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We introduce an analog of Fourier transformF
𝜌

ℎ
in interior of light cone that commutes with the action of the Lorentz group. We

describe some properties ofF𝜌

ℎ
, namely, its action on pseudoradial functions and functions being products of pseudoradial function

and space hyperbolic harmonics. We prove that F𝜌

ℎ
-transform gives a one-to-one correspondence on each of the irreducible

components of quasiregular representation. We calculate the inverse transform too.

1. Introduction

One of the most valuable integral transforms used in many-
dimensional analysis is the classical Fourier transform. It
is caused by the fact that this transform has a very simple
transformation law at tensions and commutes with action of
Lie group 𝑆𝑂(𝑛) in R𝑛. As a consequence of these proper-
ties, the 𝐿2(R𝑛

) decomposes in a direct sum of irreducible
subspaces that are invariant under rotations (e.g., [1, chapter
4] and [2, chapter 9]). This decomposition is an analog
of decomposition 𝐿2(R) in a direct integral of irreducible
representations:

𝐿
2
(R) = ∫

∞

−∞

C ⋅ 𝑒
𝑖𝑥𝜉
𝑑𝜉, (1)

which act in one-dimensional subspaces invariant under
translations. There exists a general theorem that guarantees
the existence of a direct integral decomposition into irre-
ducible subrepresentations: it suffices that the topological
group have a countable dense subset.

The goal of this paper is to introduce an analog of Fourier
transform F

𝜌

ℎ
in the interior of the light cone on which Lie

group𝐺 = 𝑆𝑂0(𝑛−1, 1) acts. Suppose𝐿
1

loc(𝑆𝐻(𝑅)) is a space of
locally integrable functions on pseudosphere 𝑆𝐻(𝑅) of radius
𝑅, so this space allows a direct integral decomposition into
irreducible subspaces invariant under action of Lie group 𝐺
that is similar to decompositions of 𝐿2(R𝑛

) and 𝐿2(R) in
classical case. Actually, this decomposition was obtained by
Gel’fand et al. in [3] in the sixties of the last century.

Our analog of Fourier transform is an intertwining oper-
ator of quasiregular representation of Lie group 𝐺, so it maps
each of the irreducible components of decomposition in itself.
Following Stein andWeiss in Euclidean space [1], we describe
action of F𝜌

ℎ
on pseudoradial functions and functions that

represent a product of pseudoradial function and space
hyperbolic harmonics. The obtained formulas allow us to
write the inverse transform (F

𝜌

ℎ
)
−1 with ease. These results

may be applicable to constructing an equivariant extension
of wave operator in interior of the light cone. For Laplace
operator it was completed in [4].

2. Spherical Harmonics and Classical
Funk-Hecke Theorem

LetR𝑛,𝑙 be the space of homogeneous harmonic polynomials
of degree 𝑙 in 𝑛 variables. If 𝑓(𝑥) belongs to R𝑛,𝑙 then
its restriction to sphere 𝑆𝑛−1 is called the surface spherical
harmonics of degree 𝑙 and is denoted by 𝑓(𝜉), 𝜉 ∈ 𝑆𝑛−1. The
relation between 𝑓(𝑥) and 𝑓(𝜉) follows from homogeneity
condition:

𝑓 (𝑥) = 𝑓 (𝑟 ⋅ 𝜉) = 𝑟
𝑙
𝑓 (𝜉) , 𝑟 = |𝑥| . (2)

Surface spherical harmonics of degree 𝑙 form a linear space
overC too, andwe denote it byR𝑛,𝑙. It is quite evident that, for
any 𝑙 = 0, 1, 2, . . ., the inclusionR𝑛,𝑙

⊂ 𝐿
2
(𝑆

𝑛−1
) is valid. But in
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the same space acts the so-called quasiregular representation
of Lie group 𝑆𝑂(𝑛), defined by the next equality:

[𝑇 (𝑔) 𝑓] (𝜉) = 𝑓 (𝑔
−1
𝜉) , 𝜉 ∈ 𝑆

𝑛−1
, 𝑔 ∈ 𝑆𝑂 (𝑛) . (3)

This representation is unitary with respect to the standard
inner product in 𝐿2(𝑆𝑛−1). The next theorem is widely known
(see, e.g., [2, 5, 6]).

Theorem 1. (a) The next decomposition is valid 𝐿2(𝑆𝑛−1) =
⨁

∞

𝑙=0
R𝑛,𝑙 (decomposition of Hilbert space into orthogonal

direct sum).
(b) The subspacesR𝑛,𝑙 consisting of the space harmonics of

degree 𝑙 are invariant under Fourier transformF.
(c) Each of the subspaces R𝑛,𝑙 is invariant with respect to

the quasiregular representation𝑇 of Lie group 𝑆𝑂(𝑛) and is iso-
morphic to the irreducible representation𝑇(𝑙,0,...,0) with a highest
weight (𝑙, 0, . . . , 0).

(d) The quasiregular representation of 𝑆𝑂(𝑛) in 𝐿2(𝑆𝑛−1)
has a simple spectrum.

(e) The space R𝑛,𝑙 has a dimension (𝑛 + 𝑙 − 3)!(𝑛 + 2𝑙 −
2)/𝑙!(𝑛− 2)! and an orthogonal basis consisting of the next sur-
face spherical harmonics 𝑆𝑙

𝐾
(𝜃):

𝑆
𝑙

𝐾
(𝜃) = (

𝑛−3

∏

𝑗=0

𝐶
𝑛/2−𝑗/2−1+𝑚𝑗+1

𝑚𝑗−𝑚𝑗+1
(cos 𝜃𝑛−𝑗−1)

× sin𝑚𝑗+1 (𝜃𝑛−𝑗−1))

× 𝑒
±𝑖𝑚𝑛−2𝜃1 ,

(4)

where 𝜃1, 𝜃2, . . . , 𝜃𝑛−1 are Euler angles on sphere 𝑆𝑛−1; 𝑙 = 𝑚0;
and 𝐾 is multi-index 𝐾 = (𝑚1, . . . , 𝑚𝑛−3; ±𝑚𝑛−2) such that
𝑚0 ≥ 𝑚1 ≥ ⋅ ⋅ ⋅ ≥ 𝑚𝑛−3 ≥ 𝑚𝑛−2 ≥ 0,𝑚𝑖 ∈ Z.

The known Funk-Hecke theorem states that for integral
operators whose kernels depend only on the distance 𝜌 (in
spherical geometry) between points 𝜉 and 𝜂 where 𝜉, 𝜂 ∈
𝑆
𝑛−1 every surface spherical harmonics is an eigenvector. We
give a contemporary formulation of the Funk-Hecke theorem
following the monograph [7] of Erdélyi.

Theorem 2 (Funk, Hecke). Let 𝐹(𝑥) be a function of a real
variable 𝑥 which is absolutely Lebesgue integrable on [−1, 1]
together with its square. Then, for any unit vector 𝜂,

∫
𝑆𝑛−1
𝐹 [(𝜉, 𝜂)] 𝑆

𝑙

𝐾
(𝜉) 𝑑𝜉 = 𝜆𝑛,𝑙𝑆

𝑙

𝐾
(𝜂) , (5)

where

𝜆𝑛,𝑙 = 𝑖
𝑙
(2𝜋)

𝑛/2
∫

∞

−∞

𝑡
(2−𝑛)/2

𝐽𝑙+𝑛/2−1 (𝑡) 𝑓 (𝑡) 𝑑𝑡,

𝑓 (𝑡) =
1

2𝜋
∫

1

−1

𝑒
−𝑖𝑥𝑡
𝐹 (𝑥) 𝑑𝑥.

(6)

The simple consequences of the Funk-Hecke theorem are
the following two propositions.

Proposition 3 (see [1, chapter IV, Theorems 3.3, 3.10]). (a)
Let function 𝑓(𝑥) be a product of radial function and space
spherical harmonics of degree 𝑙:

𝑓 (𝑥) = 𝑓0 (|𝑥|) 𝑆
𝑙

𝐾
(𝑥) , (7)

where 𝑓0(𝑟) is such that 𝑓(𝑥) ∈ 𝐿1(R𝑛
) ∩ 𝐿

2
(R𝑛
). Then its

Fourier transform has a form:

[F𝑓] (𝑥) = 𝐹𝑙 (|𝑥|) 𝑆
𝑙

𝐾
(𝑥) , (8)

where

𝐹𝑙 (𝑟) =
2𝜋

𝑖𝑙𝑟(𝑛−2)/2+𝑙

× ∫

+∞

0

𝑓0 (𝑠) 𝑠
𝑙+𝑛/2

𝐽(𝑛+2𝑙−2)/2 (2𝜋𝑟𝑠) 𝑑𝑠.

(9)

(b) In particular, Fourier transform for radial function 𝑓(𝑥) =
𝑓0(|𝑥|) is also radial:

[F𝑓] (𝑥) = 𝐹0 (|𝑥|) (10)

(one sets 𝑙 = 0 in the above formula).

As Proposition 3 implies, the infinite-dimensional sub-
spaces

H𝑙 = span {𝑓 (|𝑥|) 𝑆𝑙
𝐾
(𝑥)} , (11)

where 𝑓(𝑟) runs over the set of radial functions satisfying
conditions of Proposition 3 and 𝑆𝑙

𝐾
(𝑥) runs over the set of

space spherical harmonics of degree 𝑙, are invariant under
Fourier transform in 𝐿2(R𝑛

).
On the other hand, if we fix the function 𝑓(|𝑥|) we

get a subspace in H𝑙, which is invariant with respect to
quasiregular representation of group 𝑆𝑂(𝑛) in 𝐿2(R𝑛

). It can
be easily verified that it is isomorphic to the irreducible
representation 𝑇(𝑙,0,...,0) with a highest weight (𝑙, 0, . . . , 0).
Since spaces of irreducible nonisomorphic unitary represen-
tations of compact group are mutually orthogonal (H. Weyl’s
theorem), we have one more important consequence of the
classical Funk-Hecke theorem.

Corollary 4. The next decomposition into orthogonal direct
sum is valid:

𝐿
2
(R

𝑛
) =

∞

⨁

𝑙=0

H𝑙. (12)

We will try to extend the classical theorem of Funk and
Hecke and its corollaries on the hyperbolic space R𝑛−1,1 with
indefinite inner product.

3. Hyperbolic Harmonics and Generalized
Funk-Hecke Theorem

Let R𝑛−1,1 be the pseudo-Euclidean space with the indefinite
inner product

[𝑥, 𝑦] = −𝑥1𝑦1 − ⋅ ⋅ ⋅ − 𝑥𝑛−1𝑦𝑛−1 + 𝑥𝑛𝑦𝑛. (13)
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This inner product may be used for definition of a distance
𝑟(𝑥, 𝑦) between two points 𝑥, 𝑦 ∈ R𝑛−1,1 that do not belong
to the light cone [𝑧, 𝑧] = 0. We assume, for such two points,

cosh 𝑟 (𝑥, 𝑦) =
[𝑥, 𝑦]

√[𝑥, 𝑥] ⋅ [𝑦, 𝑦]

. (14)

Such distance may take either real nonnegative or pure
imaginary values. However, if we restrict ourselves by the
interior 𝑈 of the light cone’s upper sheet

𝑈 = {𝑥 ∈ R
𝑛−1,1

| [𝑥, 𝑥] > 0, 𝑥𝑛 > 0} , (15)

then, for all 𝑥, 𝑦 ∈ 𝑈, we have 𝑟(𝑥, 𝑦) ⩾ 0.
Let us call the set of all points𝑥 of𝑈, for which [𝑥, 𝑥] = 𝑅2

holds, pseudosphere of radius 𝑅. We will use the designation
𝑆𝐻(𝑅) for pseudosphere of radius 𝑅 and 𝑆𝐻 for pseudosphere
of radius 1 in R𝑛−1,1. Recall that 𝑆𝐻 is a manifold of a
constant negative curvature in R𝑛−1,1 on the one hand and
a homogeneous symmetric space with respect to the action
of Lie group 𝐺 = 𝑆𝑂0(𝑛 − 1, 1) on the other hand, because

𝑆𝐻 ≅ 𝑆𝑂0 (𝑛 − 1, 1) /𝑆𝑂 (𝑛 − 1) . (16)

It follows from here that 𝑆𝐻 possesses the unique up to
constant multiplier left-invariant with respect to 𝐺 measure
𝑑𝜉:

𝑑𝜉 = sinh𝑛−2𝜃𝑛−1sin
𝑛−3
𝜃𝑛−2 ⋅ . . . ⋅ sin 𝜃2𝑑𝜃1𝑑𝜃2 ⋅ ⋅ ⋅ 𝑑𝜃𝑛−1.

(17)

We denote by 𝐿1loc(𝑆𝐻, 𝑑𝜉) the space of complex-valued
functions on 𝑆𝐻 locally integrable in measure 𝑑𝜉. In
𝐿
1

loc(𝑆𝐻, 𝑑𝜉) acts the quasiregular representation 𝑅 of Lie
group 𝐺, defined by

(𝑅 (𝑔) 𝑓) (𝑥) = 𝑓 (𝑔
−1
𝑥) , 𝑥 ∈ 𝑆𝐻, 𝑔 ∈ 𝑆𝑂0 (𝑛 − 1, 1) .

(18)

We need the notion of space and surface hyperbolic harmon-
ics to decompose the representation 𝑅 into irreducible ones.
We will consider in 𝐿1loc(𝑆𝐻, 𝑑𝜉) functions

𝐻
𝑛,𝜎

𝐿
(𝜃) = sinh(3−𝑛)/2𝜃𝑛−1P

(3−𝑛)/2−𝑚1

𝜎+(𝑛−3)/2
(cosh 𝜃𝑛−1)

× 𝑆
𝑚1

𝐾
(𝜃1, 𝜃2, . . . , 𝜃𝑛−2) ,

(19)

where P𝜇

] (𝑥) are adjoined Legendre functions of genus one,
𝐿 = (𝑘0, 𝐾), 𝐾 = (𝑘1, . . . , 𝑘𝑛−4, ±𝑘𝑛−3), with 𝑘0 ⩾ 𝑘1 ⩾ ⋅ ⋅ ⋅ ⩾
𝑘𝑛−2 ⩾ 0, and all parameters 𝑘𝑖 are integers.

It is easy to see that if we extend functions 𝐻𝑛,𝜎

𝐿
(𝜃) from

pseudosphere 𝑆𝐻 to the interior 𝑈 of the light cone’s upper
sheet “by homogeneity” with the degree

𝜎 = −
𝑛 − 2

2
+ 𝑖𝜌, 𝜌 ∈ [0, +∞) , (20)

then obtained functions 𝐻̃𝑛,𝜎

𝐿
on 𝑈 are solutions of the

wave equation ◻𝐻̃𝑛,𝜎

𝐿
= 0; that is, they are space hyperbolic

harmonics. This means that we may call 𝐻𝑛,𝜎

𝐿
(𝜃) surface

hyperbolic harmonics and consider them analogs of surface
spherical harmonics 𝑆𝑙

𝐾
(𝜃).

The relation between 𝐻𝑛𝜎

𝐿
and 𝐻̃𝑛,𝜎

𝐿
follows from homo-

geneous condition:

𝐻̃
𝑛,𝜎

𝐿
(𝑢) = 𝐻̃

𝑛,𝜎

𝐿
(𝑟 ⋅ 𝑥) = 𝑟

𝜎
𝐻̃

𝑛,𝜎

𝐿
(𝑥) , 𝑟 = |𝑥| . (21)

Suppose G𝑛,𝜎 is the minimal closed subspace in
𝐿
1

loc(𝑆𝐻, 𝑑𝜉) containing all surface hyperbolic harmonics
𝐻

𝑛,𝜎

𝐿
(𝜃). Similarly to Euclidean case, denote by G𝑛,𝜎 the

minimal closed subspace in 𝐿1loc(𝑈, 𝑑𝑢) containing all space
hyperbolic harmonics. It is obvious, from what is stated
above, that the𝐻𝑛,𝜎

𝐿
(𝜃) are linearly independent for different

𝜎 and all of them are subspaces in the space of wave equation
solutions.

Basic properties of G𝑛,𝜎 are proved in [6]. We formulate
them in a compact form now.

Theorem 5 (analog of Theorem 1). (a) The next decomposi-
tion is valid 𝐿1

𝑙𝑜𝑐
(𝑆𝐻, 𝑑𝜉) = ∫

∞

0
G𝑛,𝜎

𝑑𝜌 (the decomposition into
continuous direct sum).

(b) Each of the subspaces G𝑛,𝜎 is invariant with respect to
the quasiregular representation 𝑅 of Lie group 𝑆𝑂0(𝑛 − 1, 1).

(c) The representations of 𝑆𝑂0(𝑛 − 1, 1) in G𝑛,𝜎 are irredu-
cible and mutually nonisomorphic.

(d) The quasiregular representation 𝑅 of 𝐺 in 𝐿1
𝑙𝑜𝑐
(𝑆𝐻, 𝑑𝜉)

has a simple spectrum.
(e) The space G𝑛,𝜎 is infinite-dimensional and has a basis

generated by functions of the form𝐻𝑛,𝜎

𝐿
(𝜃).

The following theorem generalizes the classical Funk-
Hecke theorem to the case of hyperbolic space.This theorem,
for cases 𝑛 = 2 and 𝑛 = 4, was proved in [8]. But the general
case was published in [6].

Theorem 6. Suppose 𝐹(𝑥) is a function of a real variable 𝑥
such that

(a) 𝐹(𝑥) ∈ 𝐿1(−∞, +∞) ∩ 𝐿2(−∞, +∞);
(b) 𝐹(𝑥) can be continued analytically to a function 𝐹(𝛼)

of the complex variable 𝛼 = 𝑥 + 𝑖𝑦 that is bounded and
analytic in the lower half-plane 𝑦 ⩽ 0;

(c) 𝐹(𝑥) has Fourier preimage 𝑓(𝑡) ∈ 𝐿1(0, +∞).

Let 𝐻𝑛,𝜎

𝐿
be an arbitrary surface hyperbolic harmonic of

homogeneity degree 𝜎. Then, for any vector 𝜂 ∈ 𝑆𝐻, the
following equality holds:

∫
𝑆𝐻

𝐹 ([𝜉, 𝜂])𝐻
𝑛,𝜎

𝐿
(𝜉) 𝑑𝜉 = 𝜆𝑛,𝜎𝐻

𝑛,𝜎

𝐿
(𝜂) , (22)

where the eigenvalue 𝜆𝑛,𝜎 does not depend on index 𝐿 of
harmonics𝐻𝑛,𝜎

𝐿
and equals

𝜆𝑛,𝜎 = 2
𝑛/2
(−𝜋𝑖)

(𝑛−2)/2

× ∫

+∞

0

𝛼
2−𝑛/2

𝐾𝜎+𝑛/2−1 (𝑖𝛼) 𝑓 (𝛼) 𝑑𝛼,

(23)
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where𝐾](𝑧) is the McDonald function and

𝑓 (𝛼) =
1

√2𝜋
∫

+∞

−∞

𝑒
𝑖𝛼𝑡
𝐹 (𝑡) 𝑑𝑡. (24)

The idea of the proof lies in using of intertwining
operators theory. Namely, let us define an operator A in
𝐿
1

loc(𝑆𝐻) by the equality

[A𝑓] (𝜂) = ∫
𝑆𝐻

𝐹 [(𝜉, 𝜂)] 𝑓 (𝜉) 𝑑𝜉. (25)

It can be easily seen that A is an intertwining operator of
quasiregular representation 𝑅. Because the spectrum of 𝑅 is
simple,A can map the invariant subspace G𝑛,𝜎 only to itself.
Schur’s lemma implies thatA|G𝑛,𝜎 = 𝜆𝑛,𝜎 ⋅ 𝐸, where 𝜆𝑛,𝜎 does
not depend on the multi-index 𝐿 and 𝐸 is identity operator.

Thus one can assume that 𝐿 = (0, 0, . . . , 0); that is,
examine the zonal hyperbolic harmonics 𝐻𝑛𝜎

𝑂
(𝜉) instead of

arbitrary spherical harmonics𝐻𝑛𝜎

𝐿
(𝜉).

The nontrivial part of the proof lies in calculation of
eigenvalue 𝜆𝑛,𝜎 rather than in verifying if surface hyperbolic
harmonics are eigenvectors forA.

4. The Hyperbolic Fourier Transform and
Some of Its Properties

To obtain analogs of Proposition 3 we need some integral
transform F

𝜌

ℎ
in 𝐿1loc(𝑈) similar to the Fourier transform in

𝐿
2
(R𝑛
).

Definition 7. The hyperbolic Fourier transform in space
𝐿
1

loc(𝑈) is a transform F
𝜌

ℎ
, defined by (this integral should

be understood in a regularized value sense)

[F
𝜌

ℎ
𝑓] (𝜉) =

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝜉,𝑥]

|𝑥|
−1−𝑖𝜌

𝑓 (𝑥) 𝑑𝑥, (26)

where 𝑑𝑥 = 𝑑𝑟𝑑𝑠 and 𝑑𝑠 is an invariant measure on
hyperboloid 𝑆𝐻(𝑟).

Note that hyperbolic Fourier transformF
𝜌

ℎ
is dependent

on 𝜌; the reason is that this transform acts on its “own”
component G𝑛𝜎 (i.e., for 𝜎 = −(𝑛 − 2)/2 + 𝑖𝜌) simply
as a scalar operator (see Corollary 11 from Proposition 10).
Perhaps, uniform integral operator, acting on all subspaces
G𝑛𝜎 as a scalar and invariant under 𝑅(𝑔), does not exist.

Proposition 8. The hyperbolic Fourier transform F
𝜌

ℎ
is an

intertwining operator of quasiregular representation 𝑅 in
𝐿
1

𝑙𝑜𝑐
(𝑈).

Proof. By definition of quasiregular representation and
hyperbolic Fourier transform, we have

[F
𝜌

ℎ
∘ 𝑅 (𝑔) 𝑓] (𝜉)

= F
𝜌

ℎ
(𝑅 (𝑔) 𝑓) (𝜉)

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝑥,𝜉]

|𝑥|
−1−𝑖𝜌

(𝑅 (𝑔) 𝑓) (𝑥) 𝑑𝑥

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝑥,𝜉]

|𝑥|
−1−𝑖𝜌

𝑓 (𝑔
−1
𝑥) 𝑑𝑥.

(27)

On the other hand,

𝑅 [(𝑔) ∘F
𝜌

ℎ
𝑓] (𝜉)

= 𝑅 (𝑔) (F
𝜌

ℎ
𝑓) (𝜉)

= 𝑅 (𝑔) (
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝑥,𝜉]

|𝑥|
−1−𝑖𝜌

𝑓 (𝑥) 𝑑𝑥)

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝑥,𝑔

−1
𝜉]
|𝑥|

−1−𝑖𝜌
𝑓 (𝑥) 𝑑𝑥

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝑔𝑥,𝜉]

|𝑥|
−1−𝑖𝜌

𝑓 (𝑥) 𝑑𝑥.

(28)

Change variable 𝑔𝑥 = 𝑡.Then, 𝑥 = 𝑔−1𝑡 and 𝑑𝑥 = 𝑑𝑡 since the
measure on 𝑈 is invariant under action of Lie group 𝑆𝑂0(𝑛 −

1, 1). We have

[𝑅 (𝑔) ∘F
𝜌

ℎ
𝑓] (𝜉)

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝑡,𝜉]󵄨󵄨󵄨󵄨󵄨

𝑔
−1
𝑡
󵄨󵄨󵄨󵄨󵄨

−1−𝑖𝜌

𝑓 (𝑔
−1
𝑡) 𝑑𝑡

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝑡,𝜉]

|𝑡|
−1−𝑖𝜌

𝑓 (𝑔
−1
𝑡) 𝑑𝑡.

(29)

So, F𝜌

ℎ
∘ 𝑅(𝑔) = 𝑅(𝑔) ∘ F

𝜌

ℎ
; that is, F𝜌

ℎ
is an intertwining

operator.

Proposition 9. Let 𝑓(𝑥) be a pseudoradial function belonging
to the space 𝐿1

𝑙𝑜𝑐
(𝑈); that is, 𝑓(𝑥) = 𝑓0([𝑥, 𝑥]

1/2
) for almost all

𝑥 ∈ 𝑈. Then its integral transform F
𝜌

ℎ
is pseudoradial for all

𝜉 ∈ 𝑈:

[F
𝜌

ℎ
𝑓] (𝜉) = 𝐹0 ([𝜉, 𝜉]

1/2
) , (30)

where

𝐹0 (𝑠) = (−𝜋𝑖)
(𝑛−2)/2

⋅ 2
𝑛/2
⋅ 𝑠

−(𝑛−4)/2+𝑖𝜌

× ∫

+∞

0

𝑓0 (𝑟) 𝑟
(𝑛−2)/2−𝑖𝜌

𝐾(𝑛−2)/2 (𝑖𝑟𝑠) 𝑑𝑟.

(31)

Proof. Let 𝑓(𝜉) = (F
𝜌

ℎ
𝑓)(𝜉). Then, taking use of

Proposition 8,

[𝑅 (𝑔) 𝑓] (𝜉) = (𝑅 (𝑔) ∘F
𝜌

ℎ
𝑓) (𝜉)

= (F
𝜌

ℎ
∘ 𝑅 (𝑔) 𝑓) (𝜉)

= (F
𝜌

ℎ
𝑓) (𝜉) = 𝑓 (𝜉) .

(32)

We take into account that 𝑅(𝑔)𝑓 = 𝑓 because 𝑓 is pseu-
doradial.

This proves the first part of the proposition.
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We fix now √[𝑥, 𝑥] = 𝑟 and √[𝜉, 𝜉] = 𝑠. Introduce the
Euler coordinates on hyperboloids 𝑆𝐻(𝑟) and 𝑆𝐻(𝑠):

𝑥1 = 𝑟 sinh 𝜃𝑛−1 sin 𝜃𝑛−2 ⋅ . . . ⋅ cos 𝜃1,

𝑥2 = 𝑟 sinh 𝜃𝑛−1 sin 𝜃𝑛−2 ⋅ . . . ⋅ sin 𝜃1,

...

𝑥𝑛−1 = 𝑟 sinh 𝜃𝑛−1 cos 𝜃𝑛−2,

𝑥𝑛 = 𝑟 cosh 𝜃𝑛−1,

𝜉1 = 𝑠 sinh𝜑𝑛−1 sin𝜑𝑛−2 ⋅ . . . ⋅ cos𝜑1,

𝜉2 = 𝑠 sinh𝜑𝑛−1 sin𝜑𝑛−2 ⋅ . . . ⋅ sin𝜑1,

...

𝜉𝑛−1 = 𝑠 sinh𝜑𝑛−1 cos𝜑𝑛−2,

𝜉𝑛 = 𝑠 cosh𝜑𝑛−1.

(33)

By definition of hyperbolic Fourier transform,

[F
𝜌

ℎ
𝑓] (𝜉)

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫

+∞

0

∫
𝑆𝐻(𝑟)

𝑒
−𝑖[𝑥,𝜉]

|𝑥|
−1−𝑖𝜌

𝑓0 (
√[𝑥, 𝑥]) 𝑑𝑟 𝑑𝑠

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫

+∞

0

𝑓0 (𝑟) 𝑟
𝑛−1
𝑟
−1−𝑖𝜌

𝑑𝑟

⋅ ∫
𝑆𝐻(𝑟)

𝑒
−𝑖[𝑟𝑥
󸀠
,𝑠𝜉
󸀠
]sinh𝑛−2𝜃𝑛−1

⋅ sin𝑛−3𝜃𝑛−2 ⋅ . . . ⋅ sin 𝜃2𝑑𝜃𝑛−1𝑑𝜃𝑛−2 ⋅ ⋅ ⋅ 𝑑𝜃1,
(34)

where 𝑥󸀠, 𝜉󸀠 ∈ 𝑆𝐻. Consider the inner integral 𝐼 on
hyperboloid in more detail:

𝐼 = ∫

∞

0

∫
𝑆𝑛−2
𝑒
−𝑖𝑟𝑠 cosh 𝜃𝑛−1 cosh𝜑𝑛−1

× 𝑒
𝑖𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1⟨𝑥󸀠󸀠,𝜉󸀠󸀠⟩

⋅ sinh𝑛−2𝜃𝑛−1sin
𝑛−3
𝜃𝑛−2

⋅ . . . ⋅ sin 𝜃2𝑑𝜃𝑛−1 ⋅ ⋅ ⋅ 𝑑𝜃1,

(35)

where 𝑥󸀠󸀠 and 𝜉󸀠󸀠 belong to spheres, which are intersections
of hyperboloids [𝑥, 𝑥] = 𝑟2 and [𝜉, 𝜉] = 𝑠2 by hyperplanes
𝑥𝑛 = 𝑟 cosh 𝜃𝑛−1 and 𝜉𝑛 = 𝑠 cosh𝜑𝑛−1 correspondingly:

𝐼 = ∫

∞

0

𝑒
−𝑖𝑟𝑠 cosh 𝜃𝑛−1 cosh𝜑𝑛−1sinh𝑛−2𝜃𝑛−1𝑑𝜃𝑛−1

⋅ ∫
𝑆𝑛−2
𝑒
𝑖𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1⟨𝑥󸀠󸀠,𝜉󸀠󸀠⟩sin𝑛−3𝜃𝑛−2

⋅ . . . ⋅ sin 𝜃2𝑑𝜃𝑛−2 ⋅ ⋅ ⋅ 𝑑𝜃1.

(36)

We calculate the inner integral on sphere in a standard way:
first we integrate on a parallel ⟨𝑥󸀠󸀠, 𝜉󸀠󸀠⟩ = cos 𝑎, orthogonal
to vector 𝜉󸀠󸀠; then we integrate by 𝑎 the obtained function in
variable 𝑎, 0 ⩽ 𝑎 ⩽ 𝜋:

∫
𝑆𝑛−2
𝑒
𝑖𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1 cos 𝑎𝑑𝑆

= ∫

𝜋

0

𝑒
𝑖𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1 cos 𝑎 (

2𝜋
(𝑛−2)/2

Γ ((𝑛 − 2) /2)
) (sin 𝑎)𝑛−3𝑑𝑎,

(37)

where (2𝜋(𝑛−2)/2/Γ((𝑛 − 2)/2))(sin 𝑎)𝑛−3 is area of surface of
(𝑛 − 3)-dimensional sphere with radius sin 𝑎.

After changing variables cos 𝑎 = 𝑡, sin 𝑎 = √1 − 𝑡2, we get

∫
𝑆𝑛−2
𝑒
𝑖𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1 cos 𝑎𝑑𝑆

=
2𝜋

(𝑛−2)/2

Γ ((𝑛 − 2) /2)
∫

1

−1

𝑒
𝑖𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1 ⋅𝑡

× (1 − 𝑡
2
)
(𝑛−4)/2

𝑑𝑡

=
2𝜋

(𝑛−2)/2

Γ ((𝑛 − 2) /2)
⋅

Γ ((𝑛 − 2) /2) Γ (1/2)

(−𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1/2)
(𝑛−3)/2

⋅
(−𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1/2)

(𝑛−3)/2

Γ ((𝑛 − 2) /2) Γ (1/2)

⋅ ∫

1

−1

𝑒
𝑖(𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1)𝑡(1 − 𝑡2)

(2((𝑛−3)/2)−1)/2

𝑑𝑡

=
(2𝜋)

(𝑛−2)/2

Γ ((𝑛 − 2) /2)
⋅

Γ ((𝑛 − 2) /2) Γ (1/2)

(−𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1)
(𝑛−3)/2

⋅ 𝐽(𝑛−3)/2 (−𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1)

=
(2𝜋)

(𝑛−1)/2

(−𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1)
(𝑛−3)/2

× 𝐽(𝑛−3)/2 (−𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1) .

(38)

Putting the found value of integral on sphere into the
expression of hyperbolic Fourier transform, we get:

[F
𝜌

ℎ
𝑓] (𝜉) =

(2𝜋)
(𝑛−1)/2

𝑠
1+𝑖𝜌

(−𝑠 sinh𝜑𝑛−1)
(𝑛−3)/2

∫

+∞

0

𝑓0 (𝑟) 𝑟
𝑛−1

𝑟(𝑛−3)/2
𝑟
−1−𝑖𝜌

⋅ ∫

+∞

0

𝑒
−𝑖𝑟𝑠 cosh 𝜃𝑛−1 cosh𝜑𝑛−1

× sinh(𝑛−1)/2𝜃𝑛−1

× 𝐽(𝑛−3)/2 (−𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1) 𝑑𝜃𝑛−1𝑑𝑟.
(39)
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Change variables 𝑧 = sinh 𝜃𝑛−1, cosh 𝜃𝑛−1 = √1 + 𝑧2, and
𝑑𝑧 = √1 + 𝑧2𝑑𝜃𝑛−1, so we have

∫

+∞

0

𝑒
−𝑖𝑟𝑠 cosh 𝜃𝑛−1 cosh𝜑𝑛−1sinh(𝑛−1)/2𝜃𝑛−1

× 𝐽(𝑛−3)/2 (−𝑟𝑠 sinh 𝜃𝑛−1 sinh𝜑𝑛−1) 𝑑𝜃𝑛−1

= ∫

+∞

0

𝑒
−𝑖𝑟𝑠 cosh𝜑𝑛−1√1+𝑧2𝑧(𝑛−1)/2

√1 + 𝑧2

⋅ 𝐽(𝑛−3)/2 (−𝑟𝑠 sinh𝜑𝑛−1𝑧) 𝑑𝑧.

(40)

Nowwe apply integral from [9], Section 2.12.10, formula (10),
and set 𝜌 = 𝑖𝑟𝑠 cosh𝜑𝑛−1, 𝑧 = 1, 𝑥 = 𝑧, 𝑐 = −𝑟𝑠 sinh𝜑𝑛−1, and
] = (𝑛 − 3)/2. Finally we have

∫

+∞

0

𝑒
−𝑖𝑟𝑠 cosh𝜑𝑛−1√1+𝑧2𝑧(𝑛−1)/2

√1 + 𝑧2

⋅ 𝐽(𝑛−3)/2 (−𝑟𝑠 sinh𝜑𝑛−1𝑧) 𝑑𝑧

= √
2

𝜋
(−𝑟𝑠 sinh𝜑𝑛−1)

(𝑛−3)/2
(𝑖𝑟𝑠)

−(𝑛−2)/2
𝐾(𝑛−2)/2 (𝑖𝑟𝑠) .

(41)

Hence,

[F
𝜌

ℎ
𝑓] (𝜉) = 2

𝑛/2
𝜋
(𝑛−2)/2

× 𝑠
1+𝑖𝜌
∫

+∞

0

𝑓0 (𝑟) 𝑟
𝑛−1
𝑟
−1−𝑖𝜌

⋅ (𝑖𝑟𝑠)
−(𝑛−2)/2

𝐾(𝑛−2)/2 (𝑖𝑟𝑠) 𝑑𝑟

= (−𝜋𝑖)
(𝑛−2)/2

2
𝑛/2
𝑠
−(𝑛−4)/2+𝑖𝜌

× ∫

∞

0

𝑓0 (𝑟) 𝑟
(𝑛−2)/2−𝑖𝜌

𝐾(𝑛−2)/2 (𝑖𝑟𝑠) 𝑑𝑟.

(42)

Proposition 9 is proved.

Proposition 10. Suppose function𝑓(𝑥) ∈ 𝐿1
𝑙𝑜𝑐
(𝑈) is a product

of pseudoradial function and space hyperbolic harmonic of
homogeneity degree 𝜎:

𝑓 (𝑥) = 𝑓0 ([𝑥, 𝑥]
1/2
) 𝐻̃

𝑛,𝜎

𝐿
(𝑥) , (43)

and then itsF𝜌

ℎ
-transform is

[F
𝜌

ℎ
𝑓] (𝜉) = 𝐹

𝑛,𝜎
([𝜉, 𝜉]

1/2
) 𝐻̃

𝑛,𝜎

𝐿
(𝜉) , (44)

where

𝐹
𝑛,𝜎
(𝑠) = 2

𝑛/2
(−𝜋𝑖)

(𝑛−2)/2

⋅ 𝑠 ∫

+∞

0

𝑓0 (𝑟)𝐾𝜎+(𝑛−2)/2 (𝑖𝑟𝑠) 𝑑𝑟.

(45)

Proof. We have, by definition of hyperbolic Fourier trans-
form,

[F
𝜌

ℎ
𝑓] (𝜉) =

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝑥,𝜉]

|𝑥|
−1−𝑖𝜌

𝑓0 (
√[𝑥, 𝑥]) 𝐻̃

𝑛𝜎

𝐿
(𝑥) 𝑑𝑥

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫

+∞

0

𝑓0 (𝑟) 𝑟
−1−𝑖𝜌

× (∫
𝑆𝐻(𝑟)

𝑒
−𝑖[𝑥,𝜉]

𝐻̃
𝑛𝜎

𝐿
(𝑥) 𝑑𝑥)𝑑𝑟.

(46)

Let 𝑥 = 𝑟𝑥󸀠, 𝜉 = 𝑠𝜉󸀠, where 𝑥󸀠, 𝜉󸀠 ∈ 𝑆𝐻. Because 𝐻̃
𝑛𝜎

𝐿
is a

homogeneous function of homogeneity degree 𝜎,

𝐻̃
𝑛𝜎

𝐿
(𝑥) = 𝐻̃

𝑛𝜎

𝐿
(𝑟𝑥

󸀠
) = 𝑟

𝜎
𝐻

𝑛𝜎

𝐿
(𝑥

󸀠
) . (47)

Hence,

[F
𝜌

ℎ
𝑓] (𝜉)

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
−𝑖[𝑥,𝜉]

|𝑥|
−1−𝑖𝜌

𝑓0 (
√[𝑥, 𝑥]) 𝐻̃

𝑛𝜎

𝐿
(𝑥) 𝑑𝑥

(we change variable 𝑥 = 𝑟𝑥󸀠, 𝑑𝑥 = 𝑟𝑛−1𝑑𝑥󸀠)

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫

+∞

0

𝑓0 (𝑟) 𝑟
−1−𝑖𝜌

× (∫
𝑆𝐻

𝑒
−𝑖𝑟𝑠[𝑥

󸀠
,𝜉
󸀠
]
𝑟
𝜎
𝐻

𝑛𝜎

𝐿
(𝑥

󸀠
) 𝑟

𝑛−1
𝑑𝑥

󸀠
)𝑑𝑟

=
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫

+∞

0

𝑓0 (𝑟) 𝑟
𝜎+𝑛−1

𝑟
−1−𝑖𝜌

× (∫
𝑆𝐻

𝑒
−𝑖𝑟𝑠[𝑥

󸀠
,𝜉
󸀠
]
𝐻

𝑛𝜎

𝐿
(𝑥

󸀠
) 𝑑𝑥

󸀠
)𝑑𝑟.

(48)

Wemake use of formula (32) from [6] to calculate the integral
on 𝑆𝐻. Namely, for each 𝜉󸀠 ∈ 𝑆𝐻, the equality takes place:

∫
𝑆𝐻

𝑒
−𝑖𝑟𝑠[𝑥

󸀠
,𝜉
󸀠
]
𝐻

𝑛𝜎

𝐿
(𝑥

󸀠
) 𝑑𝑥

󸀠

= 2
𝑛/2
(−
𝜋𝑖

𝑟𝑠
)

(𝑛−2)/2

𝐾𝜎+(𝑛−2)/2 (𝑖𝑟𝑠)𝐻
𝑛𝜎

𝐿
(𝜉

󸀠
) .

(49)

Now we have

[F
𝜌

ℎ
𝑓] (𝜉) = 2

𝑛/2
𝑠
1+𝑖𝜌
𝐻

𝑛𝜎

𝐿
(𝜉

󸀠
)

⋅ ∫

+∞

0

𝑓0 (𝑟) 𝑟
𝜎+𝑛−1

𝑟
−1−𝑖𝜌

× (−
𝜋𝑖

𝑟𝑠
)

(𝑛−2)/2

𝐾𝜎+(𝑛−2)/2 (𝑖𝑟𝑠) 𝑑𝑟

= 2
𝑛/2
𝐻̃

𝑛𝜎

𝐿
(𝜉) 𝑠 ⋅ (−𝜋𝑖)

(𝑛−2)/2

× ∫

+∞

0

𝑓0 (𝑟)𝐾𝜎+(𝑛−2)/2 (𝑖𝑟𝑠) 𝑑𝑟

= 𝐹
𝑛𝜎
𝐻̃

𝑛𝜎

𝐿
(𝜉) ,

(50)
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where

𝐹
𝑛𝜎
(𝑠) = 2

𝑛/2
𝐻̃

𝑛𝜎

𝐿
(𝜉) 𝑠 ⋅ (−𝜋𝑖)

(𝑛−2)/2

× ∫

+∞

0

𝑓0 (𝑟)𝐾𝜎+(𝑛−2)/2 (𝑖𝑟𝑠) 𝑑𝑟.

(51)

Proposition 10 is proved.

Corollary 11. If 𝜎 = −(𝑛 − 2)/2 + 𝑖𝜌, then hyperbolic
Fourier transformF

𝜌

ℎ
acts on the spaceG𝑛𝜎 of space hyperbolic

harmonics as a scalar operator:

[F
𝜌

ℎ
𝐻̃

𝑛𝜎

𝐿
] (𝜉) = 𝜆𝑛𝜎𝐻̃

𝑛𝜎

𝐿
(𝜉) , (52)

where

𝜆𝑛𝜎 =
(−2𝜋𝑖)

𝑛/2

2 cosh (𝜋𝜌/2)
. (53)

Proof. Consider [F𝜌

ℎ
𝐻̃

𝑛𝜎
](𝜉). Let us use Proposition 10.

Because 𝑓0([𝜉, 𝜉]
1/2
) ≡ 1, we have

[F
𝜌

ℎ
𝐻̃

𝑛𝜎
] (𝜉) = 2

𝑛/2
(−𝜋𝑖)

(𝑛−2)/2
𝑠𝐻̃

𝑛𝜎
(𝜉)

× ∫

+∞

0

𝐾𝜎+(𝑛−2)/2 (𝑖𝑟𝑠) 𝑑𝑟.

(54)

We apply the integral from [9], Section 2.16.2, formula (1),
and set ] = 𝑖𝜌 and 𝑐 = 𝑖𝑠. Finally we have (this integral should
be understood in a regularized value sense too) the following:

[F
𝜌

ℎ
𝐻̃

𝑛𝜎
] (𝜉)

= 2
𝑛/2
(−𝜋𝑖)

(𝑛−2)/2
⋅ 𝑠 ⋅

𝜋

2𝑖𝑠
⋅

1

cos (𝑖𝜋𝜌/2)
𝐻̃

𝑛𝜎
(𝜉)

=
(−2𝜋𝑖)

𝑛/2

2 cosh (𝜋𝜌/2)
𝐻̃

𝑛𝜎
(𝜉) .

(55)

Corollary 11 is proved.

Corollary 12. The inverse hyperbolic Fourier transform
(F

𝜌

ℎ
)
−1 on each of the spacesG𝑛𝜎 has the next form:

[(F
𝜌

ℎ
)
−1
𝑓] (𝜉)

=
2 cosh (𝜋𝜌/2)
(−2𝜋𝑖)

𝑛/2

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

1+𝑖𝜌
∫
𝑈

𝑒
𝑖[𝜉,𝑥]

|𝑥|
−1−𝑖𝜌

𝑓 (𝑥) 𝑑𝑥.

(56)

The proof evidently follows from Corollary 11.

Remark 13. A well-known theorem asserts that any inter-
twining operator of the quasiregular representation of a
compact group is a convolution [5, chapter V, Section 2,
Theorem 2.3]. However, the questionwhether this theorem is
true for representation 𝑅 of Lie group 𝑆𝑂0(𝑛−1, 1) in 𝐿

1

loc(𝑈)
is still open. Due to the exact sequence

1 󳨀→ 𝑆𝑂 (𝑛 − 1) 󳨀→ 𝑆𝑂0 (𝑛 − 1, 1) 󳨀→ 𝑆𝐻 󳨀→ 1, (57)

any function 𝜑(𝑥) defined on a Lobachevsky space 𝑆𝐻 could
be raised to function 𝜑 on 𝐺 = 𝑆𝑂0(𝑛 − 1, 1) that is constant
on the left cosets under subgroup 𝑆𝑂(𝑛−1). An analog of this
theorem in 𝐿1∩𝐿2(𝑆𝐻) is valid as it was shown in the author’s
paper [10]. Our proof method uses Fourier transform and an
ordinary convolution of functions on 𝐺:

[𝜑 ∗ 𝜓̃] (𝑥) = ∫
𝐺

𝜑 (𝑔) 𝜓̃ (𝑔
−1
𝑥) 𝑑𝑔. (58)

We hope that the technique developed in this work (including
the hyperbolic Fourier transform) will be able to prove
that intertwining operators of quasiregular representation of
Lorentz group are also involutions in interior of the light cone.
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