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We study the following third-order 𝑝-Laplacian functional dynamic equation on time scales: [Φ𝑝(𝑢
Δ∇
(𝑡))]
∇

+𝑎(𝑡)𝑓(𝑢(𝑡), 𝑢(𝜇(𝑡))) =

0, 𝑡 ∈ (0, 𝑇)T, 𝑢(𝑡) = 𝜑(𝑡), 𝑡 ∈ [−𝑟, 0]T, 𝑢
Δ
(0) = 𝑢

Δ∇
(𝑇) = 0, and 𝑢(𝑇)+𝐵0(𝑢

Δ
(𝜂)) = 0. By applying the Five-Functional Fixed Point

Theorem, the existence criteria of three positive solutions are established.

1. Introduction

Recently, much attention has been paid to the existence of
positive solutions for the boundary value problems with 𝑝-
Laplacian operator on time scales; for example, see [1–22] and
the references therein. But, to the best of our knowledge, there
is not much concerning 𝑝-Laplacian functional dynamic
equations on time scales [6, 12–14, 19, 21, 22], especially for
the third-order𝑝-Laplacian functional dynamic equations on
time scales [14, 22].

In [14], Song and Gao were concerned with the existence
of positive solutions for the 𝑝-Laplacian functional dynamic
equation on time scales:

[Φ𝑝 (𝑢
Δ∇

(𝑡))]
∇

+ 𝑎 (𝑡) 𝑓 (𝑢 (𝑡) , 𝑢 (𝜇 (𝑡))) = 0, 𝑡 ∈ (0, 𝑇)T,

𝑢 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0]T,

𝑢
Δ
(0) = 𝑢

Δ∇
(𝑇) = 0, 𝑢 (𝑇) + 𝐵0 (𝑢

Δ
(𝜂)) = 0,

(1)

where 𝜂 ∈ (0, 𝜌(𝑇))T and Φ𝑝(𝑠) is 𝑝-Laplacian operator; that
is, Φ𝑝(𝑠) = |𝑠|

𝑝−2
𝑠, 𝑝 > 1, (Φ𝑝)

−1
= Φ𝑞, 1/𝑝 + 1/𝑞 = 1, and

(C1) 𝑓 : (R+)
2
→ R+ is continuous;

(C2) 𝑎 : T → R+ is left dense continuous (i.e., 𝑎 ∈

𝐶ld(T,R+)) and does not vanish identically on any

closed subinterval of [0, 𝑇], where𝐶ld(T,R+) denotes
the set of all left dense continuous functions from T
to R+;

(C3) 𝜑 : [−𝑟, 0]T → R+ is continuous and 𝑟 > 0;
(C4) 𝜇 : [0, 𝑇]T → [−𝑟, 𝑇]T is continuous, 𝜇(𝑡) ≤ 0 for all

𝑡;
(C5) 𝐵0 : R → R is continuous and satisfies the condition

that there are 𝐴 ≥ 𝐵 ≥ 0 such that

𝐵V ≤ 𝐵0 (V) ≤ 𝐴V, ∀R. (2)

The existence of two positive solutions to problem (1) was
obtained by using a double fixed point theorem due to Avery
et al. [23] in a cone.

In [22], Wang and Guan considered the existence of
positive solutions to problem (1) by applying the well-known
Leggett-Williams Fixed Point Theorem.

Motivated by [14, 22], we will show that problem (1) has at
least three positive solutions by means of the Five-Functional
Fixed Point Theorem [24] (which is a generalization of the
Leggett-Williams Fixed Point Theorem [25]). It is worth
noting that the Five-Functional Fixed Point Theorem is used
extensively in yielding three solutions for BVPs of differential
equations, difference equations, and/or dynamic equations
on time scales; see [6, 26, 27] and references therein.

Throughout this work we assume knowledge of time
scales and time-scale notation, first introduced byHilger [28].
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For more on time scales, please see the texts by Bohner and
Peterson [29, 30].

In the remainder of this section, we state the following
theorem, which is crucial to our proof.

Let 𝛾, 𝛽, 𝜃 be nonnegative, continuous, and convex
functionals on 𝑃 and let 𝛼, 𝜓 be nonnegative, continuous,
and concave functionals on 𝑃. Then, for nonnegative real
numbers ℎ, 𝑎, 𝑏, 𝑑, and 𝑐, we define the convex sets

𝑃 (𝛾, 𝑐) = {𝑥 ∈ 𝑃 : 𝛾 (𝑥) < 𝑐} ,

𝑃 (𝛾, 𝛼, 𝑎, 𝑐) = {𝑥 ∈ 𝑃 : 𝑎 ≤ 𝛼 (𝑥) , 𝛾 (𝑥) ≤ 𝑐} ,

𝑄 (𝛾, 𝛽, 𝑑, 𝑐) = {𝑥 ∈ 𝑃 : 𝛽 (𝑥) ≤ 𝑑, 𝛾 (𝑥) ≤ 𝑐} ,

𝑃 (𝛾, 𝜃, 𝛼, 𝑎, 𝑏, 𝑐) = {𝑥 ∈ 𝑃 : 𝑎 ≤ 𝛼 (𝑥) , 𝜃 (𝑥) ≤ 𝑏, 𝛾 (𝑥) ≤ 𝑐} ,

𝑄 (𝛾, 𝛽, 𝜓, ℎ, 𝑑, 𝑐)

= {𝑥 ∈ 𝑃 : ℎ ≤ 𝜓 (𝑥) , 𝛽 (𝑥) ≤ 𝑑, 𝛾 (𝑥) ≤ 𝑐} .

(3)

Theorem 1 (see [24]). Let 𝑃 be a cone in a real Banach space
𝐸. Suppose there exist positive numbers 𝑐 and𝑀; nonnegative,
continuous, and concave functionals 𝛼 and 𝜓 on 𝑃; and
nonnegative, continuous, and convex functionals 𝛾, 𝛽, and 𝜃

on 𝑃, with

𝛼 (𝑥) ≤ 𝛽 (𝑥) , ‖𝑥‖ ≤ 𝑀𝛾 (𝑥) (4)

for all 𝑥 ∈ 𝑃(𝛾, 𝑐). Suppose

𝐹 : 𝑃(𝛾, 𝑐) → 𝑃(𝛾, 𝑐) (5)

is completely continuous and there exist nonnegative numbers
ℎ, 𝑎, 𝑘, 𝑏, with 0 < 𝑎 < 𝑏 such that

(i) {𝑥 ∈ 𝑃(𝛾, 𝜃, 𝛼, 𝑏, 𝑘, 𝑐) : 𝛼(𝑥) > 𝑏} ̸= ⌀ and 𝛼(𝐹𝑥) > 𝑏

for 𝑥 ∈ 𝑃(𝛾, 𝜃, 𝛼, 𝑏, 𝑘, 𝑐);

(ii) {𝑥 ∈ 𝑄(𝛾, 𝛽, 𝜓, ℎ, 𝑎, 𝑐) : 𝛽(𝑥) < 𝑎} ̸= ⌀ and 𝛽(𝐹𝑥) < 𝑎

for 𝑥 ∈ 𝑄(𝛾, 𝛽, 𝜓, ℎ, 𝑎, 𝑐);

(iii) 𝛼(𝐹𝑥) > 𝑏 for 𝑥 ∈ 𝑃(𝛾, 𝛼, 𝑏, 𝑐) with 𝜃(𝐹𝑥) > 𝑘;

(iv) 𝛽(𝐹𝑥) < 𝑎 for 𝑥 ∈ 𝑄(𝛾, 𝛽, 𝑎, 𝑐) with 𝜓(𝐹𝑥) < ℎ.

Then 𝐹 has at least three fixed points 𝑥1, 𝑥2, 𝑥3 ∈ 𝑃(𝛾, 𝑐)

such that

𝛽 (𝑥1) < 𝑎, 𝑏 < 𝛼 (𝑥2) ,

𝑎 < 𝛽 (𝑥3) 𝑤𝑖𝑡ℎ 𝛼 (𝑥3) < 𝑏.

(6)

2. Existence of Three Positive Solutions

We note that 𝑢(𝑡) is a solution of BVP (1) if and only if

𝑢 (𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

∫

𝑇

0

(𝑇 − 𝑠)Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

− 𝐵0 (∫

𝜂

0

Φ𝑞 (∫

𝑠

0

− 𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠)

+ ∫

𝑡

0

(𝑡 − 𝑠)Φ𝑞 (∫

𝑠

0

− 𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠,

𝑡 ∈ [0, 𝑇]T,

𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0]T.

(7)

Let 𝐸 = 𝐶ld([0, 𝑇]T,R) be endowed with ‖𝑢‖ =

sup
𝑡∈[0,𝑇]T

|𝑢(𝑡)|, so 𝐸 is a Banach space. Define cone 𝑃 ⊂ 𝐸

by

𝑃 = {𝑢 ∈ 𝐸 : 𝑢 is concave and

nonnegative valued on [0, 𝑇]T, 𝑢
Δ
(0) = 0} .

(8)

For each 𝑢 ∈ 𝐸, extend 𝑢(𝑡) to [−𝑟, 𝑇]T with 𝑢(𝑡) = 𝜑(𝑡)

for 𝑡 ∈ [−𝑟, 0]T.
Define 𝐹 : 𝑃 → 𝐸 by

(𝐹𝑢) (𝑡)

= ∫

𝑇

0

(𝑇 − 𝑠)Φ𝑞

× (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

− 𝐵0 (∫

𝜂

0

Φ𝑞 (∫

𝑠

0

−𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠)

+ ∫

𝑡

0

(𝑡 − 𝑠)Φ𝑞 (∫

𝑠

0

−𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠,

𝑡 ∈ [0, 𝑇]T.

(9)

We seek a point, 𝑢1, of 𝐹 in the cone 𝑃. Define

𝑢 (𝑡) = {
𝑢1 (𝑡) , 𝑡 ∈ [0, 𝑇]T,

𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0]T.
(10)

Then 𝑢(𝑡) denotes a positive solution of BVP (1).
We have the following results.

Lemma 2. Let 𝑢 ∈ 𝑃, and then

(1) 𝐹 : 𝑃 → 𝑃 is completely continuous;
(2) 𝑢(𝑡) ≥ ((𝑇 − 𝑡)/𝑇)‖𝑢‖ for 𝑡 ∈ [0, 𝑇]T;
(3) 𝑢(𝑡) is decreasing [0, 𝑇]T;
(4) (𝑇 − 𝜍)𝑢(𝜏) ≤ (𝑇 − 𝜏)𝑢(𝜍) for 0 < 𝜏 < 𝜍 < 𝑇 and

𝜏, 𝜍 ∈ T.
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Proof. (1)–(3) are Lemma 3.1 of [14]. It is easy to conclude that
(4) is satisfied by the concavity of 𝑢.

Let 𝑙 ∈ T be fixed such that 0 < 𝑙 < 𝜂 < 𝑇, and set

𝑌1 = {𝑡 ∈ [0, 𝑇]T : 𝜇 (𝑡) < 0} ;

𝑌2 = {𝑡 ∈ [0, 𝑇]T : 𝜇 (𝑡) ≥ 0} ;

𝑌3 = 𝑌1 ∩ [0, 𝑙]T.

(11)

Throughout this paper, we assume 𝑌3 ̸= ⌀ and
∫
𝑌3
𝑎(𝑟)∇𝑟 > 0.
We define the nonnegative, continuous, and concave

functionals𝛼,𝜓 and the nonnegative, continuous, and convex
functionals 𝛽, 𝜃, 𝛾 on the cone 𝑃, respectively, as

𝛾 (𝑢) = 𝜃 (𝑢) = max
𝑡∈[𝜂,𝑇]T

𝑢 (𝑡) = 𝑢 (𝜂) ,

𝛼 (𝑢) = min
𝑡∈[0,𝑙]T

𝑢 (𝑡) = 𝑢 (𝑙) ,

𝛽 (𝑢) = max
𝑡∈[𝑙,𝑇]T

𝑢 (𝑡) = 𝑢 (𝑙) ,

𝜓 (𝑢) = min
𝑡∈[0,𝜂]T

𝑢 (𝑡) = 𝑢 (𝜂) .

(12)

We observe that 𝛼(𝑢) = 𝛽(𝑢) for each 𝑢 ∈ 𝑃.
In addition, by Lemma 2, we have 𝛾(𝑢) = 𝑢(𝜂) ≥ ((𝑇 −

𝜂)/𝑇)‖𝑢‖. Hence ‖𝑢‖ ≤ (𝑇/(𝑇 − 𝜂))𝛾(𝑢) for all 𝑢 ∈ 𝑃.
For convenience, we define

𝜇 = 𝑇 (𝑇 + 𝜂 + 𝐵)Φ𝑞 (∫

𝑇

0

𝑎 (𝑟) ∇𝑟) ,

𝛿 = 𝐴∫
𝑌3

Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) ∇𝑟)∇𝑠,

𝜆 = 𝑇 (𝑇 + 𝑙 + 𝐵)Φ𝑞 (∫

𝑇

0

𝑎 (𝑟) ∇𝑟) .

(13)

We now state growth conditions on 𝑓 so that BVP (1) has
at least three positive solutions.

Theorem 3. Let 0 < 𝑎 < ((𝑇 − 𝑙)/𝑇)𝑏 < ((𝑇 − 𝜂)(𝑇 − 𝑙)/𝑇
2
)𝑐,

𝜇𝑏 < 𝛿𝑐, and suppose that 𝑓 satisfies the following conditions:

(H1) 𝑓(𝑢, 𝜑(𝑠)) < Φ𝑝(𝑐/𝜇), if 0 ≤ 𝑢 ≤ (𝑇/(𝑇 − 𝜂))𝑐,
uniformly in 𝑠 ∈ [−𝑟, 0]T, and 𝑓(𝑢1, 𝑢2) < Φ𝑝(𝑐/𝜇),
if 0 ≤ 𝑢𝑖 ≤ (𝑇/(𝑇 − 𝜂))𝑐, 𝑖 = 1, 2;

(H2) 𝑓(𝑢, 𝜑(𝑠)) > Φ𝑝(𝑏/𝛿), if 𝑏 ≤ 𝑢 ≤ (𝑇/(𝑇 − 𝜂))
2
𝑏,

uniformly in 𝑠 ∈ [−𝑟, 0]T;
(H3) 𝑓(𝑢, 𝜑(𝑠)) < Φ𝑝(𝑎/𝜆), if 0 ≤ 𝑢 ≤ (𝑇/(𝑇 − 𝑙))𝑎,

uniformly in 𝑠 ∈ [−𝑟, 0]T, and 𝑓(𝑢1, 𝑢2) < Φ𝑝(𝑎/𝜆),
if 0 ≤ 𝑢𝑖 ≤ (𝑇/(𝑇 − 𝑙))𝑎, 𝑖 = 1, 2.

Then BVP (1) has at least three positive solutions of the form

𝑢 (𝑡) = {
𝑢𝑖 (𝑡) , 𝑡 ∈ [0, 𝑇]T, 𝑖 = 1, 2, 3,

𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0]T,
(14)

where max𝑡∈[𝑙,𝑇]T𝑢1(𝑡) < 𝑎, min𝑡∈[0,𝑙]T𝑢2(𝑡) > 𝑏, and 𝑎 <

max𝑡∈[𝑙,𝑇]T𝑢3(𝑡) withmin𝑡∈[0,𝑙]T𝑢3(𝑡) < 𝑏.

Proof. Let 𝑢 ∈ 𝑃(𝛾, 𝑐), and then 𝛾(𝑢) = max𝑡∈[𝜂,𝑇]T𝑢(𝑡) =

𝑢(𝜂) ≤ 𝑐, and consequently, 0 ≤ 𝑢(𝑡) ≤ 𝑐 for 𝑡 ∈ [𝜂, 𝑇]T. Since
𝑢(𝜂) ≥ ((𝑇 − 𝜂)/𝑇)𝑢(0), so ‖𝑢‖ = 𝑢(0) ≤ (𝑇/(𝑇 − 𝜂))𝑢(𝜂) ≤

(𝑇/(𝑇 − 𝜂))𝑐, and this implies

0 ≤ 𝑢 (𝑡) ≤
𝑇

𝑇 − 𝜂
𝑐, for 𝑡 ∈ [0, 𝑇]T. (15)

From (H1), we have

𝛾 (𝐹𝑢)

= (𝐹𝑢) (𝜂)

= ∫

𝑇

0

(𝑇 − 𝑠)Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

− 𝐵0 (∫

𝜂

0

Φ𝑞 (∫

𝑠

0

−𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠)

+ ∫

𝜂

0

(𝜂 − 𝑠)Φ𝑞 (∫

𝑠

0

−𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

≤ ∫

𝑇

0

𝑇Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

+ 𝐵∫

𝑇

0

Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

+ ∫

𝜂

0

𝑇Φ𝑞 (∫

𝑇

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

= 𝑇 (𝑇 + 𝜂 + 𝐵)Φ𝑞 [∫
𝑌1

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝜑 (𝜇 (𝑟))) ∇𝑟

+ ∫
𝑌2

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟]

< 𝑇 (𝑇 + 𝜂 + 𝐵)Φ𝑞 (∫

𝑇

0

𝑎 (𝑟) ∇𝑟)
𝑐

𝜇
= 𝑐.

(16)

Therefore

𝐹𝑢 ∈ 𝑃(𝛾, 𝑐). (17)

We now turn to property (i) of Theorem 1. Choosing 𝑢 ≡

(𝑇/(𝑇 − 𝜂))𝑏, 𝑘 = (𝑇/(𝑇 − 𝜂))𝑏, it follows that

𝛼 (𝑢) = 𝑢 (𝑙) =
𝑇

𝑇 − 𝜂
𝑏 > 𝑏,

𝜃 (𝑢) = 𝑢 (𝜂) =
𝑇

𝑇 − 𝜂
𝑏 = 𝑘,

𝛾 (𝑢) = 𝑢 (𝜂) =
𝑇

𝑇 − 𝜂
𝑏 < 𝑐,

(18)
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which shows that {𝑢 ∈ 𝑃(𝛾, 𝜃, 𝛼, 𝑏, 𝑘, 𝑐) : 𝛼(𝑢) > 𝑏} ̸= ⌀, and,
for 𝑢 ∈ 𝑃(𝛾, 𝜃, 𝛼, 𝑏, (𝑇/(𝑇 − 𝜂))𝑏, 𝑐), we have

𝑏 ≤ 𝑢 (𝑡) ≤ (
𝑇

𝑇 − 𝜂
)

2

𝑏, for 𝑡 ∈ [0, 𝑙]T. (19)

From (H2), we have

𝛼 (𝐹𝑢)

= (𝐹𝑢) (𝑙)

= ∫

𝑇

0

(𝑇 − 𝑠)Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

− 𝐵0 (∫

𝜂

0

Φ𝑞 (∫

𝑠

0

−𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠)

+ ∫

𝑙

0

(𝑡 − 𝑠)Φ𝑞 (∫

𝑠

0

−𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

≥ −𝐵0 (∫

𝜂

0

Φ𝑞 (∫

𝑠

0

−𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠)

≥ 𝐴∫

𝜂

0

Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

≥ 𝐴∫

𝑙

0

Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

≥ 𝐴∫
𝑌3

Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝜑 (𝜇 (𝑟))) ∇𝑟)∇𝑠

> 𝐴∫
𝑌3

Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) ∇𝑟)∇𝑠
𝑏

𝛿
= 𝑏.

(20)

We conclude that (i) of Theorem 1 is satisfied.
We next address (ii) of Theorem 1. If we take 𝑢 ≡ ((𝑇 −

𝜂)/𝑇)𝑎, ℎ = ((𝑇 − 𝜂)/𝑇)𝑎, then

𝛾 (𝑢) = 𝑢 (𝜂) =
𝑇 − 𝜂

𝑇
𝑎 < 𝑐,

𝜓 (𝑢) = 𝑢 (𝜂) =
𝑇 − 𝜂

𝑇
𝑎 = ℎ,

𝛽 (𝑢) = 𝑢 (𝑙) =
𝑇 − 𝜂

𝑇
𝑎 < 𝑎.

(21)

From this we know that {𝑢 ∈ 𝑄(𝛾, 𝛽, 𝜓, ℎ, 𝑎, 𝑐) : 𝛽(𝑢) <

𝑎} ̸= ⌀. If 𝑢 ∈ 𝑄(𝛾, 𝛽, 𝜓, ((𝑇 − 𝜂)/𝑇)𝑎, 𝑎, 𝑐), then

0 ≤ 𝑢 (𝑡) ≤
𝑇

𝑇 − 𝑙
𝑎, for 𝑡 ∈ [0, 𝑇]T. (22)

From (H3), we have

𝛽 (𝐹𝑢)

= (𝐹𝑢) (𝑙)

= ∫

𝑇

0

(𝑇 − 𝑠)Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

− 𝐵0 (∫

𝜂

0

Φ𝑞 (∫

𝑠

0

−𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠)

+ ∫

𝑙

0

(𝑡 − 𝑠)Φ𝑞 (∫

𝑠

0

−𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

≤ ∫

𝑇

0

𝑇Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

+ 𝐵∫

𝑇

0

Φ𝑞 (∫

𝑠

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

+ ∫

𝑙

0

𝑇Φ𝑞 (∫

𝑇

0

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟)∇𝑠

= 𝑇 (𝑇 + 𝑙 + 𝐵)Φ𝑞 [∫
𝑌1

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝜑 (𝜇 (𝑟))) ∇𝑟

+∫
𝑌2

𝑎 (𝑟) 𝑓 (𝑢 (𝑟) , 𝑢 (𝜇 (𝑟))) ∇𝑟]

< 𝑇 (𝑇 + 𝑙 + 𝐵)Φ𝑞 (∫

𝑇

0

𝑎 (𝑟) ∇𝑟)
𝑎

𝜆
= 𝑎.

(23)

Now we show that (iii) of Theorem 1 is satisfied. If 𝑢 ∈

𝑃(𝛾, 𝛼, 𝑏, 𝑐) and 𝜃(𝐹𝑢) = 𝐹𝑢(𝜂) > (𝑇/(𝑇 − 𝜂))𝑏, then

𝛼 (𝐹𝑢) ≥ (𝐹𝑢) (𝑙) =
𝑇 − 𝑙

𝑇
𝐹𝑢 (𝑙) ≥

𝑇 − 𝑙

𝑇
𝐹𝑢 (𝜂)

>
𝑇 − 𝑙

𝑇 − 𝜂
𝑏 > 𝑏.

(24)

Finally, if 𝑢 ∈ 𝑄(𝛾, 𝛽, 𝑎, 𝑐) and 𝜓(𝐹𝑢) = 𝐹𝑢(𝜂) < ((𝑇 −

𝜂)/𝑇)𝑎, then from (4) of Lemma 2 we have

𝛽 (𝐹𝑢) = 𝐹𝑢 (𝑙) ≤
𝑇

𝑇 − 𝑙
𝐹𝑢 (𝑙) ≤

𝑇

𝑇 − 𝜂
𝐹𝑢 (𝜂) < 𝑎, (25)

which shows that condition (iv) of Theorem 1 is fulfilled.
Thus, all the conditions ofTheorem 1 are satisfied. Hence,

𝐹 has at least three fixed points 𝑢1, 𝑢2, 𝑢3 satisfying

𝛽 (𝑢1) < 𝑎, 𝑏 < 𝛼 (𝑢2) ,

𝑎 < 𝛽 (𝑢3) with 𝛼 (𝑢3) < 𝑏.

(26)

Let

𝑢 (𝑡) = {
𝑢𝑖 (𝑡) , 𝑡 ∈ [0, 𝑇]T, 𝑖 = 1, 2, 3,

𝜑 (𝑡) , 𝑡 ∈ [−𝑟, 0]T,
(27)

which are three positive solutions of BVP (1).
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