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Cooperation and competition are two typical interactional relationships in natural and engineering networked systems. Some
complex behaviors can emerge through local interactions within the networked systems. This paper focuses on the coexistence
of competition and cooperation (i.e., coopetition) at the network level and, simultaneously, the collective dynamics on such
coopetitionnetworks.The coopetitionnetwork is represented by a directed signed graph.The collective dynamics on the coopetition
network is described by a multiagent system. We investigate two bipartite consensus strategies for multiagent systems such that all
the agents converge to a final state characterized by identical modulus but opposite sign. Under a weak connectivity assumption
that the coopetition network has a spanning tree, some sufficient conditions are derived for bipartite consensus of multiagent
systems with the help of a structural balance theory. Finally, simulation results are provided to demonstrate the bipartite consensus
formation.

1. Introduction

Complex systems research is becoming ever more important
in both the natural and social sciences, even though there is
no formal definition of complex systems under a uniforming
framework for science. Complex systems generally involve
with many autonomous components, local interactions,
emergent behaviors, and so on [1, 2]. The interactions or
relationship between components or agents can be diverse,
for example, cooperation or competition.Different behaviors,
such as synchronization or consensus, polarization, and frag-
mentation, can emerge through local interactions between
agents [3, 4].

Till now, there has been a surge of attention paid to
the study of multiagent systems where agents interact coop-
eratively. A typical collective behavior is characterized by
the emergence of a global consensus, in which all agents
reach the same state in the long run [5]. Some pioneering
physical models were proposed to investigate various con-
sensus behaviors, for example, fireflies’ flashing [6], opinion
agreement [7], clapping synchronization [8], phase transition
of self-driven particles [9], and oscillator synchronization
[10]. During the last few years, large numbers of theoretical

results have been obtained for consensus behaviors under the
framework of multiagent systems and complex networks [11–
14]. In the study of consensus, a graph is normally used to
model multiagent systems, with nodes representing agents
and (positive) edges describing their pairwise cooperation. It
has been shown that global consensus can be reached if and
only if directed graphs associated with multiagent systems
have a spanning tree [15–18].

In many real-world scenarios, another type of “consen-
sus” phenomenon has been observed for a long time, where
all agents reach a final state with identical magnitude but
opposite sign.Hereafter, we call such kind of collective behav-
ior bipartite consensus or antisynchronization. For example,
a polarization often happens in a two-coalition community
such that opposite opinions are held by two fractions [19, 20].
Antisynchronization is a noticeable phenomenon in periodic
oscillators, which has been investigated for Lorenz or Chua’s
chaotic systems [21, 22]. In statistics physics field, a classical
model, Ising model, was built to describe the crystal magne-
tization phenomenon, where the agents (electrons) interact
through ferromagnetic or antiferromagnetic interactions and
antisynchronization can be emerged under some critical
condition [23]. In order to study bipartite consensus, the
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interaction networks among agents are generally modeled
by signed graphs with positive/negative edges [24]. Further-
more, the evolution of the collective dynamics is generally
analyzed by using the notion of structural balance [25–27].
Structural balance is an important property in social network
theory, which partitions signed graphs into two subgraphs
such that each subgraph contains only positive edges while
all edges joining different subgraphs are negative [24, 28].

Closely related with this paper is the bipartite consen-
sus formation on coopetition networks, which was initially
discussed in [26]. A sufficient and necessary condition was
presented to ensure that bipartite consensus can be reached
if and only if the signed graphs associated with multiagent
systems are strongly connected and structurally balanced.
Some sufficient conditions have been given in [27] to ensure
that bipartite consensus can be reached for agents over
a directed signed network with a spanning tree. In this
paper, a complete analysis is provided for bipartite consensus
formation for multiagent systems on interaction networks
containing relationships of cooperation and competition,
which are called coopetition networks for convenience and
modeled by a directed signed graph.The coopetition network
is assumed to have a spanning tree, which means that there is
at least one agent, from which the other agents can receive
the information directly or indirectly, in the multiagent
systems. We consider two cases. (i) One is that all agents
exchange their states cooperatively or competitively without
any exogenous influence or hint. (ii)The other is that a visible
or invisible leader exists and influences the remainder. Then
two questions arise. Can the agents realize a bipartite con-
sensus with/without exogenous influence? Is there difference
between the evolutions of multiagent systems under the two
cases? In order to answer the questions, we propose a free
bipartite consensus control and an interventional bipartite
consensus control for multiagent systems and investigate the
bipartite consensus formation under the two strategies.Thus,
the contributions of this paper are devoted to deriving some
sufficient conditions related to structural balance for bipartite
consensus on coopetition networks and demonstrate the
bipartite consensus formation for a complete category of
coopetition networks.

The remainder of this paper is organized as follows. In
Section 2, a bipartite consensus problem is formulated and
coopetitionnetworks aremodeled appropriately. In Section 3,
two bipartite consensus strategies of multiagent systems on
coopetition networks are proposed and the convergence
analysis of the bipartite consensus formation is presented.
Simultaneously, some sufficient conditions are obtained to
describe cases in which bipartite consensus can be achieved.
In Section 4, some simulations are provided to demonstrate
the bipartite consensus formation of multiagent systems
with/without exogenous information. Finally, we draw a
conclusion in Section 5.

2. Problem Formulation

2.1. Coopetition NetworkModeling. Whenwe regard an agent
as a node and the interactions between two agents as directed

edges, it is helpful to use directed signed graphs to describe
coopetition networks. The positive and negative edges in
directed signed graphs represent, respectively, the coopera-
tive and competitive interactions in coopetition networks.

Formally, a directed signed graph is a directed graphG𝑠 =
{V,E, 𝐴}, whereV = {1, . . . , 𝑛} is a set of nodes,E ⊆V×V

is a set of edges, and 𝐴 is an adjacency matrix describing the
edge information of a positive or negative sign. The nonzero
element 𝑎

𝑖𝑗
of 𝐴 is attached to the edge (𝑗, 𝑖) ∈ E, which

is directed from node 𝑗 to node 𝑖. In this way, the node
𝑗 is called the parent node and 𝑖 is the child node, which
means that the information flow starts from agent 𝑗 and
ends at agent 𝑖. The edge set E = E+ ∪ E−, where E+ =
{(𝑗, 𝑖) | 𝑎

𝑖𝑗
> 0} and E− = {(𝑗, 𝑖) | 𝑎

𝑖𝑗
< 0} are the sets

of positive and negative edges, respectively. If all edges are
positive and E− = 0, the graph is simply a directed unsigned
graph or digraphG. A directed path is a sequence of edges of
the form (𝑖

1
, 𝑖
2
), (𝑖
2
, 𝑖
3
), . . . , (𝑖

𝑙−1
, 𝑖
𝑙
) with distinct nodes with

length 𝑙 − 1. A semipath is defined as a sequence of nodes
𝑖
1
, . . . , 𝑖

𝑙
such that either (𝑖

𝜅
, 𝑖
𝜅−1
) or (𝑖
𝜅−1
, 𝑖
𝜅
) belongs to the set

E. A directed (semi)cycle is a directed (semi)path beginning
and ending with the same nodes. A directed graph G𝑠 is said
to be strongly (weakly) connected if there is a directed path
(semipath) between any pair of distinct nodes. A directed
tree is a directed graph, where every node, except the root,
has exactly one parent. A spanning tree of a directed graph
is a directed tree containing directed paths from the root
to all other nodes of the graph. Herein, we give an intuitive
illustration of coopetition networks in Figure 1.

In Figures 1(a) and 1(b), the two networks G𝑠 and G𝑠Tree
are signed graphs, which have positive and negative edges.
The positive and negative edges are denoted by blue solid and
red dash lines, respectively. The graph G𝑠Tree is a spanning
tree of G𝑠 and the node 1 is a root node. The network
G𝑠 has two subnetworks 𝐴 and 𝐵. The edges are positive
within each subnetwork and are negative between the two
subnetworks. In Figure 1(a), the nodes 1, 7, 8, 9, and 2 form
a semicycle. In Figure 1(b), the node 1 has no parent node
and all the other nodes have only one parent node; therefore,
G𝑠Tree is a spanning tree of G

𝑠. A coopetition network having
a spanning tree means that there exists at least one root agent
who may not be influenced by any other agents, and at the
same time, the remaining nodes are influenced directly or
indirectly by the root agent.

A (semi)cycle in coopetition networks generally contains
cooperative and competitive interactions. If the product of
the weights 𝑎

𝑖𝑗
in the (semi)cycle is positive, then we say

that the (semi)cycle is positive, and negative, otherwise.
Obviously, the semicycle 1 → 7 → 8 → 9 → 2 →

1 is positive since there are two negative edges 1 ↔ 7

and 2 → 9 in G𝑠 in Figure 1(a). A coopetition network
G𝑠 is said structurally balanced if all of its semicycles are
positive [24], and G𝑠 is said structurally unbalanced if one of
its semicycles is negative. It is noticed that the existence of
semicycles is a necessary condition of structural balance. If a
network G𝑠 has no semicycles, it is said vacuously balanced
[28]. A coopetition network is said to be homogeneous if
all the interactions are cooperative or if all the interactions
are competitive, and heterogeneous otherwise. Additionally,
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Figure 1: Coopetition networks.

homogeneous coopetition networks have two classes: all-
positive networks (i.e., all of the edges are positive) and all-
negative networks (i.e., all of the edges are negative).

Notice that there is a common phenomenon that a
structurally balanced coopetition network generally consists
of two subnetworks. The interactions are cooperative within
each subnetwork, but competitive between the two subnet-
works. Additionally, a coopetition network is called bipartite
network if it can be partitioned into two subnetworks such
that all interactions only exist between the different subnet-
works. Obviously, in a bipartite coopetition network, agents
have no relationship even though they are belonging to the
same subnetwork. The two subnetworks may cooperate or
compete.

2.2. Bipartite Consensus Problem. Consider that a group of
agents, labeled by 1, . . . , 𝑛, interact cooperatively or compet-
itively on a network described by a signed graph G𝑠. The
dynamics of agent 𝑖 is expressed by a first-order integrator

�̇�
𝑖
(𝑡) = 𝑢

𝑖
, (1)

where 𝑥
𝑖
(𝑡) ∈ R is the state and 𝑢

𝑖
(𝑡) ∈ R is the control

strategy of agent 𝑖.
In the bipartite consensus problem under investigation,

we restrict our attention to analyzing how the structurally
balanced condition plays a key role in the bipartite consen-
sus formation. More specifically, structural conditions are
explored for a complete category of coopetition networks
such that all agents reach bipartite consensus; that is,

lim
𝑡→∞






𝑥
𝑖
(𝑡)






= c > 0, (2)

for all 𝑖 = 1, . . . , 𝑛. The consensus state c generally
depends on the initial state of the multiagent system (1).
For convenience, the bipartite consensus without exogenous
influence is called free bipartite consensus. Specifically, if the
interaction networkG𝑠 associatedwith themultiagent system
(1) is structurally balanced or bipartite,G𝑠 can be divided into
two subnetworkswith node setsV

1
= {1, . . . , 𝑚} (1 ≤ 𝑚 < 𝑛)

and V
2
= {𝑚 + 1, . . . , 𝑛}, respectively, and then the free

bipartite consensus means that, for each agent belonging to
subgroupV

1
orV
2
,

lim
𝑡→∞

𝑥
𝑖
(𝑡) = c, (3)

for 𝑖 ∈V
1
, while

lim
𝑡→∞

𝑥
𝑖
(𝑡) = −c, (4)

for 𝑖 ∈V
2
. Additionally, if the consensus state is given by

c = 1
𝑛







𝜔

𝑇

𝑥 (0)







(5)

for some constant weight vector 𝜔, then we say that all the
agents reach an average bipartite consensus. Furthermore, if
the final consensus state c can be steered according to some
given policy or exogenous information, a virtual leader has to
be introduced to coordinate two parts of agents as an interces-
sor. Thus, the consensus state c is completely determined by
the virtual leader, which is called an interventional bipartite
consensus. Additionally, the interaction network involving
the virtual leader is described by another coopetition network
G
𝑠

= {V,E}withV =V∪{0} andE ⊆V×V. Assume that
the dynamics of the virtual leader is described by a first-order
exogenous system as follows:

�̇�
0
(𝑡) = 𝑢

0
(𝑡) , (6)

where 𝑥
0
(𝑡) ∈ R and 𝑢

0
(𝑡) ∈ R denote the state and

the input of the exogenous system. The input 𝑢
0
(𝑡) of the

exogenous system (6) is a common policy and is assumed
to be known by all the agents. Then the interventional
bipartite consensus problem is mainly devoted to designing
appropriate coordination strategies for the coopetition agents
such that both the two competitive parts can reach the state
of the virtual leader; that is, for the agents belonging to the
partsV

1
andV

2
,
lim
𝑡→∞

[𝑥
𝑖
(𝑡) − 𝑥

0
(𝑡)] = 0, (7)

for 𝑖 ∈V
1
, while

lim
𝑡→∞

[𝑥
𝑖
(𝑡) + 𝑥

0
(𝑡)] = 0, (8)

for 𝑖 ∈V
2
.

In the next section, two bipartite consensus strategies
are designed for each agent on the coopetition network G𝑠

to realize the free bipartite consensus or the interventional
bipartite consensus. Then, the collective dynamics with
the proposed bipartite consensus strategy will be analyzed
for homogeneous and heterogeneous coopetition networks,
respectively.
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3. Main Results

3.1. Free Bipartite Consensus. In order to realize the free
bipartite consensus, a coordination strategy is firstly pro-
posed for the two groups of the coopetition agents. Suppose
the coopetition network G𝑠 is divided into two subnetworks
G𝑠
1
andG𝑠

2
, which have two vertex setsV

1
= {1, . . . , 𝑚} (1 ≤

𝑚 < 𝑛) and V
2
= {𝑚 + 1, . . . , 𝑛}, respectively. Then, the

coordination strategy is proposed for agent 𝑖 in the subnet-
workG𝑠

1
,

𝑢
𝑖
(𝑡) = ∑

𝑗∈N1
𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)] + ∑

𝑗∈N2
𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡) + 𝑥

𝑖
(𝑡)] ,

(9a)

while for the opponents in the subnetworkG𝑠
2
,

𝑢
𝑖
(𝑡) = ∑

𝑗∈N2
𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡)] + ∑

𝑗∈N1
𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡) + 𝑥

𝑖
(𝑡)] ,

(9b)

where N1
𝑖
and N2

𝑖
denote, respectively, the neighbor set

belonging to the two subnetworksG𝑠
1
andG𝑠

2
for agent 𝑖; that

is,N1
𝑖
= {𝑗 ∈V

1
| 𝑎
𝑖𝑗
̸= 0},N2

𝑖
= {𝑗 ∈V

2
| 𝑎
𝑖𝑗
̸= 0}.

The control (9a)-(9b) can be simplified as

𝑢
𝑖
(𝑡) = ∑

𝑗∈N1
𝑖
⋃N2
𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡) − sgn (𝑎

𝑖𝑗
) 𝑥
𝑖
(𝑡)] . (10)

Applying the strategy (10) to the agent dynamics (1) leads to

�̇�
𝑖
(𝑡) = ∑

𝑗∈N1
𝑖
⋃N2
𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡) − sgn (𝑎

𝑖𝑗
) 𝑥
𝑖
(𝑡)] , (11)

which can be written in a matrix form

�̇� (𝑡) = −𝐿

𝑠

𝑥 (𝑡) , (12)

where 𝑥(𝑡) = col(𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)) ∈ R𝑛. The state matrix 𝐿𝑠 ∈

R𝑛×𝑛 is called a signed Laplacian matrix of a directed signed
graphG𝑠 and is defined as

𝐿

𝑠

= 𝐶
𝑟
− 𝐴, (13)

where 𝐴 is the adjacency matrix and 𝐶
𝑟
is a diagonal matrix

with diagonal elements

𝑐
𝑟,𝑖𝑗
=

{

{

{

∑

𝑗∈N
𝑖







𝑎
𝑖𝑗







, 𝑖 = 𝑗,

0, 𝑖 ̸= 𝑗.

(14)

It is remarkably noted that the adjacency matrix𝐴 is nomore
a nonnegative matrix and the signed Laplacian matrix 𝐿𝑠
generally is not a symmetric matrix as well. Particularly, if the
coopetition network G𝑠 is all-negative, the signed Laplacian
matrix 𝐿𝑠 is called a signless matrix and denoted by 𝐿−.
The signed Laplacian matrix has some distinct differences
in the spectral properties compared with a Laplacian matrix
associated with a directed graph. For example, the all-ones
vector 1 = col(1, . . . , 1) generally is not a zero-eigenvector
of the signed Laplacian matrix. Specifically speaking, the
spectral property of the signed Laplacian matrix is described
by Lemma 1.

Lemma 1. If one of the following two assumptions holds, (i) a
homogeneous coopetition network is bipartite and has a span-
ning tree; (ii) a heterogeneous coopetition network G𝑠 has a
spanning tree and is structurally balanced, then all eigenvalues
of the signed Laplacian matrix 𝐿𝑠 have nonnegative real-parts
and 0 is a simple eigenvalue.

Proof. If the coopetition networkG𝑠 is homogeneous and all-
positive, the signed Laplacian matrix returns to a Laplacian
matrix. It is well known that all the eigenvalues of a Laplacian
matrix have nonnegative real-parts and 0 is a simple eigen-
value if the associated digraph has a spanning tree.

If G𝑠 is all-negative and is bipartite, no matter whether
it is structurally balanced or vacuously balanced, then all the
nodes in G− can be partitioned into two subsetsV

1
andV

2

such that

V =V
1
⋃V
2
, V

1
⋂V
2
= ⌀,

𝑎
𝑖𝑗
= 0, ∀𝑖, 𝑗 ∈V

𝑞
(𝑞 = 1, 2) ,

𝑎
𝑖𝑗
≤ 0, ∀𝑖 ∈V

𝑞
, 𝑗 ∈V

𝑟
, 𝑞 ̸= 𝑟.

(15)

Define a diagonal matrix

Φ = diag {𝜙
1
, . . . , 𝜙

𝑛
} ∈ R
𝑛×𝑛

, (16)

where 𝜙
𝑖
= 1 when node 𝑖 belongs to V

1
and 𝜙

𝑖
= −1 when

node 𝑖 belongs to V
2
and diag{⋅} denotes a diagonal matrix

by placing a vector along the diagonal direction. Obviously,
the inverse matrix ofΦ is itself; that is,

Φ

2

= 𝐼. (17)

The adjacency matrix 𝐴 of the all-negative signed graph 𝐺−
can be rearranged in the following form:

𝐴 = (

0 𝐴
12

𝐴
21

0

) , (18)

where 𝐴
12
and 𝐴

21
are nonpositive submatrices. Multiplying

by Φ on the left and right sides of 𝐴 yields

Φ𝐴Φ = (

0 −𝐴
12

−𝐴
21

0

) , (19)

which becomes a nonnegative adjacencymatrix.Then, for the
signless Laplacian matrix, one has

Φ𝐿

−

Φ = 𝐶
𝑟
− Φ𝐴Φ, (20)

which is a Laplacian matrix associated with a directed
graph G. When G has a spanning tree, Φ𝐿−Φ has a simple
eigenvalue 0. Since 𝐿− is similar to Φ𝐿−Φ, the conclusion
follows.

If the coopetition networkG𝑠 is heterogeneous, although
G𝑠 is structurally balanced, it can be partitioned into two
subgraphs with node sets V

𝑖
(𝑖 = 1, 2), and then the

adjacency matrix 𝐴 can be rewritten in a block form as

𝐴 = (

𝐴
11
𝐴
12

𝐴
21
𝐴
22

) , (21)
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where 𝐴
𝑖𝑖
(𝑖 = 1, 2) are nonnegative submatrices associated

with edges within the two subgraphs while 𝐴
𝑖𝑗
(𝑖 ̸= 𝑗) are

nonpositive submatrices associated with edges between the
two subgraphs. Given a transformation matrix Φ defined in
(16), it is not difficult to show that

Φ𝐿

𝑠

Φ = 𝐶
𝑟
− Φ𝐴Φ (22)

is a Laplacian matrix of G. Thus, the conclusion follows as
well.

With the help of Lemma 1, one has the following main
result.

Theorem 2. If the interaction network G𝑠 satisfies one of the
following two assumptions: (i) G𝑠 is homogeneous, bipartite
and has a spanning tree; (ii) G𝑠 is heterogeneous, structurally
balanced and has a spanning tree, then all the agents reach the
free bipartite consensus. Furthermore, ifG𝑠 is weight balanced,
then an average bipartite consensus will be achieved.

Proof. If the interaction network G𝑠 is bipartite or struc-
turally balanced, then there exists a transformation matrixΦ
defined by (16). For the system (12), define 𝑥(𝑡) = Φ𝑥(𝑡). One
has

̇
�̃� (𝑡) = −𝐿

Φ
𝑥 (𝑡) , (23)

where

𝐿
Φ
= Φ𝐿

𝑠

Φ (24)

is called a transformed signed Laplacian matrix. According
to Lemma 1, the transformed signed Laplacian matrix 𝐿

Φ
is

a Laplacian matrix and 0 is its simple eigenvalue; moreover,
the vector 1 = col(1, . . . , 1) is the corresponding right
eigenvector. Let 𝛼

Φ
be a left eigenvector of the eigenvalue 0

and satisfy 𝛼𝑇
Φ
1 = 1. We can always find a nonsingular matrix

𝑈 such that

𝑈

−1

𝐿
Φ
𝑈 = 𝐽

Φ
, (25)

where 𝐽
Φ
is the Jordan matrix associated with 𝐿

Φ
. Further-

more, one has

lim
𝑡→∞

𝑒

−𝐿
Φ
𝑡

= lim
𝑡→∞

𝑈𝑒

−𝐽
Φ
𝑡

𝑈

−1

= 𝑄
Φ
= 1𝛼𝑇
Φ
, (26)

where 𝑄
Φ
has only one nonzero element satisfying 𝑞

Φ,11
= 1.

Then we obtain that

lim
𝑡→∞

𝑥 (𝑡) = 𝛼

𝑇

Φ
𝑥 (0) 1 (27)

or

lim
𝑡→∞

𝑥 (𝑡) = 𝛼

𝑇

Φ
Φ𝑥 (0)Φ1. (28)

Therefore, the two competitive groups of agents reach the free
bipartite consensus; that is,

𝑥
𝑖
(𝑡) → 𝛼

𝑇

Φ
Φ𝑥 (0) (29)

for 𝑖 ∈V
1
, while

𝑥
𝑖
(𝑡) → −𝛼

𝑇

Φ
Φ𝑥 (0) (30)

for 𝑖 ∈V
2
.

Furthermore, if the coopetition networkG𝑠 is also weight
balanced, then the left eigenvector of 𝐿

Φ
is

𝛼
Φ
=

1

𝑛

1 (31)

and all the agents will reach an average bipartite consensus;
that is,

lim
𝑡→∞

𝑥 (𝑡) =

1

𝑛

1𝑇Φ𝑥 (0)Φ1. (32)

Thus, the conclusions of the theorem follow.

Remark 3. When a coopetition network G𝑠 is homogeneous
and all-positive, that is, all agents interact cooperatively, then
all agents will reach consensus; that is, 𝑥

𝑖
(𝑡) → c as 𝑡 → ∞,

under the assumption that the network has a spanning tree
[15].

Remark 4 (in [29]). A master stability function method was
proposed to analyze the synchronization stability for a group
of identical oscillators.Themethod firstly supposed that there
exists a synchronization state for the coupled system and
then got a series of decoupled variation equations for the
coupled system through linearization at the synchronization
state and calculated the maximal Lyapunov exponent to
determine whether the synchronization state is stable with
the coupling strength. In this paper, we essentially consider a
partial synchronization problem for two groups of agents on
coopetition networks.The equilibrium of the coupled system
cannot be known beforehand and its stability mainly relies
on the spectral analysis (i.e., determining the properties of
the eigenvalues and the associated eigenvectors) of the signed
Laplacian matrices of coopetition networks.

3.2. Interventional Bipartite Consensus. In Section 3.1, when
all the agents on the coopetition networkG𝑠 can reach the free
bipartite consensus, the moduli of their final states converge
to a value c, which depends on the initial states of all the
agents. However, in many cases, the final state c has to be
decided by an exogenous policy. Thus, in order to realize
the interventional bipartite consensus, we assume that the
interaction network can be divided into two subnetworksG𝑠

1

andG𝑠
2
and propose a new coordination strategy as follows:

𝑢
𝑖
(𝑡) = ∑

𝑗∈N1
𝑖
⋃N2
𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡) − sgn (𝑎

𝑖𝑗
) 𝑥
𝑖
(𝑡)]

+ 𝑏
𝑖
[𝑥
0
(𝑡) − 𝑥

𝑖
(𝑡)] + 𝑢

0
(𝑡) ,

(33a)

for 𝑖 ∈V
1
, and

𝑢
𝑖
(𝑡) = ∑

𝑗∈N1
𝑖
⋃N2
𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡) − sgn (𝑎

𝑖𝑗
) 𝑥
𝑖
(𝑡)]

+ 𝑏
𝑖
[−𝑥
0
(𝑡) − 𝑥

𝑖
(𝑡)] − 𝑢

0
(𝑡) ,

(33b)
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for 𝑖 ∈ V
2
. The weights 𝑏

𝑖
’s describe the interaction

relationships between the agents 𝑖 = 1, . . . , 𝑛 and the virtual
leader; that is, 𝑏

𝑖
> 0 if and only if there exists an information

flow starting from the leader to the agent 𝑖.
The leader intervention strategy (33a)-(33b) can be fur-

ther reduced to

𝑢
𝑖
(𝑡) = ∑

𝑗∈⋃N2
𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝑡) − sgn (𝑎

𝑖𝑗
) 𝑥
𝑖
(𝑡)]

+ 𝑏
𝑖
[sgn (𝜙

𝑖
) 𝑥
0
(𝑡) − 𝑥

𝑖
(𝑡)]

+ sgn (𝜙
𝑖
) 𝑢
0
(𝑡) ,

(34)

where 𝜙
𝑖
’s are the diagonal elements of the matrix defined by

(16).
The agent dynamics (1) is exerted by the leader inter-

vention strategy (34) and transformed to a compact form as
follows:

�̇� (𝑡) = − (𝐿

𝑠

+ 𝐵) 𝑥 (𝑡) + 𝐵Φ1𝑥
0
(𝑡) + Φ1𝑢

0
(𝑡) , (35)

where 𝐵 = diag{𝑏
1
, . . . , 𝑏

𝑛
} is a diagonal matrix.

Lemma 5. If the coopetition network G𝑠 satisfies one of
the following two assumptions: (i) G𝑠 is homogeneous and
bipartite; (ii) G𝑠 is heterogeneous and structurally balanced,
furthermore, the leader is a root node of the coopetition network
G
𝑠

, then the matrix𝐻𝑠 = 𝐿𝑠 + 𝐵 is positive stable (i.e., −𝐻𝑠 is
a stable matrix).

Proof. If the coopetition network G𝑠 satisfies one of the two
assumptions mentioned above, there exists a diagonal matrix
Φ defined by (16), which has the property that Φ2 = 𝐼. As
has been shown in Lemma 1,Φ𝐿𝑠Φ is a Laplacian matrix of a
digraphG. Additionally, since the matrix 𝐵 is also a diagonal
matrix, one has Φ𝐵Φ = 𝐵. Thus, Φ𝐻𝑠Φ = Φ𝐿

𝑠

Φ + 𝐵.
According to Lemma 4 described in [17], we know that the
matrix Φ𝐻𝑠Φ is positive stable if the leader is a root node of
the coopetition networkG

𝑠

.Thus the conclusion follows.

Now a main result is presented for the interventional
bipartite consensus problem.

Theorem 6. If the coopetition network G𝑠 satisfies one of
the following two assumptions: (i) G𝑠 is homogeneous and
bipartite; (ii) G𝑠 is heterogeneous and structurally balanced,
furthermore, the leader is a root node of the coopetition network
G
𝑠

, then all the agents reach the interventional bipartite
consensus.

Proof. If the interaction network G𝑠 is bipartite or struc-
turally balanced, there exists a transformation matrix Φ =

diag{𝜙
1
, . . . , 𝜙

𝑛
}. For the system (35), define 𝑥(𝑡) = Φ𝑥(𝑡).

One has
̇
�̃� (𝑡) = −Φ𝐻

𝑠

Φ𝑥 (𝑡) + Φ𝐵Φ1𝑥
0
(𝑡) + Φ

21𝑢
0
(𝑡)

= −Φ𝐻

𝑠

Φ𝑥 (𝑡) + 𝐵1𝑥
0
(𝑡) + 1𝑢

0
(𝑡) ,

(36)

due to the fact that Φ2 = 𝐼.

Let 𝑥(𝑡) = 𝑥(𝑡) − 1𝑥
0
(𝑡) and𝐻 = Φ𝐻

𝑠

Φ. Then one has

̇
𝑥 (𝑡) = −𝐻𝑥 (𝑡) − 𝐻1𝑥

0
(𝑡) + 𝐵1𝑥

0
(𝑡) . (37)

SinceΦ𝐿𝑠Φ1 = 0 according to Lemma 5; therefore,𝐻1 = 𝐵1.
Thus, one has

̇
𝑥 (𝑡) = −𝐻𝑥 (𝑡) . (38)

From Lemma 5, 𝐻 = Φ𝐻

𝑠

Φ is positive stable; therefore,
the system (38) is asymptotically stable; that is, lim

𝑡→∞
𝑥(𝑡) =

0. Then, it is easy to obtain that, as 𝑡 → ∞,Φ𝑥(𝑡) − 𝑥
0
(𝑡) →

0, which is equivalent to the following two equations:

𝑥
𝑖
(𝑡) − 𝑥

0
(𝑡) → 0, (39)

for 𝑖 ∈V
1
, and

𝑥
𝑖
(𝑡) + 𝑥

0
(𝑡) → 0, (40)

for 𝑖 ∈ V
2
. Consequently, all the agents reach the interven-

tional bipartite consensus. The proof is completed.

Corollary 7. If all agents interact cooperatively and the coope-
tition network G

𝑠

is homogeneous and all-positive, then all
agents will realize a consensus tracking; that is, 𝑥

𝑖
(𝑡)−𝑥

0
(𝑡) →

0 as 𝑡 → ∞, under the assumption that the virtual leader is a
root node ofG

𝑠

.

4. Simulation Results

In this section, we provide some simulations to demonstrate
the bipartite consensus of the multiagent system (1) with the
free bipartite consensus control (10) and the interventional
bipartite consensus control (34), respectively.The coopetition
network G𝑠 is heterogeneous in Examples 8 and 10 and
homogeneous in Example 9. As mentioned in Remark 3 and
Corollary 7, when the interaction network is all-positive,
bipartite consensus cannot be reached for agents and thus
themultiagent system (1) on such cooperative networks is not
considered in this section.

Example 8. Consider that a group of agents interact on the
coopetition network G𝑠, as illustrated in Figure 1(a). It has
been known that G𝑠 is structurally balanced and can be
divided into two competitive subgroupsV

1
= {1, 2, 3, 4, 5, 6}

and V
2
= {7, 8, 9, 10, 11}. The coopetition network G𝑠 has

a spanning tree, where the agent 1 is a root node of the
coopetition network. Suppose that the initial collective state
is given by 𝑥(0) = col(1, −3, 5, 2, −1, 4, −2, −1, 3, 1, −1) and
the matrix 𝐴 is a normal adjacency matrix of the coopetition
networkG𝑠; that is, 𝑎

𝑖𝑗
= 0, 1 or −1. It is not difficult to know

that the eigenvalues of the signed Laplacian matrix 𝐿𝑠 are,
respectively, 1, 3, 2, 1, 2, 1, 1, 2.618, 2, 0.382, 0 and 0 is a simple
eigenvalue, which validates Lemma 1.

The states of the two competitive subgroups evolve on the
coopetition network G𝑠, which is illustrated in Figure 2. In
Figure 2, the solid and dash edges, respectively, denote the
state evolutions of the agents belonging toV

1
andV

2
. Since

the coopetition network G𝑠 satisfies the sufficient conditions
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Figure 2: State evolution of agents on the structurally balanced
coopetition networkG𝑠.
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Figure 3: An all-negative bipartite networkG
𝑠

.

assumed in Theorem 2, thus the two competitive subgroups
finally reach a free bipartite consensus. In fact, the final
consensus state is given by c = 1.5.

Example 9. In this example, we consider a homogenous
coopetition network G𝑠, which has all-negative edges and
is illustrated in Figure 3. The coopetition network G𝑠 is a
bipartite network as well. The node 1 is still a root node of
the spanning tree in G𝑠. In order to investigate the collective
dynamics onG𝑠, the initial collective state is taken by 𝑥(0) =
col(1, −3, 5, 2, −1, 4, −2, −1, 3, 1, −1).

From Figure 4, it can be found that all agents in the two
competitive subnetworks𝐴 and 𝐵 approach two final states 1
and −1, respectively. Thus, the free bipartite consensus is still
reached for the multiagent system with the control (10), even
though the coopetition network is not structurally balanced.

Example 10. In order to coordinate two competitive sub-
groups, an effective method is to introduce one mediator,
which is called a virtual leader in this paper. An inter-
action relationship for two competitive subgroups and a
virtual leader is shown in Figure 5. Obviously, the coopeti-
tion network G𝑠, which only involves the two competitive
subnetworks, is a subgraph of the leader-involved coope-
tition network G

𝑠

. It is noted that the leader, labelled
by 0, is the root node of the coopetition network. The
eigenvalues of the matrix 𝐻𝑠 = 𝐿

𝑠

+ 𝐵 are, respectively,
1, 0.1981, 0.382, 1.555, 3.247, 2.618, 1, 3, 1, 1, 1, which agrees
with Lemma 5.
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Figure 4: State evolution of agents on the bipartite coopetition
networkG𝑠.
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Figure 5: A leader-involved coopetition networkG
𝑠

.

Suppose that the initial states of the two competitive
subgroups are identical as those in Example 8.The input 𝑢

0
(𝑡)

of the exogenous system is described by 𝑢
0
(𝑡) = 0.05 sin(𝑡)

and the initial state is given by 𝑥
0
(0) = 0. Then the

state evolutions of the agents belonging to two competitive
subnetworks 𝐴 and 𝐵 are illustrated in Figure 6. It is found
that the agents belonging to subnetwork 𝐴 are approaching
the state 𝑥

0
(𝑡) of the virtual leader while the opponents are

close to the reverse state−𝑥
0
(𝑡). Figure 6 shows that the leader

can intervene in the two competitive subgroups effectively
and thus guarantee the two subgroups to reach bipartite
consensus with respect to the state of the leader.

5. Conclusion

In this paper, a bipartite consensus problem was formulated
for a group of agents on coopetition networks. A free bipartite
consensus control and an interventional bipartite consensus
control were, respectively, proposed to ensure the realization
of bipartite consensus of multiagent systems with/without
exogenous influence. Under a weak connectivity assumption
that the coopetition network associated with the multiagent
system has a spanning tree, some sufficient conditions were
obtained to describe cases in which the free bipartite consen-
sus or the interventional bipartite consensus can be achieved.
The main results showed that bipartite consensus can be
achieved for bipartite networks or structurally balanced
networks. Some simulations were provided to demonstrate
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Figure 6: State evolution of agents on the structurally balanced
coopetition networkG𝑠.

the bipartite consensus formation of multiagent systems on
coopetition networks.

The results in this paper elaborate the modeling and
analysis for collective dynamics over coopetition networks,
which widely exist in many fields, such as opinion formation
in social systems, coopetitive games in economic systems,
predator-prey scenarios for animals, and antisynchronization
phenomenon in chemistry and physics. Future work will
focus on the case of coexisting competition/cooperation
between a pair of agents and the modeling of a more general
coopetition network. Some notations from overlay networks
and differential game theorymay provide a potential solution
when a complex coopetition network can be divided into two
layers of virtual signed networks and the agents are friends
and opponents at the same time.
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