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We introduce an analog of Fourier transform &7, in interior of light cone that commutes with the action of the Lorentz group. We
describe some properties of %}, namely, its action on pseudoradial functions and functions being products of pseudoradial function
and space hyperbolic harmonics. We prove that %/ -transform gives a one-to-one correspondence on each of the irreducible
components of quasiregular representation. We calculate the inverse transform too.

1. Introduction

One of the most valuable integral transforms used in many-
dimensional analysis is the classical Fourier transform. It
is caused by the fact that this transform has a very simple
transformation law at tensions and commutes with action of
Lie group SO(n) in R". As a consequence of these proper-
ties, the L*(R") decomposes in a direct sum of irreducible
subspaces that are invariant under rotations (e.g., [1, chapter
4] and [2, chapter 9]). This decomposition is an analog
of decomposition L*(R) in a direct integral of irreducible
representations:

[e¢]
L’ (R) = J C-e™dE, )
—00
which act in one-dimensional subspaces invariant under
translations. There exists a general theorem that guarantees
the existence of a direct integral decomposition into irre-
ducible subrepresentations: it suffices that the topological

group have a countable dense subset.

The goal of this paper is to introduce an analog of Fourier
transform & Z in the interior of the light cone on which Lie
group G = SO, (n—1, 1) acts. Suppose LL,C(SH(R)) isaspace of
locally integrable functions on pseudosphere Sy;(R) of radius
R, so this space allows a direct integral decomposition into
irreducible subspaces invariant under action of Lie group G
that is similar to decompositions of L*(R™ and L*(R) in
classical case. Actually, this decomposition was obtained by
Gel'fand et al. in [3] in the sixties of the last century.

Our analog of Fourier transform is an intertwining oper-
ator of quasiregular representation of Lie group G, so it maps
each of the irreducible components of decomposition in itself.
Following Stein and Weiss in Euclidean space [1], we describe
action of 97Z on pseudoradial functions and functions that
represent a product of pseudoradial function and space
hyperbolic harmonics. The obtained formulas allow us to
write the inverse transform (% i)_l with ease. These results
may be applicable to constructing an equivariant extension
of wave operator in interior of the light cone. For Laplace
operator it was completed in [4].

2. Spherical Harmonics and Classical
Funk-Hecke Theorem

Let R"™ be the space of homogeneous harmonic polynomials
of degree I in n variables. If f(x) belongs to R™ then
its restriction to sphere $"' is called the surface spherical
harmonics of degree ! and is denoted by f(£), & € S"'. The
relation between f(x) and f(&) follows from homogeneity
condition:

fE=f0-9=rf@&, r=lx. @
Surface spherical harmonics of degree I form a linear space
over C too, and we denote it by ™. It is quite evident that, for
anyl =0,1,2,...,theinclusion F™ ¢ 12(S"Y)is valid. Butin
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the same space acts the so-called quasiregular representation
of Lie group SO(n), defined by the next equality:

[T(9) 1) =f(37%), e gesom. ()

This representation is unitary with respect to the standard

inner product in L*(S"™"). The next theorem is widely known
(see, e.g., [2,5, 6]).

Theorem 1. (a) The next decomposition is valid L*S™Y) =
@2 R (decomposition of Hilbert space into orthogonal
direct sum).

(b) The subspaces R™ consisting of the space harmonics of
degree | are invariant under Fourier transform .

(c) Each of the subspaces R™ is invariant with respect to
the quasiregular representation T of Lie group SO(n) and is iso-
morphic to the irreducible representation T, , ) with a highest
weight (1,0,...,0).

(d) The quasiregular representation of SO(n) in L*(S™h
has a simple spectrum.

(e) The space F™ has a dimension (n + 1 — 3)!(n + 21 -
2)/1l(n—2)! and an orthogonal basis consisting of the next sur-
face spherical harmonics SIK(G):

w

n—
1 _ n/2—j/2—1+mj+1
SK (6) - ( | Ocmj—mj*,1 (COS en—j—l)
j=
(4)
X sin™! (Gn_ j—l) )
x eiimn,zel)

where 0,,0,,...,0,_, are Euler angles on sphere S*™'; 1 = my;
and K is multi-index K = (my,...,m,_s;+tm,_,) such that
mMy>m; >---2m, 3 >m, ,>0,m €7

The known Funk-Hecke theorem states that for integral
operators whose kernels depend only on the distance p (in
spherical geometry) between points & and # where &, €
§"~! every surface spherical harmonics is an eigenvector. We
give a contemporary formulation of the Funk-Hecke theorem
following the monograph [7] of Erdélyi.

Theorem 2 (Funk, Hecke). Let F(x) be a function of a real
variable x which is absolutely Lebesgue integrable on [-1,1]
together with its square. Then, for any unit vector 1,

|, FlEmsc®ds =280, ©
where

Ay = i'2m)"? J s () f (B,

c ©)
fm:—jewﬂww.
-1

27

The simple consequences of the Funk-Hecke theorem are
the following two propositions.
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Proposition 3 (see [1, chapter IV, Theorems 3.3, 3.10]). (a)
Let function f(x) be a product of radial function and space
spherical harmonics of degree I:

F ) = fo (D) Sk (%), )

where f,(r) is such that f(x) € LY(R™ n L*(R™). Then its
Fourier transform has a form:

[F f] (x) = F (Ix]) Sg (x), (8)
where
27
F (r) = W
9)

+00
1
x J-O fO (S) S +n/2](n+21_2)/2 (27TTS) ds.

(b) In particular, Fourier transform for radial function f(x) =
fo(lx|) is also radial:

(7 f](x) = Fy (Ix]) (10)

(one sets | = 0 in the above formula).

As Proposition 3 implies, the infinite-dimensional sub-
spaces

%, = span { f (|x]) S (1)}, (1)

where f(r) runs over the set of radial functions satisfying
conditions of Proposition 3 and SlK(x) runs over the set of
space spherical harmonics of degree [, are invariant under
Fourier transform in L*(R").

On the other hand, if we fix the function f(|x|) we
get a subspace in %, which is invariant with respect to
quasiregular representation of group SO(n) in L*(R"). It can
be easily verified that it is isomorphic to the irreducible
representation T;, , with a highest weight (,0,...,0).
Since spaces of irreducible nonisomorphic unitary represen-
tations of compact group are mutually orthogonal (H. Weyl’s
theorem), we have one more important consequence of the
classical Funk-Hecke theorem.

Corollary 4. The next decomposition into orthogonal direct
sum is valid:

o0

L’ (R") =P 7. (12)

=0

We will try to extend the classical theorem of Funk and
Hecke and its corollaries on the hyperbolic space R""! with
indefinite inner product.

3. Hyperbolic Harmonics and Generalized
Funk-Hecke Theorem

Let R"™"! be the pseudo-Euclidean space with the indefinite
inner product

[x’ )/] =X T T X Ve T XY (13)
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This inner product may be used for definition of a distance
r(x, y) between two points x, y € R" "' that do not belong
to the light cone [z, z] = 0. We assume, for such two points,

coshr(x,y) = L (14)

[x,x] : [y>y]

Such distance may take either real nonnegative or pure
imaginary values. However, if we restrict ourselves by the
interior U of the light cone’s upper sheet

U={xeR""|[xx]>0, x,>0}, (15)

then, for all x, y € U, we have r(x, y) > 0.

Let us call the set of all points x of U, for which [x, x] = R?
holds, pseudosphere of radius R. We will use the designation
Sy (R) for pseudosphere of radius R and Sy; for pseudosphere
of radius 1 in R™ !, Recall that S;; is a manifold of a
constant negative curvature in R""" on the one hand and
a homogeneous symmetric space with respect to the action
of Lie group G = SO,(n — 1, 1) on the other hand, because

Sp=8SO,(n-1,1)/SO(n—-1). (16)

It follows from here that S;; possesses the unique up to
constant multiplier left-invariant with respect to G measure

dé&:

d€ = sinh"?0,_;sin"0,_, ... sin6,d6,do, ---d6,_,.
17)

We denote by L%oc(SH,df) the space of complex-valued
functions on Sy locally integrable in measure df. In
L}OC(SH, d&) acts the quasiregular representation R of Lie
group G, defined by
(R(g) f) (x) = f(g_lx), X €S8y, geSO,(n-1,1).

(18)

We need the notion of space and surface hyperbolic harmon-
ics to decompose the representation R into irreducible ones.
We will consider in LiOC(S > d&) functions

H}? (0) = sinh®™"%6, "2 ™ (cosh, )

> en—z) 4

where B¢ (x) are adjoined Legendre functions of genus one,
L = (ky,K), K = (ky,..., k4 tk, 3), with kg > k; > -+ >
k,_, = 0, and all parameters k; are integers.

It is easy to see that if we extend functions H;"’(0) from
pseudosphere Sy; to the interior U of the light cone’s upper
sheet “by homogeneity” with the degree

19)
x 8¢t (0,,0,, ...

n— .
0=—-———+ip,

3 p € [0,+00), (20)

then obtained functions H}** on U are solutions of the
wave equation OH]" = 0; that is, they are space hyperbolic

harmonics. This means that we may call H?(0) surface
hyperbolic harmonics and consider them analogs of surface
spherical harmonics SiK(G).

The relation between H}? and H}* follows from homo-
geneous condition:

H (u) = H (r-x)=r"H (x), r=|x|. (21)

Suppose &™° is the minimal closed subspace in
L},.(Sy;,d&) containing all surface hyperbolic harmonics
H?(0). Similarly to Euclidean case, denote by &™° the
minimal closed subspace in L} (U, du) containing all space
hyperbolic harmonics. It is obvious, from what is stated
above, that the H;"?(0) are linearly independent for different
o and all of them are subspaces in the space of wave equation
solutions.

Basic properties of €™ are proved in [6]. We formulate
them in a compact form now.

Theorem 5 (analog of Theorem 1). (a) The next decomposi-
tion is valid L%OC(SH, dé) = JOOO G"%dp (the decomposition into
continuous direct sum).

(b) Each of the subspaces €™ is invariant with respect to
the quasiregular representation R of Lie group SOy(n — 1, 1).

(c) The representations of SOy(n — 1,1) in & are irredu-
cible and mutually nonisomorphic.

(d) The quasiregular representation R of G in L}OC(SH, dé)
has a simple spectrum.

(e) The space €™° is infinite-dimensional and has a basis
generated by functions of the form H;"’ (0).

The following theorem generalizes the classical Funk-
Hecke theorem to the case of hyperbolic space. This theorem,
for cases n = 2 and n = 4, was proved in [8]. But the general
case was published in [6].

Theorem 6. Suppose F(x) is a function of a real variable x
such that

(a) F(x) € L' (=00, +00) N L* (=00, +00);
(b) F(x) can be continued analytically to a function F(x)

of the complex variable o« = x + iy that is bounded and
analytic in the lower half-plane y < 0;

(c) F(x) has Fourier preimage f(t) € LY(0, +00).

Let H*® be an arbitrary surface hyperbolic harmonic of
homogeneity degree o. Then, for any vector 1 € Sy, the
following equality holds:

|, FUEnD T ©dE =01 o), @2

H

where the eigenvalue A, , does not depend on index L of
harmonics H** and equals
2 _ 2n/2(_n_i)(n—2)/2

+00 (23)
X J ocz_”/zlﬂprn/z_1 (i) f () dax,
0



where K. (z) is the McDonald function and

_ L oo iot
Fla)= \/ELO FUE (¢) dt. (24)

The idea of the proof lies in using of intertwining
operators theory. Namely, let us define an operator & in
L},.(Sg;) by the equality

(100 = | FlEn]f@de @3)

H

It can be easily seen that & is an intertwining operator of
quasiregular representation R. Because the spectrum of R is
simple, &/ can map the invariant subspace €™ only to itself.
Schur’s lemma implies that &/|gne = A, - E, where A, , does
not depend on the multi-index L and E is identity operator.

Thus one can assume that L = (0,0,...,0); that is,
examine the zonal hyperbolic harmonics Hp (§) instead of
arbitrary spherical harmonics H} (§).

The nontrivial part of the proof lies in calculation of
eigenvalue A, , rather than in verifying if surface hyperbolic
harmonics are eigenvectors for &/.

4. The Hyperbolic Fourier Transform and
Some of Its Properties

To obtain analogs of Proposition 3 we need some integral
transform & Z in L%OC(U) similar to the Fourier transform in
LA (R").

Definition 7. The hyperbolic Fourier transform in space
L}, (U) is a transform & 7> defined by (this integral should
be understood in a regularized value sense)

[%ﬂ@:wwLﬂwvamm, (26)

where dx = drds and ds is an invariant measure on
hyperboloid Sy (r).

Note that hyperbolic Fourier transform %} is dependent
on p; the reason is that this transform acts on its “own”
component & (ie, for 0 = —(n — 2)/2 + ip) simply
as a scalar operator (see Corollary 11 from Proposition 10).
Perhaps, uniform integral operator, acting on all subspaces
" as a scalar and invariant under R(g), does not exist.

Proposition 8. The hyperbolic Fourier transform F| is an
intertwining operator of quasiregular representation R in
Ly, (U).

Proof. By definition of quasiregular representation and
hyperbolic Fourier transform, we have

R(g) f1(©)
F1(R(9) ) ©)

5%
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6] [ I (R (9) ) s

S [ e (g7 dx
U

(27)
On the other hand,
R[(g) > F,f1(®)
=R(9) (F1,1) ®)
_ 1+ip —i[x,E], —~1-i
S R

= [ [ e (o

_ (g JU 198 |31 £ () d,

Change variable gx = t. Then, x = g~'t and dx = dt since the
measure on U is invariant under action of Lie group SO, (n —
1,1). We have

[R(g) > F,£1(®)

_ |£|1+ip JU e—i[t,f]'g—ltrl*lﬂf (gflt) dt (29)

_ |£|1+ipj e—i[t,f]|t|—1—ipf (g—lt) dt.
U

So, 975 o R(g) = R(g) » 975; that is, 975 is an intertwining

operator. O

Proposition 9. Let f(x) be a pseudoradial function belonging
to the space L' (U); that is, f(x) = fo(lx, x]l/z)for almost all

loc
x € U. Then its integral transform F is pseudoradial for all

EeU:

(Fhf1E) = Fy (16,€'7), (30)
where
Fy(s) = (_ﬂi)(n—Z)/Z g2 | (n=4)/2+ip
+eo . (31)
X L Fo () PTPK ) (irs) dr.

Proof. Let f(§) =

Proposition 8,

[R(9) F]©® = (R(9) > F}1) ©
=(F1,°R(9) ) ©) (32)
= () © = F©).

We take into account that R(g)f = f because f is pseu-

doradial.
This proves the first part of the proposition.

(F, f)(E). Then, taking use of
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We fix now /[x,x] = r and [, &] = s. Introduce the

Euler coordinates on hyperboloids S;;(r) and Sy (s):

x; =rsinh6,_,sin6,_,-...-cos0,
x, =rsinh@,_,sin0,_, ... sin0,
X,_; = rsinh6,_, cos0,_,,
x, =rcosh0,_;,
(33)
& =ssinhg,_;sing, ... -cos¢,,
&, =ssinhg,_sing, , ... sing,

§,1 = ssinhg, , cos g, ,,

&, =scoshg,_ ;.
By definition of hyperbolic Fourier transform,

(731
_ l£|1+ip L LH(” e*i[x,ﬁ]lxlfl—ipfo( /—[x’ x])dr ds

1+i +oo i
~ | J £y ) e gy
0
. J e_"[”‘,’sg]sinh"_zen_1
SH(’")
-sin" @, , ... sin0,dd, ,d6, ,---db,,
(34)

where x',f' € Sy. Consider the inner integral I on
hyperboloid in more detail:

[eS)
I= e—irs cosh 8, , coshe, ;
0 Js2

eirs sinh 6,_, sinh ¢,_; (x",&")

35)
-sinh" %0, ,sin" 6, ,

“...-sin0,dO,_, ---do,,

where x"' and £" belong to spheres, which are intersections

of hyperboloids [x,x] = r*and [£,&] = §° by hyperplanes
x, =rcosh6,_, and £, = scosh ¢,_, correspondingly:

o
I= J e—irs cosh B, coshg, ; sinhn_zﬁn_ . den_l
0
. J eirs sinh6,_, sinh g, ; (x",f")sinn—36n_2 (36)
-2

-...-sin6,d0,_,---do,.

We calculate the inner integral on sphere in a standard way:
first we integrate on a parallel (x",£") = cosa, orthogonal
to vector &"; then we integrate by a the obtained function in
variablea, 0 < a <

J eirs sinh 6,_, sinh¢,_; cos a4s
sn—z

27.[(”—2)/2

_ 4 irssinh,_; sinh ¢, , cosa . n-3
=] e ———— | (sina)" “da,
L (F((n—Z)/Z))( )
(37)

where 27" 22 /T((n - 2)/2))(sina)"> is area of surface of
(n — 3)-dimensional sphere with radius sin a.

After changing variables cosa = t, sina = V1 — 12, we get

J eirs sinh6,_; sinh ¢, , cos a4s
Sn—z

_ 27‘['(71_2)/2 Jl irssinh0,_, sinhg, -t
I'((n-2)/2) )
—4)/2
X (1 - tz)(n / dt
2N [ ((n-2)/2)T(1/2)

CT((n-2)/2) (-rssinh6,_, sinh (;),,_1/2)(%3)/2

‘ (-rssinh6,_, sinh¢,_, /2)("_3)/2
I'((n-2)/2)T(1/2) (38)

. Jl ei(rssinhen,l sinh(pn,l)t(1 _ t2)(2((”_3)/2)_1)/2dt
-1

_ e T((m-2)/2T0/2)
['((n=2)/2) (—rssinh6,_, sinh (pn_l)(n%)/2

“Jin_3yj2 (-rssinh 6, sinh g, )

(27.[)(71—1)/2
(-rssinh6,_; sinh¢,_

(n-3)/2
)
X Jiu3)y2 (—rssinh 6, sinhg, ).

Putting the found value of integral on sphere into the
expression of hyperbolic Fourier transform, we get:

EMIIGE

(2ﬂ)(n—l)/231+ip +00 fo (r) 1’”71 1-ip
(Cssinhg, )2 Jy  Troon
n—1

+00
X J e*irs cosh,_; coshg, ;
0

n—l)/29

x sinh’ 1

X Ju_3y2 (~rssinh 6, , sinhg, ,)d6, dr.
(39)



Change variables z = sinh6,_j;, cosh6, ;, = V1+22, and
dz = V1 + 2z2d6,_,, so we have

+00 .

J e—trs cosh 6, ; coshg, ; Sinh(n— 1 )/26”_1

0

X Jiu_3yj2 (~rssinh 6, sinhg, |)db, |

(40)
e

0 V1+ 22
Jiu_zy2 (~rssinh g, ,z)dz.

J~+oo —irscosh¢,_; Vl+zZZ(n—1)/2

Now we apply integral from [9], Section 2.12.10, formula (10),
and set p = irscosh¢,_;,z=1,x =z,c = —-rssinh¢,_;,and
v = (n — 3)/2. Finally we have

J+00 e—irs coshe, Vv 1+zzz(n—1)/2

0 V1 +22
Jiu_zy2 (~rssinh g, ,z)dz

2 . (n-3)/2,. \~(n- .
= \/;(—rs sinhg, )" (irs)™ 2)/2K(n_2)/2 (irs) .
(41)
Hence,
[9Zf] (E) _ 2’n/27_[(n—2)/2

1+ip oo n—-1_-l-ip
X s fom)r"r
0

. (irs)_("_z)/zK(n_z)/2 (irs)dr (42)

_ (_n_i)(n—Z)/Z 2n/ZS—(n—4)/2+ip

(o8] .
X L fo (1) r("fz)/zflpK(n_z)/z (irs) dr.

Proposition 9 is proved. O

Proposition 10. Suppose function f(x) € L, (U) is a product
of pseudoradial function and space hyperbolic harmonic of
homogeneity degree o:

f ) = fo(lx.x]"?) H? (x), (43)

and then its F-transform is

(Fhfl®©=F (£ me @, (49

where

Fn,o (S) _ 2n/2(_7_”-)(n—2)/2

+00 (45)
° S JO fO (1’) Ka+(n—2)/2 (iTS) dr.
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Proof. We have, by definition of hyperbolic Fourier trans-
form,

(71 1) = g jU e 7 fy (VT x]) HY (x) dx
_ |E|1+ipj £y
0

X <J e_i[x’g]ﬁza (x) dx) dr.
Su(r)
(46)

Let x = rx', & = s&', where x',& € Sj;. Because ﬁz" isa
homogeneous function of homogeneity degree o,

H” (x)=H" (rx’) =r"H}’ (x’). (47)
Hence,

(711
_ |E|1+ip J;} e—i[x,‘f] |x|—1—in0 (M[x, x]) lejo (x)dx

(we change variable x = rx’, dx = r"_ldx')
1+ip oo 1—i
-1-
S G
x (J e_irs[x,’zl]raHZG (x') rn_ldx'> dr
Su

1+, oo i

_ |E| P L fo (r) ra+n71r7171p

% <J e—irs[x”zr]HZo' (X,) dx’)dr.
SH
(48)

We make use of formula (32) from [6] to calculate the integral
on S;. Namely, for each &' € Sy, the equality takes place:

J e—irs[x',f’]Hzla (x’)dx'
Su

(49)
n/2 mi (n-2)/2 . no (¢!
=2 (—;> K0+(n—2)/2 (1r$) HL (E ) .
Now we have
[97Zf] (E) - 2n/251+iszta (£I>
+00 3
. j fo (}’) 7,_(/'Jrn—lr_—l—tp
0
-\ (n—=2)/2
i
X —— K .. irs)dr
(%) Kewmproar

_ zn/ZHIrjo (E) s- (_m.)(n—z)/z

+00
x Jo Jo (r) Ky nny2 (irs) dr

= FUHY (©),
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where
F (s) = 2" H" (§) s - (-mi) ™"
+00 (51)
X JO fO (7") Ko+(n—2)/2 (irs) dr.
Proposition 10 is proved. O

Corollary 11. If 0 = —(n — 2)/2 + ip, then hyperbolic
Fourier transform F/, acts on the space 8" of space hyperbolic
harmonics as a scalar operator:

[FPH] &) = Ao HE ©), (52)
where

_ (=2mi)"?
"7 2cosh (np/2) 3)

Proof. Consider [?Zﬁ"“](ﬁ). Let us use Proposition 10.
Because fy([&, E]l/z) = 1, we have

[giﬁn(r] (E) _ 2n/2(_ﬂi)(n—2)/25ﬁna (5)
+o0 (54)
X JO Ko+(n_2)/2 (irS) dr.

We apply the integral from [9], Section 2.16.2, formula (1),
and set v = ip and ¢ = is. Finally we have (this integral should
be understood in a regularized value sense too) the following:

[F2H] @)

T 1

_ 2n/2 _oanm-2)2 Tt i_"Ina
(=) *"2is cos (imp/2) © (55)
1)
__(2m)" 7" (§).
2 cosh (mp/2)
Corollary 11 is proved. O

Corollary 12. The inverse hyperbolic Fourier transform
(F1)~! on each of the spaces 8™ has the next form:

() f]®

2 cosh (7p/2) 1+ipj iEx] | ~1—ip
I S e X X dx.
(—2mi)"? i U S

(56)

The proof evidently follows from Corollary 11.

Remark 13. A well-known theorem asserts that any inter-
twining operator of the quasiregular representation of a
compact group is a convolution [5, chapter V, Section 2,
Theorem 2.3]. However, the question whether this theorem is
true for representation R of Lie group SOy(n—1,1) in L, (U)
is still open. Due to the exact sequence

1—S0n-1) — SO, (n—-1,1) — Sy — 1, (57)

any function ¢(x) defined on a Lobachevsky space Sy could
be raised to function ¢ on G = SO,(n — 1, 1) that is constant
on the left cosets under subgroup SO(n—1). An analog of this
theorem in L' N L*(Sy;) is valid as it was shown in the author’s
paper [10]. Our proof method uses Fourier transform and an
ordinary convolution of functions on G:

7710 =| 3@ (") dg 69

We hope that the technique developed in this work (including
the hyperbolic Fourier transform) will be able to prove
that intertwining operators of quasiregular representation of
Lorentz group are also involutions in interior of the light cone.
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