guarantee the security and stability of the
electrical system without increasing the running cost.

In the past decades, many approaches have been devel-
oped for short-term load forecasting. These methods can be
categorized into different groups. Some of these methods
assume a time series model structure and then try to
identify its parameters. In actual power generation, wind
predictions—especially the short-term forecasts—are impor-
tant for scheduling, controlling, and dispatching the energy
conversion systems [17]. The most important characteristic
of wind—speed—can be easily influenced by other meteoro-
logical factors, such as air temperature and air pressure, as
well as obstacles and terrain [18].Thus, wind speed prediction
is not easy to address; moreover, wind speed modeling
has become one of the most difficult problems [19, 20].
The forecasting approach can be determined based on the
available information and the time scale in question, which
will affect its application. Short-term wind speed forecasting
is a subclass of wind speed forecasting. The time scales for
short-term forecasting range from a few seconds to minutes,
hours, or several days [21].

Many methods of forecasting wind speed have been pro-
posed. In general, they can be classified into two categories:
physical methods and statistical methods.

Physical methods are often referred to as meteorolog-
ical predictions of wind speed; they involve the numer-
ical approximation of models that describe the state of
the atmosphere [22]. Numerical weather prediction (NWP)
techniques, one type of physical model-based approach, rely
on a class of physical models with numerical parameters
characterizing local meteorological and geographical prop-
erties, such as temperature, atmospheric pressure, surface
roughness, and obstacles [23]. NWP techniques include the
weather research and forecasting (WRF) model and the fifth
generation mesoscale model (MM5). These models always
use physical data such as topography information, pressure,
and temperature to forecast wind speed in the future [24, 25].
Typically, prediction methods using NWP forecasts outper-
form statistical approaches after a 3–6 h look-ahead time,
whereas statistical approaches turn out to be quite reliable for
very short-term forecasts, that is, less than 6 h. The optimal
model most likely consists of a mixed approach, which is
very often adopted by utilities to combine high accuracy
for very short horizons with longer forecasts of up to 48–
72 h [26]. Unlike physical models, statistical methods make
forecasts by finding relationships using historical wind speed
data and, sometimes, other variables (e.g., wind direction or
temperature). The data used are recorded at the observation
site or at other nearby locations where data are available. In
the literature, many statistical methods have been applied
to this topic, such as the autoregressive integrated moving
average (ARIMA) model, Kalman filters, and the general-
ized autoregressive conditional heteroscedasticity (GARCH)
model. The statistical models can be used at any stage in the
modeling process, and they often combine various methods
into one. Physical and statistical models each have their own
advantages for wind speed prediction, but few forecasts use
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only one model. Often, the results of the physical prediction
merely represent the first step towards forecasting the wind;
thus, the physically predicted wind speed can be regarded as
an auxiliary input to other statistical models [27]. Currently,
grey models (GM) [28, 29] and models based on artificial
intelligence (AI) techniques have been developed for this
area, including the artificial neural networks (ANNs) of
multilayer perceptrons (MLP) [30, 31], radial basis function
(RBF) [32], recurrent neural networks [33, 34], and fuzzy
logic [35, 36]. Neural networks can learn from past data and
recognize hidden patterns or relationships in historical obser-
vations and use them to forecast future values. The results
indicate that prediction errors resulting from the Bayesian
combination approach always become smaller, which is in
contrast to artificial neural networks, whose performance is
not consistent when the site or evaluation criterion changes
[3]. An annealing clustering ANN [37], a BP (back propaga-
tion) neural network with rough set [38], a neural network
combining wavelet transform and adaptive mutation particle
swarm optimization [39], an ANN based on fuzzy logic
methods [40], and Bayesian neural networks integrating the
Monte Carlo algorithm [41] have been proposed for short-
term wind speed forecasting. Combination models include
the adaptive particle swarm optimization-based combined
method [42], wavelet transform combination model based
on a neural network and an evolutionary algorithm [43],
wavelet transforms and adaptivemodels [44], and an adaptive
fuzzy combination model based on the self-organizing map
and support vector regression [45]. In fact, conventionally,
the forecasting method is not classified as either physical
or statistical, because most forecasting models include both
techniques.

Several methods are being used to diagnose the dynam-
ical characteristics of observational wind speed time series.
The singular spectrum analysis (SSA) method, which is
a powerful technique for time series analysis, has been
employed elegantly and effectively in several areas, such
as hydrology, geophysics, climatology, and economics [46–
49]. Traditional approaches are based on statistical mod-
els, including linear regression methods [50], exponential
smoothing [51], Box-Jenkins approaches [52], and Kalman
filters [53]. Essentially, most of the traditional approaches are
based on linear analysis. However, the wind speed series are
usually nonlinear. As discussed earlier, noise signals caused
by unstable factors increase the difficulties associated with
convergence and forecasting accuracy. Guo et al. [54] and
Dong et al. [55] considered the first IMF (intrinsic mode
function) obtained by EMD(empiricalmode decomposition)
as noise and demonstrated that eliminating the first IMF
improved the forecasting accuracy in their experiments. In
addition, the EMD-based signal filtering proposed in [56]
indicates that noise potentially contains the first IMF or the
first several IMFs. Here, SSA [57, 58] has been employed to
characterize the properties of wind speed, and the hybrid
model with SSA is used for short-time forecasting. The SSA
technique incorporates the elements of classical time series
analysis, multivariate geometry, multivariate statistics, signal
processing, and dynamical systems. The aim of SSA is to
obtain a decomposition of the original series into a set of

independent and interpretable components, which include a
slowly varying trend, oscillatory components, and random
noise [57]. One of the differences between traditional time
series analysis methods and SSA is that SSA and SSA-related
methods could be applied to both classical time series analysis
problems and various other situations, such as exploratory
analysis for data-mining and parameter estimation in signal
processing [59]. The main reason for using nonparametric
or data-driven techniques is that no previous assumptions
are required to analyze and perform forecasts, such as the
normality of residuals, the stationary of the time series, or a
predefined model structure. Although SSA does not involve
any forecasting algorithms, the analysis reveals the natural
characteristics of time series. One of the main advantages of
SSA compared to other nonparametric methods is that only
two parameters are used to simulate the time series in many
implementations [60], and no model is assumed before the
SSA method is adopted; the subspace-based model is built
adaptively. The other essential difference between SSA and
the majority of methods is that SSA does not require a priori
model of a trend, such as a priori knowledge of the number
of periodicities and period values, to analyze time series with
a trend or periodicity.

Briefly, the SSA method decomposes a time series into
a number of components with simpler structures, such as a
slowly varying trend, oscillations, and noise. SSA belongs to
the general category of principal component analysis (PCA)
methods, which apply a linear transformation of the original
data space into a feature space, where the data set may be
represented by effective features while retaining most of the
information content of the data [61]. Wavelet analysis is a
powerful tool for PCA and has been used for feature extrac-
tion and denoising wind speed for a long time. To optimally
fit the forecasting model, the data must be stationary and
have a normal distribution. In SSA, these problems do not
exist, as the technique does not depend on any parameters, as
does the other model for the trend. The SSA technique has
been used in a variety of fields, such as signal processing,
nonlinear dynamics, climate, medicine, and mathematical
statistics [62]. Additionally, some denoising methods are
based on singular value decomposition (SVD), similar to the
SSA method.

The basic SSA method and forecasting models are pre-
sented to address the short-term wind speed forecasting
problem. The employed models meet two goals: (1) using the
real data for SSA to eliminate cumulative error and (2) esti-
mating the data trend using the history of the data to forecast
short-term data in wind speed. Simulation results present the
effectiveness of the proposed method in characterizing and
predicting time series.

In this paper, a hybrid prediction algorithm is proposed
for short-term wind speed forecasting. The proposed algo-
rithm, which integrates the advantages of the time series
and SSA, is adopted to develop a prediction model. The
rest of this paper is organized as follows. In Section 2, the
data description and the research background are outlined.
The NWP model WRF is also introduced in Section 2; in
Section 3, the SSA model for feature extraction is introduced
and the main steps of the model are given, which include
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Figure 1: Chinese wind energy resource distribution and wind farms in Shandong province.

decomposition and reconstruction.The methods contain the
basic processing of physical methods. The performance of
wind speed data is described. The main forecasting methods
and the results are presented and discussed in Section 5, with
comparisons to other methods. A brief review of this paper
and the future research are in Section 6.

2. Background and Data Collection

Wind farms at 10 sites in Shandong, China, applied our
methodologies. The Shandong province, located between
114∘47.5 E and 122∘42.3 E and between 34∘22.9N and
38∘24.01N in the eastern coastal area of China on the lower
reaches of the Yellow River, covers an area of 1.57 × 105 km2,
which accounts for 1.6% of the total land area of China. As
an economically powerful province with a large population
(9.4 × 107 inhabitants in 2007), it has experienced rapid
and sustained economic development, with enormous energy
consumption. With the rapid increase in wind energy in
China, the total installed capacity of wind power in Shandong
province reached 4562.3MW in 2012. Some of wind farms are
near the PacificOcean, and their nominal power can reach up
to 49.5MW.The prevailing wind speed in Shandong in April
averages 10.27m/s. No additional information is provided
in the database about these wind farms (location, nominal
power, and so on) for confidentiality reasons. This database
contains information about 10 wind farms. We denote the
selected wind farms numbered 1 to 10 by wind farms A
to J, respectively. These wind farms have variable situations
and land surfaces, which allowed the model’s effectiveness
to be sufficiently tested. Thus, our proposed model could be
demonstrated in very different settings.

As shown in Figure 1, some wind farms in this study are
located near the sea; because of the different heat capacity
values of the sea and the land, there will be a sea breeze, which

will blow in opposite directions during the day and night. In
this region, frequent strong winds make it quite difficult to
accurately forecast synoptic processes.

In all cases, we collect observational speed data from
the wind farm and meteorological weather forecasts from a
NWP model. In this database, historical wind speed data are
obtained every 15min and then averaged for each hour. We
have quarter data from 00:00, April 1, 2013, to 23:45, April
30, 2013, which amounts to 2650 data points. Meteorological
wind simulation results include the temperature, pressure,
humidity, wind speed, and direction provided by the WRF
model. The forecasts of the models are hourly and are given
in terms of the coordinated universal time (UTC), and the
maximum prediction horizon is 96 h. Generally, in these
models, historical wind speed is used as an input at one of the
points. However, in theNNmodel, the temperature, pressure,
humidity, and direction results from the WRF are also used
as input data. In all of the wind farms analyzed, data from the
two groups (historical measurement and model forecasting)
are divided in two sets: the first portion of data is used to train
themodels and the remaining data points are used to validate
the models.

TheWRF mesoscale numerical model is now the current
generation “community” physics-based atmospheric model,
serving the needs of both atmospheric research and oper-
ational forecasting. Recently, the WRF model has become
one of the most popular and widely used tools for numeric
weather prediction. In this paper, the WRF model is selected
as a representative of the physical models. The main fore-
casting data are used to provide forecasting factors to NN
model.

WRF is a fully compressible, nonhydrostatic model with
a large number of physics options regarding cumulus param-
eterization, cloud microphysics, radiation, PBL parameteri-
zation, and land-surface model. In the WRF model, a grid
is defined as an integration of three-dimensional points.
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Figure 2: The simulation domains in WRF.

Table 1: Model configuration of the WRF simulation.

Physical options
Cumulus parameterization Grell 3D ensemble cumulus scheme
Short-wave radiation RRTM scheme
Long-wave radiation Dudhia scheme
Surface layer physics Eta similarity
Land-surface processes Fractional sea-ice
Planetary boundary layer Mellor-Yamada-Janjic scheme

It contains a set of weather data (wind speed, atmospheric
pressure, etc.). For each grid, there are a current time and
an associated stop time. The atmospheric status is simulated
by calculating a series of physical equations; this is based not
only on the on-grid data but also on a specific physical model.
Then, the current time of the grid can be advanced by a time-
step, a unit of time [63]. TheWRF simulation in this paper is
performed for the case of April 2013 in Shandong province,
China. The domains used in this simulation are shown in
Figure 2.

TheNational Centers for Environmental Prediction Final
Analysis (1∘ × 1∘, 6-hourly) data (NCEP FNL), which include
24 levels from surface to 10 hPa, are used as the initial and
lateral boundary conditions. Details about theNCEP FNL are
available at http://rda.ucar.edu/datasets/ds083.2/.The physics
options selected in this simulation are also shown in Table 1.

3. SSA of Hourly Wind Speed of Wind Farms
in Shandong Province

3.1. SSA of a Time Series. SSA is defined as amethod to obtain
detailed information from a noisy time series [64]. Consider
the real-valued nonzero time series 𝑌
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The trajectory matrix is a Hankel matrix, where all of the
elements along the diagonal 𝑖 + 𝑗 = const are equal [57].
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while 𝐸
𝑑
has the lowest contribution. SVD could be time-

consuming if the length of the time series is large (𝑇 > 1000).

3.3. Reconstruction. After decomposing the time series, the
results include subseries 𝑋 = 𝑋

1
+ ⋅ ⋅ ⋅ + 𝑋

𝑑
. As in the de-

composition stage, the reconstruction stage consists of two
steps: grouping and averaging.

3.3.1. Grouping. In this step, 𝑟 out of 𝑑 Eigen triples are se-
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related to the “signal” of y, while the rest of the (𝑑 − 𝑟) Eigen
triples denote the error term 𝜀.

3.3.2. Averaging. The group of 𝑟 components selected in the
previous stage is then used to reconstruct the deterministic
components of the time series. The basic idea is to transform
each of the terms 𝑋
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a time series of length 𝑇 reconstructed from the matrix 𝑍.
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Figure 3: Wind speed diagram of wind farm A in April.

At the end of the averaging step, the reconstructed time
series is an approximation of 𝑦:

𝑦 = 𝐻(𝑋
𝑖
1

) + 𝐻(𝑋
𝑖
2

) + ⋅ ⋅ ⋅ + 𝐻 (𝑋
𝑖
𝑟

) + 𝑒. (2)

As noted by Alexdradov and Golyandina, the reconstruc-
tion of a single Eigen triple is based on the whole time series.
This means that SSA is not a local method and, hence, is
robust to outliers.

3.4.Wind Speed and Its Properties. The experimental data are
the wind speed time series of Shandong province in m/s for
30 days fromApril 1 to April 30, 2013. For each series, we take
96 time series of different hourly wind speeds as a forecasting
unit during forecasting processing. An example of one such
wind farm’s wind speed is given in Figure 3.

Within a month of each day, the wind speed time series
has an inconspicuous periodicity of 24 hours. The general
rule is to select 𝐿 = 𝑇/2. However, in this case, the time
series of the forecasting period could define𝐿, and that will be
more appropriate. In addition to the 𝐿 parameter for SSA, the
number of components 𝑟 defines how the components can be
separated. To locate the parameter 𝑟, the detailed properties
of the wind speed time series should be displayed. A method
for selecting 𝑟 out of 𝑑 components is requiring that the
sum of their contributions be at least a predefined threshold,
such as 90%. Generally, noise components will have a low
contribution.

To evaluate the contributions of the different compo-
nents, Figure 4 shows the principal components of wind
speed in the SSA. Each PCx represents the ordinal compo-
nents separated from the original time series. Note that PC1
and PC2 are dominating in all components, while PC3 and
PC4 are subordinate. Components PC5–PC7 and PC8–PC11
could be classified as small parts which could be grouped.
However, their contributions are still substantial. The rest of
components diminish very slowly, but their contributions are
low.The construction of the time series will be based on these
Eigen triples.

3.5. Reconstruction and Preparation for Forecasting Ap-
proaches. As previously mentioned, the window length 𝐿
is decided using a characteristic forecasting time series in
the decomposition stage. Therefore, 𝐿 = 96 h is assumed,

here, which corresponds to a time series of 4 days of wind
speed. The reconstruction of a single Eigen triple is based
on the entire time series. In this case, a useful Eigen triple is
defined as one that improves the accuracy of the final forecast.
Figure 5 depicts the contributions of different Eigen triples
in forecasting. The “positive” means that the contribution of
these components is positive, which reduces the MAPE and
vice versa.

The useful Eigen triples set is the group of 𝑟 components
selected in the previous stage; they are deterministic compo-
nents of the time series. Because the simulated data consist of
the wind speed, temperature, humidity, and pressure, they are
reconstructed in the same way.The detailed process is shown
in Figure 6. First, the wind speed and the other weather
data are rearranged as an 𝐿-length time series, using the 𝐿
determined in last section. Second, according to the calcu-
lated accuracy for each component, the principal components
are divided into a positive components set and a negative
components set. The positive component set includes the
trend and the harmonic components, and the negative set
mostly contains the noise. Finally, the reconstructed time
series is provided as an 𝑟 × 4matrix.

By selecting a set of useful components and considering
other negative components as noise, some frequencies may
be filtered out completely. In Figure 6, original predictions
represent the forecasting result without SSA, which includes
the noise in simulation processing. In other words, this part
could be regarded as a forecast including all of the Eigen
triples.

4. Performance Metrics of Forecast Accuracy

To date, a number of performance measures have been pro-
posed and employed to evaluate the forecast accuracy, but no
single performance measure has been recognized as the uni-
versal standard. This actually complicates the performance
comparison of different forecasting models. As a result, we
need to assess the performance using multiple metrics, and
it is interesting to see if different metrics will give the same
performance ranking for the tested models. The metrics
included in this study are mean absolute error (MAE), root
mean square error (RMSE), and mean absolute percentage
error (MAPE) [21]:

MAE = 1

𝑇

𝑇

∑

𝑡=1

𝑦𝑡 − 𝑓𝑡
 ,

RMSE = √ 1
𝑇

𝑇

∑

𝑡=1

(𝑦
𝑡
− 𝑓
𝑡
)
2

,

MAPE = 1

𝑇

𝑇

∑

𝑡=1



𝑦
𝑡
− 𝑓
𝑡

𝑦
𝑡



,

(3)

where 𝑦
𝑡
and 𝑓

𝑡
denote the observations and the forecast

value frommodel 𝑡, respectively, and 𝑇 is the number of data
used for performance evaluation and comparison.

MAEmeasures the averagemagnitude of the errors of the
forecasting sets.More specifically, these involve the average of
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Figure 4: Principal components related to the 20 Eigen triples.
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the verification sample and the absolute values of the differ-
ences between the forecasted results and the corresponding
observations. MAE is a linear measure, which means that
all of the individual differences are equally weighted in the
average. In contrast, RMSE is a quadratic scoring rule that
measures the average magnitude of the error. Because the

errors are squared before they are averaged, the RMSE gives
a relatively high weight to large errors. This means that
the RMSE is most useful when large errors are particularly
undesirable. MAPE is a measure of accuracy in a fitted time
series value in statistics, specifically, a trending value. The
difference between the actual value and the forecasted value



8 Abstract and Applied Analysis

Wind speed Temperature PressureHumidity

Decomposition

Original
predictions

W1

W2

Wn

T1

T2

Tn

H1

H2

Hn

P1

P2

Pn

Principal
components

Positive
components

Negative
components

NN

SVM

ARIMA

Reconstruction

Wi1

Wi2

Wir

Ti1

Ti2

Tir

Hi1

Hi2

Hir

Pi1

Pi2

Pir

...
...

...
...

...
...

...
...

Figure 6: Decomposition and reconstruction diagram of simulation data.

is divided by the actual value. The absolute value of this
calculation is summed for every forecast point in time and
divided again by the total number of forecast points.

5. Forecasting Models

The forecasting model is used to measure the performance of
this hybrid algorithm. It consists of the following algorithms.

(1) Autoregressive Integrated Moving Average (ARIMA) Algo-
rithm. Introduced by Box and Jenkins [65], the ARIMA
linear models have dominated many areas as a popular
time series forecasting approach. As the application of these
models is very common, a brief description is provided
here. The linear function is based upon three parametric

linear components: autoregression (AR), integration (I), and
moving average (MA).The autoregressive or ARIMA (𝑝, 0, 0)
model is represented as follows:

𝑦
𝑡
= 𝜃
0
+ 𝜑
1
𝑦
𝑡−1
+ 𝜑
2
𝑦
𝑡−2
+ ⋅ ⋅ ⋅ + 𝜑

𝑝
𝑦
𝑡−𝑝
+ 𝑒
𝑡
, (4)

where 𝑝 is the number of the autoregressive terms, 𝑦
𝑡
is the

forecasted output, 𝑦
𝑡−𝑝

is the observation at time 𝑡 − 𝑝, and
𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑝
are a finite set of parameters. The 𝜑 terms are

determined by linear regression. The 𝜃
0
term is the intercept,

and 𝑒
𝑡
is the error associated with the regression. This time

series depends only on the𝑝 past values of itself and a random
term 𝑒

𝑡
. The moving average or ARIMA (0, 0, 𝑞) method is

represented as

𝑦
𝑡
= 𝜇 − 𝜃

1
𝑒
𝑡−1
− 𝜃
2
𝑒
𝑡−2
− ⋅ ⋅ ⋅ − 𝜃

𝑞
𝑒
𝑡−𝑞
+ 𝑒
𝑡
, (5)
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where 𝑞 is the number of moving average terms, 𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑞

are the finite weights or parameters set, and 𝜇 is the mean of
the series. This time series depends only on 𝑞 past random
terms and a present random term 𝑒

𝑡
. As a particular case, an

ARIMA(𝑝, 0, 𝑞) or ARMA(𝑝, 𝑞) is a model for a time series
that depends on 𝑝 past values of itself and on 𝑞 past random
terms 𝑒

𝑡
. The equation is shown as follows:

𝑦
𝑡
= 𝜃
0
+ 𝜑
1
𝑦
𝑡−1
+ 𝜑
2
𝑦
𝑡−2
+ ⋅ ⋅ ⋅ + 𝜑

𝑝
𝑦
𝑡−𝑝
+ 𝜇

− 𝜃
1
𝑒
𝑡−1
− 𝜃
2
𝑒
𝑡−2
− ⋅ ⋅ ⋅ − 𝜃

𝑞
𝑒
𝑡−𝑞
+ 𝑒
𝑡
.

(6)

Finally, an ARIMA(𝑝, 𝑑, 𝑞) is an ARIMA(𝑝, 0, 𝑞) model
for a time series that has been different 𝑑 times. The ARIMA
models have the capability to include external independent
or predictor variables.

(2) Support Vector Machine (SVM) Algorithm. The support
vector machine (SVM) was proposed by Vapnik [66]. Based
on the structured risk minimization (SRM) principle, the
SVM minimizes an upper bound of the generalization error
instead of the empirical error, as in other neural networks.
Additionally, the SVM model generates the regression func-
tion by applying a set of high-dimensional linear functions.
The SVM regression function is formulated as follows:

𝑦 = 𝑤𝜑 (𝑥) + 𝑏, (7)

where 𝜑(𝑥) is called the feature, which is nonlinearly mapped
from the input space 𝑥.The coefficients𝑤 and 𝑏 are estimated
by minimizing

𝑅 (𝐶) = 𝐶
1

𝑁

𝑁

∑

𝑖=1

𝐿
𝜀
(𝑑
𝑖
, 𝑦
𝑖
) +

1

2
‖𝑤‖
2

[0, 1] ,

𝐿
𝜀
(𝑑, 𝑦) = {

𝑑 − 𝑦
 − 𝜀,

𝑑 − 𝑦
 ≥ 𝜀,

0, others,

(8)

where both 𝐶 and 𝜀 are prescribed parameters. The first
term 𝐿

𝜀
(𝑑, 𝑦) is called the 𝜀-intensive loss function. The 𝑑

𝑖

is the actual wind speed in the 𝑖th period. This function
indicates that errors below 𝜀 are not penalized. The term
𝐶(1/𝑁)∑

𝑁

𝑖=1

𝐿
𝜀
(𝑑
𝑖
, 𝑦
𝑖
) is the empirical error. The second

term, (1/2)‖𝑤‖2, measures the flatness of the function. 𝐶
evaluates the model. The positive slack variables 𝜁 and
𝜁
∗ represent the distance from the actual values to the
corresponding boundary values of the 𝜀-tube. The equation
is transformed into the following constrained formation:

𝑅 (𝑤, 𝜁, 𝜁
∗

) =
1

2
𝑤𝑤
𝑇

+ 𝐶
∗

(

𝑁

∑

𝑖=1

(𝜁
𝑖
+ 𝜁
∗

𝑖

)) , (9)

subject to

𝑤𝜑 (𝑥
𝑖
) + 𝑏
𝑖
− 𝑑
𝑖
≤ 𝜀 + 𝜁

∗

𝑖

,

𝑑
𝑖
− 𝑤𝜑 (𝑥

𝑖
) − 𝑏
𝑖
≤ 𝜀 + 𝜁

𝑖
,

𝜁
𝑖
, 𝜁
∗

𝑖

≥ 0, 𝑖 = 1, 2, 𝐾,𝑁.

(10)

Finally, they satisfy the equality

𝑓 (𝑥, 𝛼, 𝛼
∗

) =

𝑙

∑

𝑖=1

(𝛼
𝑖
− 𝛼
∗

𝑖

)𝐾 (𝑥, 𝑥
𝑖
) + 𝑏. (11)

Here, 𝐾(𝑥, 𝑥
𝑖
) is called the kernel function. The value of the

kernel is equal to the inner product of two vectors 𝑥
𝑖
and 𝑥

𝑗

in the feature space 𝜑(𝑥
𝑖
) and 𝜑(𝑥

𝑗
), such that 𝐾(𝑥

𝑖
, 𝑥
𝑗
) =

𝜑(𝑥
𝑖
) ∗ 𝜑(𝑥

𝑗
). Any function that satisfies Mercer’s condition

can be used as the kernel function [67]. The Gaussian kernel
function is used in this paper.

(3) Artificial Neural Networks (ANN) Algorithm. Artificial
neural network (ANN) models are generally used for time
series forecasting. A neural network is a mathematical rep-
resentation that is inspired by the way the brain processes
information. The model consists of an input layer, an output
layer, and one or more intervening layers, also referred to as
hidden layers. The hidden layers can capture the nonlinear
relationship between variables. Each layer consists ofmultiple
neurons that are connected to the neurons in adjacent layers.
Because these networks contain many interacting nonlinear
neurons inmultiple layers, the networks can capture relatively
complex performance. ANN is already one of the models
that is able to approximate various nonlinearities in the data
series. Many types of ANN models have been suggested
in related research, with the most popular one used for
classification being the multilayer perceptron (MLP) with
back propagation.The output of the 𝑖th hidden neuron is then
computed by processing the weighted inputs and its bias term
ℎ
𝑖
as follows:

ℎ
𝑖
= 𝑓(𝑏

𝑖
+

𝑛

∑

𝑗=1

𝑤
𝑖𝑗
𝑥
𝑗
) , (12)

where 𝑤
𝑖𝑗
denotes the weight connecting input 𝑤

𝑖𝑗
to hidden

unit ℎ
𝑖
.

Similarly, the output of the output layer is computed as
follows:

𝑦 = 𝑓
output

(𝑏 +

𝑛

∑

𝑗=1

𝑤
𝑗
𝑥
𝑗
) , (13)

with 𝑛 presenting the number of hidden neurons and 𝑤
𝑗

representing the weight connecting hidden unit 𝑗 to the
output neuron. A threshold function is then applied to
map the network output 𝑦 to a classification label. The
transfer functions 𝑓ℎ and 𝑓output allow the network to model
nonlinear relationships in the data.

6. Forecast Results and Comparative Analysis

The last section consists of forecasting data calculation, error
comparison, and results analysis. The error calculation mod-
ule provides different methods to compare the SSA technique
for different forecasting methods in the 10 wind farms. The
algorithms are chosen based on the different theoretical
principles.
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Table 2: Comparison of RMSE for 10 wind farms.

Wind farm
A

Wind farm
B

Wind farm
C

Wind farm
D

Wind farm
E

Wind farm
F

Wind farm
G

Wind farm
H

Wind farm
I

Wind farm
J

ARIMA
Ori-RMSE 1.38 3.54 7.52 3.27 3.00 5.98 3.81 1.34 1.61 9.75
SSA-RMSE 1.34 3.49 1.33 3.04 2.28 5.59 4.81 1.57 1.43 8.96

SVM
Ori-RMSE 5.01 6.85 4.27 7.11 8.42 7.19 7.92 6.89 5.43 4.95
SSA-RMSE 4.43 5.91 3.66 6.38 7.54 6.85 7.58 6.51 5.73 4.52

ANN
Ori-RMSE 1.45 4.34 1.88 6.17 1.22 3.63 3.10 2.53 1.64 8.98
SSA-RMSE 1.31 3.98 1.37 2.92 0.64 6.76 5.14 1.63 0.97 9.36

Table 3: Comparison of MAE for 10 wind farms.

Wind farm
A

Wind farm
B

Wind farm
C

Wind farm
D

Wind farm
E

Wind farm
F

Wind farm
G

Wind farm
H

Wind farm
I

Wind farm
J

ARIMA
Ori-MAE 1.01 3.25 7.13 2.99 2.63 5.84 3.53 0.98 1.11 9.67
SSA-MAE 0.94 3.12 0.97 2.78 1.45 5.44 4.44 1.03 0.95 8.88

SVM
Ori-MAE 4.82 6.76 4.14 7.04 8.36 7.07 7.81 6.70 5.24 4.82
SSA-MAE 4.31 5.89 3.59 6.29 7.49 6.76 7.45 6.41 5.61 4.39

ANN
Ori-MAE 0.98 4.14 1.76 5.86 1.05 3.41 2.77 2.37 1.37 8.90
SSA-MAE 0.94 3.58 1.19 2.74 0.50 6.56 4.61 1.04 0.58 9.26

Table 4: Comparison of MAPE for 10 wind farms.

Wind farm
A

Wind farm
B

Wind farm
C

Wind farm
D

Wind farm
E

Wind farm
F

Wind farm
G

Wind farm
H

Wind farm
I

Wind farm
J

ARIMA
Ori-MAPE 7.68% 24.33% 50.62% 20.38% 19.91% 40.81% 26.38% 7.46% 8.85% 68.29%
SSA-MAPE 7.28% 23.50% 7.72% 18.97% 11.64% 37.90% 33.10% 8.15% 7.54% 62.55%

SVM
Ori-MAPE 33.76% 47.49% 28.85% 49.74% 59.13% 49.86% 55.17% 47.22% 36.38% 33.70%
SSA-MAPE 30.16% 41.81% 25.23% 44.34% 52.98% 47.97% 52.47% 45.20% 39.22% 30.68%

ANN
Ori-MAPE 7.77% 30.61% 12.44% 40.88% 7.64% 23.66% 20.92% 16.32% 10.13% 62.77%
SSA-MAPE 7.26% 26.83% 8.46% 18.85% 3.90% 45.67% 34.56% 8.30% 4.63% 65.21%

In the following, the combined methodology is applied
to predict the future wind speed of the furthermost hours to
each forecasting period; the results are shown in Tables 2, 3,
and 4. Specifically, the prediction performance is evaluated
using the RMSE, MAPE, and MSE. For these forecasting
cases in different wind farms, the only actual requirement
from the wind farms is reducing the prediction error as
much as possible. In our recent research into wind speed
forecasting, the time series method relied on the historical
data, which are primarily used in immediate-short-term
forecasting. The forecast period is usually limited to 4 hours,
divided into quarter-hour periods. To expand the forecast

period and observe the forecasting performance using the
SSA technique, the wind data in this paper are merged into
an hour, as we mentioned earlier, and the forecast period is
extended from 4 hours to 7 hours. The schematic diagram of
the forecasting process is shown in Figure 7.

As seen in Table 2, the forecasting performance values
using the SSA technique based on the ARIMA and the NN
are much better than those of the SVM algorithm for most
of the wind farms. For instance, the values of RMSE for the
ARIMA and ANN at wind farm C are 1.33 and 1.37, less than
the value of 3.66 obtained using SVM. As we mentioned,
whether the SSA technique reduces forecasting error is the
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critical problem addressed in this paper. So, comparing
the Ori-group with the SSA-group, it is apparent that the
error of the SSA-group is lower as measured by the RMSE.
For example, the value of SSA-RMSE in wind farm E using
ANN decreases from 1.22 to 0.64. The value of SSA-RMSE
in wind farm C using ARIMA decreases from 7.52 to 1.33.
However, this is not the case across all 10 wind farms. In cases
such as wind farm F in ANN, wind farm G in ARIMA, and
wind farm I in SVM, the RMSEs are relatively high. However,
the number of these groups is small, and there is no site where
the RMSE of all three methods increases. This conclusion

is presented in Table 2, and a detailed explanation will be
provided next.

Similar to Tables 2 and 3 displays the values for MAE.
MAE is expressed as the absolute value of the error, which
can also be used to evaluate forecasting errors. The MAE
exhibits the same pattern as the RMSE. The MAE of the
Ori-group is lower than the error of the SSA-group, which
means that the SSA technique significantly improved the
prediction accuracy. As observed from the table, the SSA-
group is different from the Ori-group, which has a substan-
tially higher forecasting accuracy. However, the forecasting
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errors associated with different methods make a substantial
difference.

Details of the MAPE of forecasting results are given in
Table 4; they are similar to the results from Tables 2 and 3.
The results reported in Table 4 are theMAPE results obtained
using three different methods. As we can see from the table,
the SSA-group has higher forecasting accuracy than the Ori-
group. The MAPE results in Table 4 show that the combined
method improves accuracy from 0.4% to 42%. For example,
the ARIMA forecasting of wind farm C reduces the error
from 50.62% to 7.72%, whereas the ANN forecasting of wind
farmD reduces the error from 40.88% to 18.85%.Most results
indicate that the SSA technique significantly improves the
prediction accuracy.

TheRMSE iswidely used inwind farms and is the primary
error measure used in this paper. The RMSE results are dis-
played in Figure 8. These results suggest that the SSA tech-
nique is an excellent method for time series forecasting.

7. Discussion and Conclusion

This paper provided a new wind speed forecasting method
by introducing an SSA algorithm. In wind speed forecasting
cases, we proposed an effective method for defining the
parameters of SSA and applied the new method to 10 wind
farms in Shandong province. Here, SSA-based filtering con-
sists of a data-separation technology with fewer parameters,
which is more efficient than the traditional noise reduction
methods used in recent research. The proposed algorithm
significantly outperforms the basic forecasting algorithm in
a variety of different situations using ARIMA, SVM, and
NN; this conclusion is especially true for forecasting with a
time series algorithm. Secondly, the method employs SSA
to eliminate the noise series with an algorithm based on
the data itself, which overcomes the limitations imposed by
the complexity of the algorithms. Further, the goal of the
proposedmodel is not only to present an exact representation
of the forecasting method itself but also to set up a series of
methods for the process of decomposition and reconstruction
that will be generally capable of receiving new inputs.

The interest in employing three different forecasting
methods based on different theoretical structures confirmed
that the accuracy and applicability of the forecast result are
improved; however, the forecasting capacities of the methods
themselves were significantly different. On the one hand,
the forecasting horizon was expanded from 4 hours to 7
hours in these immediate-short-term winds speed forecasts.
This method, which consists of the decomposition and
reconstruction of SSA, will result in a better evaluation of
forecasting method performance in a time series. On the
other hand, there is not a universal method for wind speed
forecasting; different methods can be applied under different
conditions. Although the behavior of SVM is unsatisfactory,
the results of the other two forecasting methods are still
suitable. In fact, this result is exactly what we expect in
wind speed forecasting. Because of the fluctuating nature
of the wind series, it is difficult to find an efficient and
versatile optimization method. Even to this day, wind speed

forecasting remains a very laborious problem, and theMAPE
of such wind farms usually ranges from 25% to 40% [68].
Although the versatility of this approach remains to be tested,
this experiment, which included 10wind farms, demonstrates
that the method is useful for wind speed forecasting.

Conflict of Interests

The authors declare that there is no conflict of interests re-
garding the publication of this paper.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China (41225018) and IAM (IAM201305).

References

[1] “IPCC Special Report on Renewable Energy Sources and
Climate Change Mitigation,” 2011, http://www.ipcc-wg3.de/
publications/special-reports.

[2] K. Y. Oh, J. Y. Kim, J. K. Lee, M. S. Ryu, and J. S. Lee,
“An assessment of wind energy potential at the demonstration
offshore wind farm in Korea,” Energy, vol. 46, pp. 555–563, 2012.

[3] N. Chaudhry and L. Hughes, “Forecasting the reliability of
wind-energy systems: a new approach using the RL technique,”
Applied Energy, vol. 96, pp. 422–430, 2012.

[4] GWEC, “GlobalWindEnergyCouncil,” 2010, http:// www.gwec
.net/fileadmin/documents/Publications/GWEO%202010%
20final.pdf.

[5] W. Zhang, J. Wu, J. Wang, W. Zhao, and L. Shen, “Performance
analysis of four modified approaches for wind speed forecast-
ing,” Applied Energy, vol. 99, pp. 324–333, 2012.

[6] M. Carolin Mabel and E. Fernandez, “Analysis of wind power
generation and prediction using ANN: a case study,” Renewable
Energy, vol. 33, no. 5, pp. 986–992, 2008.

[7] S. Rehman, A. M. Mahbub Alam, J. P. Meyer, and L. M. Al-
Hadhrami, “Wind speed characteristics and resource assess-
ment using weibull parameters,” International Journal of Green
Energy, vol. 9, no. 8, pp. 800–814, 2012.

[8] P. Kou, F. Gao, and X. Guan, “Sparse online warped Gaussian
process for wind power probabilistic forecasting,” Applied
Energy, vol. 108, pp. 410–428, 2013.
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