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We introduce new sequence spaces by using Musielak-Orlicz function and a generalized BY -difference operator on #n-normed space.
Some topological properties and inclusion relations are also examined.

1. Introduction and Preliminaries

The notion of the difference sequence space was introduced
by Kizmaz [1]. It was further generalized by Et and Colak [2]
as follows: Z(A*) = {x = (x;) € w : (A¥x;) € z}forz = €, c,
and ¢y, where ¢ is a nonnegative integer and

Aﬂxk = Aﬂ_lxk — AH_lka, onk = X Vk e N (1)

or equivalent to the following binomial representation:

u
Axi = Y (-1)" <‘:) Xep- )
v=0

These sequence spaces were generalized by Et and Basarir [3]
taking z = €, (p), c(p), and ¢, (p).

Dutta [4] introduced the following difference sequence
spaces using a new difference operator:

Z(A(n)) = {x =(x) €w: Agpx € z} for z =€, ¢, ¢

3)

where Agpyx = (A(ﬂ)xk) = (x; — xk,q) forall k,n € N.
In [5], Dutta introduced the sequence spaces
E("’ ”s A[zﬂ)’ P)’ Q("’ ”a A[zﬂ)’ P)’ eoo(") ”’ A!ZW), P)’ m(”) ||>
A’Zn),p), and my(]-, -II,ATW),‘D), where 7,y € N and

-1 -1
A’Zn)xk = (A’zn)xk) = (A’Zrl) X — Alzrz) Xj_y) and A(zn)xk = X
for all k, 1 € N, which is equivalent to the following binomial

representation:

u
Alzr])xk = Z(:)(_l)v <!;> xk—r]v' (4)

The difference sequence spaces have been studied by authors
[6-14] and references therein. Basar and Altay [15] introduced
the generalized difference matrix B = (b,,) for all k,m € N,
which is a generalization of A (;,-difference operator by

r, k=m
k=m-1 (5)
0, (k>m)or(0<k<m-1).

Basarir and Kayikgi [16] defined the matrix B¥ (b::k) which
reduced the difference matrix A’zl)
The generalized B¥-difference operator is equivalent to the

following binomial representation:

incaser = 1,s = —1.

Bx =B (x;) = i (5) s X, (6)

v=0


http://dx.doi.org/10.1155/2014/691632

Let A = (A) be a sequence of nonzero scalars. Then,
for a sequence space E, the multiplier sequence space E,,
associated with the multiplier sequence A, is defined as

E, ={x=(x) € w: (Aex;) € E}. (7)

An Orlicz function M is a function, M : [0,00) — [0, 00),
which is continuous, nondecreasing, and convex with M(0) =
0, M(x) > 0 for x > 0,and M(x) — coasx — o0o0.

We say that an Orlicz function M satsfies the A,-
condition if there exists K > 2 and x,, > 0 such that M(2x) <
KM(x) for all x > x,. The A,-condition is equivalent to
M(Lx) < KLM(x) for all x > x, > 0 and for L,K > 1.

Lindenstrauss and Tzafriri [17] used the idea of Orlicz
function to define the following sequence space:

e e Su(B) e

k=1 P

which is called an Orlicz sequence space. The space £, is a
Banach space with the norm

||x||=inf{p>0:§M(|x—;|)Sl}. 9)

k=1

It is shown in [17] that every Orlicz sequence space £y,
contains a subspace isomorphic to £, (p > 1).

A sequence # = (M) of Orlicz function is called a
Musielak-Orlicz function; see [18, 19]. A sequence //* = (N;)
defined by

N (v) =sup{lvlu-M; (u):u=0}, k=1,2,..., (10)
is called the complimentary function of a Musielak-Orlicz
function .. For a given Musielak-Orlicz function ., the
Musielak-Orlicz sequence space t , and its subspace h , are
defined as follows:

ty=1{x€w:I(cx) < oo for some c > 0},

11
hy=1{x€w: I (cx) < oo Ve >0},
where I, is a convex modular defined by
[ee]
Ly (%) = ZMk (), x=(x) €ty (12)
k=1
We consider t , equipped with the Luxemburg norm
||x||=inf{k>0:IM<%>sl} (13)
or equipped with the Orlicz norm
x| = inf {% (141 (k) k> o} . (14)

By a lacunary sequence 0 = (i,),r = 0,1,2,..., where i; = 0,
we will mean an increasing sequence of nonnegative integers
h, = (i, —r,.q) — oo (r — ©0). The intervals determined
by 6 are denoted by I, = (i,_;,i,] and the ratio 7,/i,_, will
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be denoted by g,. The space of lacunary strongly convergent
sequences Ny was defined by Freedman et al. [20] as follows:

Ng=4x=(x): rllpgohiz |x¢ = L| = 0, for some L
T kel,
(15)

The concept of 2-normed spaces was initially developed by
Gahler [21] in the mid of 1960’s, while that of n-normed
spaces one can see in Misiak [22]. Since then, many others
have studied this concept and obtained various results; see
Gunawan [23, 24] and Gunawan and Mashadi [25]. For more
details about sequence spaces see [26-33] and references
therein. Let n € N and X be linear space over the field K,
where K is the field of real or complex numbers of dimension
d, whered >n > 2.

A real valued function ||-,...,-|| on X" satisfying the
following four conditions:
@ I(xy, x5, ..., x,) = 0if and only if x, x,, x5,...,%,
are linearly dependent in X;
(2) 1y, x5, - .. x,,)|| is invariant under permutation;
(3) N(axy, x5, .. x ) = lexlll (x5 x5, . .., x,)|| for any « €
s
@l + xgnx)l < e xg L x)l +
1(x"s %555 )l
is called an mn-norm on X and the pair (X,|-...,-]) is

called an n-normed space over the field K. For example, we
may take X = R” being equipped with the Euclidean n-
norm |[(x;, x5, ..., x,)llg = the volume of the n-dimensional

parallelepiped spanned by the vectors x,, x,,...,x, which
may be given explicitly by the formula

oo %0 x) | = |det (xij)' , (16)
where x; = (x},%,,%3,...,%,) € R"foreachi=1,2,3,...,n
and || - |z denotes the Euclidean norm. Let (X, ||-,...,|]) bean
n-normed space of dimension d > n > 2 and {a,,4,,...,4a,}

linearly independent set in X. Then the following function
ICs.. s )l on X' defined by

[CECNRE]
| 17)
= max {||(x, %, .. X o )| 18 = 1,2,...,1}
defines an (n—1) norm on X with respect to {(a,, a,, ..., a,)}.

A sequence (x;) in an n-normed space (X, |[-,...,-|) is
said to converge to some L € X if

Jim [(xx = L.z, .. 2,4)] =0,
(18)
for every z,...,2,4 € X.
A sequence (x;) in a normed space (X, |-, .., ||) is said to be
Cauchy if
klimm "(xk = Xps 25 .,zn_l)H =0,
for every z,,...,2, ; € X.
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If every Cauchy sequence in X converges to some L € X
then X is said to be complete with respect to the n-norm. Any
complete n-normed space is said to be n-Banach space.

Let (X, |,...,-|l) be an n-normed space and let s(w — x)
denote the space of X-valued sequences. Let p = (p;) be any
bounded sequence of positive real numbers and .# = (M) a
Musielak-Orlicz function. We define the following sequence
spaces in this paper:

w) (M, B p, .-

- {x:(xk)es(w—x):rli_pgohi

B A Xk
2 Z15e 5%y

w’ (M, Bl ps|l>-.-ll)

xZMk(

kel,

Pr
) =0, p>0p,

oohr

" x; — L
( A ,zl,...,z,”)‘
p

for some L, p > 0]» ,

= <lx=(xk)es(w—x):rli%mi

Pr
) ) 0’

x ZMk<

kel,

W’ (M, B p, ..l

= {x:(xk)Es(w—x):rli_{lgohi

X

AVk

( ,zl,...,zn_l)
p

when /(x) = x, we get

xZMk(

kel,

Pr
) <00, p>0¢;

(20)

wy (B po el

= {x=(xk)€s(w—x):rlirréohl

X
* Z (”( y k ".‘,Zn_1>
kel,

P
) =0, p>0¢,

w’ (BY, py 1l ol

- {x:(xk)e.;(w—x):rli_{’xgohl

B”xk L
— 2 5%

for some L, p > 0]» ,

Pr
) B 0’

xz(

kel,

wl (B pu ..ol

h,

“
521532y 1
keI

= {xz(xk)es(w—x):rllngoi

Pr
) <00, p>0¢;

(1)

when p, = 1, for all k, we get

wd (M, B ...,

h,

X

Ak

‘( ,zl,...,zn_l)
P

W’ (B ...,

= <|x=(xk)€w(s—x):ranéoi

xZMk<

kel,

):0,p>0},

= <|x=(xk)Ew(s—x):rliﬁnéolzli

Bhix, - L
XZM (H( Nk ,zl,...,zn_l>

kel,

)-o

for some L, p > 0} ,
0 1
we, (M, B |-l

= <|x=(xk)ew(s—x):rli)rréohi

Ziseer 2y
P

xZMk<

kel,

)<oo,p>0}.

(22)



The following inequality will be used throughout the paper. If
0 < py < sup p, = H, k = max(1,2""""), then

|ag + bl < K {|alP+| bl?} (23)

forall kand a;, b, € C. Also |a|P* < max(1, lalt) foralla € C.

2. Main Results

Theorem 1. Let M = (M) be a Musielak-Orlicz function and
= ( pk) a bounded sequence of positive real numbers; the

spaces wo(ﬂ BLp D), w o, B ol .osel), and
woo(./%, B,\,p, Is....-Il) are linear over the field of complex
numbers C.

Proof. Let x = (x;), ¥y = () € w O, B ool sell), and
a, 3 € C. Then there exist positlve real numbers p; and p,

such that
1 Bix P
lim — Mk( ( A k,z,...,z_1> ) =0,
g 2 M\ s

(24)

B Pr
( Ayk,zl,...,znl)‘) =0.

Define p; = max(2|«|p;, 2|5|p,). Since [, .., |l is an #n-norm
on X and M; s are nondecreasing and convex functions so by
using inequality (23) we have

)Pk

o1 B (auxy + Byy)
rlirrgoh—ZMk( (M,zl,...,zn1

P3
Blax
I(Ap—k,zl,...,zn_1>
3
B,”
L
3
Bix
( //\)k,zl,...,znl)
1

1 1
+K lim — —Mk(
r— oohr i 2Pk

TIH%oh_ ZMk<

T kel,

< rlingohiZMk(

;
;
;

(25)

1o 1
<K lim — —Mk<

rﬂooh . 2Pk

=0.

Thus, we have ax + By € wg(%,BK,p,H-,...yH).
Hence wo(/l B, p>lls...5-ll) is a linear space. Similarly,

we can prove that w (/% B, plls....) and wgo(,%,Bﬁ,
D> lI->...,|l) are linear spaces. This completes the proof of the
theorem. O

Theorem 2. Let #4 = (M,) be a Musielak-Orlicz function
and p = (p;) a bounded sequence of positive real numbers;
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the space w, O, B,\,p, I-s....-ll) is a topological linear space

pamnormed by

g(x)

= inf {pp’/M :
fkeI

where M = max(1, sup, p < 00).

)pk>1/M (26)

X
/\ k

() € wia, B,
= 0. Again, if

Proof. Clearly g(x) > 0 for x =
pll...5-l). Since M (0) = 0, we get g(0)
g(x) = 0, then

g (x)

= inf {pp’/M:
fkeI
< 1} =0.

This implies that, for a given € > 0, there exist some p, (0 <
p. < ¢€) such that
1M
B.M Pr
(A—xk,zl,...,zn_l)> <1. (28)
Pe

1
1 Mk(
(hz
1M
( /\xk ,.,Zn1> )pk>

Thus
M (29)
B/ﬂ\xk Pe
3215w er Zpy
Pe

V kel,
<L Z M
" kel,
for each r, and suppose that x; # 0 for each k € N. This
implies that Bfx, # 0 for each k € N. Lete — 0, then

<1
Py UM
(5 ) o0

)Pk >1/M (27)

B Xk
»Z %y
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which is a contradiction. Therefore, By x; = 0 for each k and

Since p's are nonnegative, we have
thus x;, = 0 for each k € N. Let p; > 0 and p, > 0 be such that

glx+y)

= inf { p?/™ . ZMk
YkeI
1/M U
Pr Bxk
) (B
Pr M (31)
) -1 <1

for each r.
< inf { p, "™ . ZMk
7 kel,

(Fxm
(3

X

A Vk

( ,zl,...,zn_1>
/\yk

( ,%mxm)

J)

BM X
X 3215y Zy
Let p = p, + p,; then by using Minkowski’s inequality, we have PL

r)

e 1/M
) + inf P'/M < ZMk
’keI
Pr M
B,”
f) 1[G

1
i, 2 M }
Tkel, <1},
B!‘-
ST
pLtp P
(B2
p1t+ P P2 "
S( P )
Lt P
Bxk
ZMk L2 2y
TkeI
X
52 (
PLt P
Px 1M
( ZMk(( Ayk "’Zn—1>> > < 1. <1},
rkeI

(32)

J)

(33)
Therefore, g(x + y) < g(x) + g(y).
)Pk > 1M Finally, we prove that the scalar multiplication is contin-

uous. Let ¥ be any complex number. By definition,

g (vx)
= inf pP’/M:< ZMk
>Pk>l/M { rkeI
Bi‘
(V Axk,zl,...,zn1>
P

/)

(34)



Then

g (vx)

= inf § (|y| )P/M < > M,
YkeI

Bhx
>< (ll(A_k)ZI"."an>
t
< 1} ,

where t = p/|v]. Since |v|’" < max(1, |v| sup py), we have

M

))

(35)

= max (1, |v| sup p;) inf

% <|(1_‘)Pr/M .

BH
X (ll(’\Txk,zl,...,znl>

g (vx)

Py UM
/) }
(36)

So, the fact that scalar multiplication is continuous follows
from the above inequality. This completes the proof of
theorem. O

Theorem 3. Let # = (M) be a Musielak-Orlicz func-
tion. Ifsupk(Mk(x))P" < o0 for all fixed x > 0, then

WO, BY o) € Wl (A B D
Proof. Let x = (x;) € w q/A B, p ...l Then there
exists some positive number p; such that
Bﬂ - L Pr
lim —ZM (ll(L,zl,...,zn_l) ) =0. (37)
rooh T kel, P1

Define p = 2p,. Since M is nondecreasing and convex and
by using inequality (23), we have
)Pk

“
B/\xk
P 5215 rZp ]

Bix,-L+L
p

rllnéoh_ ) Mk(

T kel,

y

= rll)ngo— ZMk<

r kel,
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L Pr
V215> %oy

(e
P1

.1 1

T kel,

1 1 L P
lim — » M—/( | — 215452,
i S (| )]
BM —-L Pr
lim —ZMk( (L,zl,...,zn_l) )
T—)OO rkeI pl
Pk
+rll>r%o_ZMk<‘( ,Zl,...,zn_l) ) .
rkeI
(38)
Hence x = (x;) € w? oo (A B,\,p, [I-,...,-ll). This completes
the proof of the theorem. O
Theorem 4. Let M = (M,) be a Musielak-Orlicz function and
0 < h = inf py. Then
if and only if
hm — ZMk(t)P" =00, for somet > 0. (40)
’keI
Proof Let w (ﬂ B/\a p’ " > ") C w()(‘% B/\)P) ” deees ”)

Suppose (40) does not hold. Therefore there are a subinterval

I,y of the set of intervals I, and a number rn,, where n, =

(Bixi/ps 215 - - - » 2yl for all k, such that
! M(ng)™* <N <oco, m=123.... (g

hy (),
Let us define x = (x;) as follows:
, kel

B/\ = {pHO r(m) (42)

0, k¢l

Thus by (41) x = (x) € w? /A B ool osl). But x =
(x) ¢ wo(./% BA,p, [Is..., ). Hence (40) must hold.

Conversely, suppose that (40) holds and let x = (x;) €
w (‘% B/\)p) " seees ") rl-hen:

ZMk( ( ,zl,...,zn_1>

TkeI
Suppose that x = (x;) ¢ wg(/%, B py . ..s-ll). Then for
some number ¢, 1 > € > 0, there is a number N, such that,

for a subinterval I, of the set of intervals I,

Bjix;
p

P
) <N <oco. (43)

>¢ for N> N,. (44)
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We have Mk(II(Bf\xk/p,zl,...,zn_l)ll) >  M(e)P*, which
contradicts (40) by using (43). Hence we get

W (MBI ) €Wl (B polls. el (45)

This completes the proof. O
Theorem 5. Let 0 < h = inf p, < sup p, = H < co. For

any Musielak-Orlicz function M = (M) which satisfies A ,-
condition, one has

@) wh (B, pu Il +1) € wf (M By, p 1.5

(i) W’ B, p, Il -1) € WO, By, po -1l
(i) Wl (B, ps 5o € wlo (A, B, pu 11D

Proof. (i) Let x = (x;) € wO(B/\,p, ...,

“
B/\xk
%52
T kel,

" -y
Let € > 0, and choose 6 with 0 < § < 1 such that M, < ¢ for

0 <t < 68. We can write
Z( >Pk

}4
B/\xk
2R3 Zy
fkel
_ 1 Bﬁxk
_h— >Zl""’Zn—l
T kel, P

(Bhxk/ P21 5eeerZy1 IS

1 BH.xk
+h_ Z <H< A ’Zl""’zn—l)
r kel, P

‘). Then, we have

Pr
) — 0 asr — o0o0.

(46)

y
f.

I(BR Xt/ psz1reeisZ1 )16
(47)
For the first summation above, we can write
1 Bﬁxk Pr
T ([C—
r kel, P
1(Blxi/ P21y 1 )18 (48)

< max (8, €h) .

By using continuity of M, for the second summation we can
write
Bjx; (IBrxe/ps 21+ za)l)
525> 2y 1+ .
P 0

(49)

Since each M, is nondecreasing and convex and satisfies A ,-
condition, it follows that
)Pk

[4
—Z <(BAxk,z1,...,zn1>
fkeI
Smax(s,sh)
h 50
+ { VWWW@M%WJHW]}()
max 4 1,
1)
U Pr
(B%@WW%Q).

Taking limit as e — Oandr — oo, it follows that x =

Ly

7 kel,

(xk) € wi(M, By, p|»....-I). Hence wi(Bh, p,II-....-) <
w (/% B,\,p, I,...,Il). Similarly, we can prove (ii) and (iii).
This completes the proof of the theorem. O

Theorem 6. Let # = (M,;) be a Musielak-Orlicz function.
Then the following statements are equivalent:
(1) w (B/\)P) ” ”) Cw (‘% B/\)P) ”)’”))
(i) wy (B, ps s+ -1) € wly (A, B s
(iii) sup,(1/h,) de’ M, (t)P* < oo forallt > 0, where t =
||Bﬁxk/p, Zyseeor Zpo I

Proof. (i) = (ii) Suppose (i) holds. In order to prove (ii) we
have to show that

W’ (B po s sel) cw? (i, B poll. ). (5D)

0
Let x = (x;) € wy(BY, p, ...,
there exists s > s, such that

IM
B\ xj
2 2y
T kel, P

|l). Then for a given & > 0

Pr
) < E&. (52)

)

Hence there exists K > 0 such that

Byx; )
sup »Z e By
hk;(’( p

This shows that x = (x;) € w? oo (A B,\,p, . .oselD.
(ii) = (iii) Suppose (ii) holds and (iii) fails to hold. Then
for somet > 0,

P
) <K. (53)

suphl ZMk(e)pk = 00, (54)

" kel

and, therefore, we can find a subinterval Lm) of the set of
intervals I, such that

1 1 \Px
M —) >m,
hf (m) kel () m

m=1,2,3,.... (55)



Let us define x = (x;) as follows:

P

—, kel

Bix, = {m r(m) (56)
0, k ¢ Ir(m)

Thus x = (x) € wo(B,\,p, [-,...,ll). But by (55), x =
(x) ¢ w? oo (A B, p, I+ .., |)) which contradicts (ii). Hence
(iii) must hold

(iii) = (i) Let (iii) hold. Suppose that x=(x) ¢ wgo(,/%,

Bt‘\a pa ") e |I) Then fOr.x (xk) € w (B/\a Pa " PRI ")
1 Bix P
sup—ZMk< ( A k,zl,...,z,“) > =o00. (57)
r hrkel, P
Lett = IIBﬁxk/p, Zy,...>2,,|l for each k, and then by (57)

sup,(1/h,) Yrer M,(t)P* = oo, which contradicts (iii). Hence
(i) must hold. This completes the proof of the theorem. [

Theorem 7. Let # = (M) be a Musielak-Orlicz function.
Then the following statements are equivalent:
() (ﬂ B/\’p’ "’ ") ng(BK>P> “)s“))

(11) wo(ﬂ B/\3P3 "s ") C ‘LU (B/vP’ "s?");
(iii) inf,(1/h,) Zke[, Mk(t)p" >0 forallt > 0.

Proof. (i) = (ii) is obvious
(ii) = (iii) Let (ii) hold and let (iii) fail to hold. Then

| ”
1rr1fh— ZMk(t)P =0 for somet >0, (58)

T kel,

and we can find a subinterval I,,,, of the set of intervals I,

such that
Y My(m)* < l m=1,2,3,.... (59)
h ( )keI( )
Let us define x = (x;) as follows:
kel
Bix, = {7 riem) 60
A {o, k¢ L. (60)

Thus by (iii), x = (x;) € wo(./% B,\,p, [I...,-). But x =
(x) ¢ wOO(B , D> |l -« o> -Il) which contradict (ii). Hence (iii)

must hold.

(iii) = (i) Let (ili) hold. Suppose that x = (x;) €
wg(%, B, ol .., |l). Therefore,

([ ) )
— sZ15e s Zyog — 0 asr— oo.

fkeI

(61)

Again suppose x = (x;) ¢ wO(BA,p, [Is...,]) for some

number & > 0 and a subinterval I, of the set of intervals

I,, we have
7
B/\xk
2l r 2y
P

>¢e Vk (62)
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Then, from properties of the Orlicz function, we can write

Bx
Mk< ( A k,zl,...,zn_l)
p

Consequently, by (61), we have lim,_,(1/h)} e, My
()P = 0, which contradicts (iii). Hence (i) must hold. This

Pr
) > M (e)*.  (63)

completes the proof of the theorem. O
Theorem 8. (i) If 0 < infpk < pe < 1 for all k, then
W, BY o) € WP, BY, D
(i) If 1 S P < supp. = H < oo, then
WO, BY, Pyl o) € WO (A BY Nl
Proof. (i) Let x € W, B |l ..yl Since 0 < inf p; < 1,
we get
Bix, - L
—Z ( (L,zl,...,z,“) >
”keI P
) (64)
Bix, - L .
(s
fkeI P
and hence x € W’ (., B ool

(i) 1 < pp < suppr, = H < ocoand x = (x;) €

P, B, p, ... |). Then for each 0 < & < 1 there exists a
positive integer s, such that
1 Bix, - L b
h—ZMk< (L,zl,...,znl) >
T kel, P (65)
<e<l Vr>sg.
This implies that
1 Bix, - L b
—ZMk( (L,zl,...,z,“) )
h’ kel, P
(66)
Bix, — L
<_ZMk<|( k_ ,zl,...,zn_l) )
fkeI P
Therefore x = (x;) € W, B |l .., -l). This completes
the proof of the theorem. O
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