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We first establish the local Poincaré inequality with 𝐿A-averaging domains for the composition of the sharp maximal operator
and potential operator, applied to the nonhomogenous 𝐴-harmonic equation. Then, according to the definition of 𝐿A-averaging
domains and relative properties, we demonstrate the global Poincaré inequality with 𝐿A-averaging domains. Finally, we give some
illustrations for these theorems.

1. Introduction

Poincaré inequality applied to differential forms has a vital
role in PDEs, nonlinear analysis, and other related fields.
With the further research conducted, we have established
various versions of Poincaré inequality under different con-
ditions. From [1–8], we have obtained the Poincaré inequal-
ity for the solution to the 𝐴-harmonic equation in uni-
formly bounded domain, John domains, and 𝐿𝑠-averaging
domains. Nevertheless, most of these Poincaré inequalities
are developed in 𝐿𝑠-averaging domains. In this paper, we
will establish the Poincaré inequality for the composition
of the sharp maximal operator and potential operator in
𝐿
A-averaging domains. As we all know, both the uniformly

bounded domain and John domains are special 𝐿𝑠-averaging
domains, and the 𝐿𝑠-averaging domains are also particular
𝐿
A-averaging domains, so the following results are the

generalizations of the Poincaré inequality in 𝐿𝑠-averaging
domains.

For convenience, we firstly introduce some notations and
terminologies. Except for special instructions, 𝐸 ⊆ R𝑚 is a
bounded domain, |𝐸| denotes the Lebesguemeasure of𝐸, and
𝑚 ≥ 2. The constant𝐾 and𝐶 can be varied at each step of the
proof. Suppose that 𝐵𝑟

𝑥
is a ball, with a radius 𝑟, centered at 𝑥.

For any 𝜌 > 0, 𝐵 ⊆ 𝐸 and 𝜌𝐵 ⊆ 𝐸 have the same center and
satisfy diam(𝜌𝐵) = 𝜌 diam(𝐵). Let Λ𝑙(R𝑚) be the space of all

𝑙-forms in R𝑚, which is expanded by the exterior product of
𝑒
B
= 𝑒
𝑖
1 ∧ 𝑒
𝑖
2 ∧ ⋅ ⋅ ⋅ ∧ 𝑒

𝑖
𝑙 , whereB = (𝑖

1
, . . . , 𝑖

𝑙
), 1 ≤ 𝑖

1
< ⋅ ⋅ ⋅ <

𝑖
𝑙
≤ 𝑚, 𝑙 = 1, 2, . . . , 𝑚. 𝐶∞(Λ𝑙𝐸) is the space of a smooth

𝑙-form on 𝐸. We use 𝐷󸀠(𝐸, Λ𝑙) to denote the space of all
differential 𝑙-forms on 𝐸; that is, 𝑤(𝑥) belongs to 𝐷󸀠(𝐸, Λ𝑙) if
and only if there exist some 𝑙th-differential functions𝑤B in𝐸
such that𝑤(𝑥) = ∑B 𝑤B(𝑥)𝑑𝑥B = ∑𝑤𝑖

1
𝑖
2
⋅⋅⋅𝑖
𝑙

(𝑥)𝑑𝑥
𝑖
1

∧ 𝑑𝑥
𝑖
2

∧

⋅ ⋅ ⋅∧ 𝑑𝑥
𝑖
𝑙

. 𝐿𝑝(𝐸, Λ𝑙) is a Banach space with the norm equipped
by ‖𝑤(𝑥)‖

𝑝,𝐸
= (∫
𝐸

|𝑤(𝑥)|
𝑝

𝑑𝑥)
1/𝑝, where 𝑤(𝑥) ∈ 𝐷󸀠(𝐸, Λ𝑙)

and every coefficient function 𝑤B ∈ 𝐿
𝑝

(𝐸), 0 < 𝑝 < ∞.
In fact, 𝑤(𝑥) on 𝐸 is the Schwartz distribution. If 𝜔(𝑥) > 0
a.e. and 𝜔(𝑥) ∈ 𝐿1loc(R

𝑚

), 𝜔(𝑥) is called a weight. Let 𝑑𝜇 =
𝜔(𝑥)𝑑𝑥; then 𝐿𝑝(𝐸, Λ𝑙, 𝜔) is a weighted Banach space with
the norm expressed by ‖𝑤(𝑥)‖

𝑝,𝐸,𝜔
= (∫
𝐸

|𝑤(𝑥)|
𝑝

𝜔(𝑥)𝑑𝑥)
1/𝑝.

In this notation, the exterior derivative is denoted by 𝑑 and
Hodge codifferential operator is expressed by 𝑑⋆. Search [9]
for more details.

Considering our purpose, we intend to give a brief
discussion about the𝐴-harmonic equation for the differential
form.The following equation is called a nonhomogeneous𝐴-
harmonic equation:

𝑑
⋆

𝐴 (𝑥, 𝑑𝑤) = 𝐵 (𝑥, 𝑑𝑤) , (1)
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where 𝐴 : 𝐸 × ∧𝑙(R𝑚) → ∧
𝑙

(R𝑚) and 𝐵 : 𝐸 × ∧𝑙(R𝑚) →
∧
𝑙−1

(R𝑚) satisfy the conditions:

󵄨󵄨󵄨󵄨𝐴 (𝑥, 𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝑎

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝−1

, 𝐴 (𝑥, 𝜉) ⋅ 𝜉 ≥
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝

,

󵄨󵄨󵄨󵄨𝐵 (𝑥, 𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝑏
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝−1

,

(2)

for almost every 𝑥 ∈ 𝐸 and all 𝜉 ∈ ∧𝑙(R𝑚). Here, 𝑎, 𝑏 >
0 are constants and 1 < 𝑝 < ∞ is a fixed exponent
associated with (1). If 𝐵 = 0, the equation 𝑑⋆𝐴(𝑥, 𝑑𝑤) = 0 is
called a homogenous𝐴-harmonic equation. See [9] for more
information.

In order to describe it easily, we first give some definitions
in this part.

Definition 1. Let 𝐸 ⊆ R𝑚 be a bounded domain and 𝑤(𝑥) ∈
𝐿
𝑝

(𝐸, Λ
𝑙

); the sharp maximal operatorM♯
𝑠
is equipped with

M
♯

𝑠
(𝑤) = M

♯

𝑠
𝑤 = M

♯

𝑠
𝑤 (𝑥)

= sup
𝑟>0

(
1

󵄨󵄨󵄨󵄨𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨

∫
𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨󵄨
𝑤 (𝑡) − 𝑤

𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝑡)

1/𝑠

,

(3)

where 𝐵𝑟
𝑥
is the ball of radius 𝑟, centered at 𝑥, 1 ≤ 𝑠 ≤ 𝑝,

𝑝 ≥ 1.
Especially, if we take 𝑠 = 1, denoteM♯

𝑠
≜ M♯.

Definition 2 (see [10]). Suppose that 𝑤(𝑥) is a differential
𝑙-form; the potential operator 𝑃 is expressed by

𝑃𝑤 (𝑥) = ∑

B

∫
𝐸

𝐾(𝑥, 𝑦)𝑤B (𝑦) 𝑑𝑦 𝑑𝑥𝛽, (4)

where the nonnegative and measurable function 𝐾(𝑥, 𝑦),
defined on the set {(𝑥, 𝑦) | 𝑥 ̸= 𝑦, 𝑥, 𝑦 ∈ R𝑚}, is a kernel
function, and the summation is over all ordered 𝑙-tupleB.

Definition 3. Take an increasingly continuous function A :

[0, +∞) → [0, +∞) as a convex function with A(0) = 0,
and 𝐸 ⊆ R𝑚 is a bounded domain, for any 𝑤(𝑥) ∈ 𝐿𝑝(𝐸); the
Orlicz norm for differential form is denoted by

‖𝑤‖
𝐿
A
𝐸,𝜇

= inf {𝜆 > 0 | 1

𝜇 (𝐸)
∫
𝐸

A (𝜆
−1

|𝑢| 𝑑𝜇) < 1} , (5)

where measure 𝜇 satisfies 𝑑𝜇 = 𝜔(𝑥)𝑑𝑥, 𝜔(𝑥) is a weight.
We callA an Orlicz function ifA : [0, +∞) → [0, +∞)

is an increasingly continuous function and satisfiesA(0) = 0
andA(∞) = ∞. Meanwhile, if the Orlicz functionA(𝑡) is a
convex function, it is called a Young function.

Based on the above definition, we get the notation of 𝐿A-
averaging domains.

Definition 4 (see [3]). LetA be a Young function; the proper
domain 𝐸 ⊆ R𝑚 is called the 𝐿A-averaging domains if 𝜇(𝐸) <

∞ and there exists a constant 𝐶 > 0 such that for any 𝐵
0
⊆ 𝐸

andA(|𝑤|) ∈ 𝐿1loc(𝐸, 𝜇), 𝑤 satisfies

1

𝜇 (𝐸)
∫
𝐸

A (𝜏
󵄨󵄨󵄨󵄨󵄨
𝑤 − 𝑤

𝐵
0

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝜇

≤ 𝐶 sup
4𝐵⊂𝐸

1

𝜇 (𝐵)
∫
𝐵

A (𝜎
󵄨󵄨󵄨󵄨𝑤 − 𝑤𝐵

󵄨󵄨󵄨󵄨) 𝑑𝜇,

(6)

where the measure 𝜇 is denoted by 𝑑𝜇 = 𝜔(𝑥)𝑑𝑥, 𝜔(𝑥) is a
weight, 𝜎 and 𝜏 are constants with 0 < 𝜏, 𝜎 < 1, and the
supremum is over all balls 𝐵 ⊂ 𝐸 with 4𝐵 ⊂ 𝐸.

Notice that if we let A(𝑡) = 𝑡𝑠, 𝐿A-averaging domains
become the 𝐿𝑠-averaging domains, so 𝐿A-averaging domains
are the generalization of 𝐿𝑠-averaging domains.

Definition 5 (see [11]). We call 𝑤(𝑥) ∈ 𝐷󸀠(𝐸, Λ𝑙) belongs to
theWRH(Λ𝑙, 𝐸)-class, 𝑙 = 0, 1, . . . , 𝑚, if for any constants 0 <
𝑠, 𝑡 < ∞ and any ball 𝐵 ⊂ 𝐸 with 𝜌𝐵 ⊂ 𝐸, there exists a
constant 𝐶 > 0 such that 𝑤(𝑥) satisfies

‖𝑤‖
𝑠,𝐵
≤ 𝐶|𝐵|

(𝑡−𝑠)/𝑠𝑡

‖𝑤‖
𝑡,𝜌𝐵
, (7)

where 𝜌 > 1 is a constant.

Remark 6. If 𝑤(𝑥) is a solution to the 𝐴-harmonic equation,
we can prove that 𝑤(𝑥) belongs to the WRH(Λ𝑙, 𝐸)-class.

2. Main Results

Before the main results are given, we need to impose some
restrictions on the kernel function 𝐾(𝑥, 𝑦) and Young func-
tion A. Firstly, let the kernel function satisfy the standard
estimates; it is equal to say that if there exist 0 < 𝛿 < 1 and
a constant 𝑐 > 0 such that for any point 𝑧 ∈ {𝑧 : |𝑥 − 𝑧| <
(1/2)|𝑥 − 𝑦|, 𝑥, 𝑦 ∈ R𝑚}, the kernel function𝐾(𝑥, 𝑦) satisfies
that

(1) 𝐾(𝑥, 𝑦) ≤ 𝑐|𝑥 − 𝑦|−𝑚, 𝑥 ̸= 𝑦;

(2) |𝐾(𝑥, 𝑦) − 𝐾(𝑧, 𝑦)| ≤ 𝑐|𝑥 − 𝑧|𝛿|𝑥 − 𝑦|−𝑚−𝛿, 𝑥 ̸= 𝑦;
(3) |𝐾(𝑦, 𝑥) − 𝐾(𝑦, 𝑧)| ≤ 𝑐|𝑥 − 𝑧|𝛿|𝑥 − 𝑦|−𝑚−𝛿, 𝑥 ̸= 𝑦,

where function𝐾(𝑥, 𝑦) : R𝑚 ×R𝑚 → R,𝑚 ≥ 1.
With regard to the Young function A, we let the Young

function A belong to the 𝐺(𝑝, 𝑞, 𝐶)-class (1 ≤ 𝑝 < 𝑞 <
∞,𝐶 ≥ 1); that is, for any 𝑡 > 0, the Young function A
satisfies that

(1) 1/𝐶 ≤ A(𝑡1/𝑝)/𝑓(𝑡) ≤ 𝐶;
(2) 1/𝐶 ≤ A(𝑡1/𝑞)/𝑔(𝑡) ≤ 𝐶,

where 𝑓 and 𝑔 are the increasingly convex and concave
functions defined on [0,∞], respectively.

Now, we establish these two important theorems based on
the above conditions.

Theorem 7. Suppose that the Young function A belongs to
the 𝐺(𝑝, 𝑞, 𝐶)-class, 𝑤 ∈ 𝐶

∞

(Λ
𝑙

𝐸) is a solution to the
nonhomogenous 𝐴-harmonic equation, the sharp maximal
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operator is noted by M♯
𝑠
, 𝑃 is the potential operator with its

kernel function 𝐾(𝑥, 𝑦) satisfying the standard estimates, 1 ≤
𝑠 < 𝑝, 𝑞 < ∞, and the bounded subset 𝐸 ⊆ R𝑚 is the
𝐿
A-averaging domains. Then, for any ball 𝐵 ⊆ 𝐸, one gets

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄩󵄩󵄩󵄩󵄩𝐿A
𝐵

≤ 𝐾‖𝑤‖
𝐿
A
𝜌𝐵

, (8)

where 𝐵 and 𝜌𝐵 ⊆ 𝐸 and the constant 𝜌 > 1.

Based on the above theorem, we can establish the
following theorem for the global Poincaré inequality in
𝐿
A-averaging domains.

Theorem 8. Suppose that the Young functionA belongs to the
𝐺(𝑝, 𝑞, 𝐶)-class, 𝑤 ∈ 𝐶∞(Λ𝑙𝐸) is a solution to the nonho-
mogenous 𝐴-harmonic equation, the sharp maximal operator
is denoted by M♯

𝑠
, 𝑃 is the potential operator with its kernel

function 𝐾(𝑥, 𝑦) satisfying the standard estimates, 1 ≤ 𝑠 < 𝑝,
𝑞 < ∞, and the bounded subset 𝐸 ⊆ R𝑚 is the 𝐿A-averaging
domains. Then, one has

󵄩󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵
0

󵄩󵄩󵄩󵄩󵄩󵄩𝐿A
𝐸

≤ 𝐾‖𝑤‖
𝐿
A
𝐸

, (9)

where 𝐵
0
⊆ 𝐵 is a fixed ball, which appears in Definition 4.

3. Preliminary Results

For proving the theorems in Section 2, we will show and
demonstrate some lemmas in this part.

Lemma9 (see [9]). Let 0 < 𝑝, 𝑞 < ∞, and 1/𝑡 = (1/𝑝)+(1/𝑞),
if 𝑓 and 𝑔 are the measurable functions defined on R𝑚, then

󵄩󵄩󵄩󵄩𝑓𝑔
󵄩󵄩󵄩󵄩𝑡,𝐼
≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝐼
⋅
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑞,𝐼
, (10)

for any 𝐼 ⊆ R𝑚.

Lemma 10 (see [5]). Let𝑃 be the potential operator applied on
a differential form with 𝐸 ⊆ R𝑚, 𝑤(𝑥) ∈ 𝑊𝑅𝐻 (Λ𝑙, 𝐸), and
assume that the weight 𝜔(𝑥) belongs to 𝐴(𝛼, 𝛽, 𝐸) with 𝛼, 𝛽 >
0. Then, there exists a constant 𝐶, independent of 𝑤(𝑥) such
that
󵄩󵄩󵄩󵄩𝑃 (𝑤) − (𝑃 (𝑤))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵,𝜔
≤ 𝐶 |𝐵| diam (𝐵) ‖𝑤‖

𝑠,𝐵,𝜔
, (11)

for any 𝐵 ⊂ 𝐸, where 𝑠 > 1 is a constant.

Remark 11. If we take 𝜔(𝑥) ≡ 1, we get
󵄩󵄩󵄩󵄩𝑃 (𝑤) − (𝑃 (𝑤))𝐵

󵄩󵄩󵄩󵄩𝑠,𝐵
≤ 𝐶 |𝐵| diam (𝐵) ‖𝑤‖

𝑠,𝐵
. (12)

Lemma 12 (see [3]). TakeΨ defined on [0, +∞) to be a strictly
increasing convex function,Ψ(0) = 0, and𝐸 ⊂ R𝑚 is a domain.
Assume that 𝑤(𝑥) ∈ 𝐷󸀠(𝐸, Λ𝑙) satisfies Ψ(|𝑤|) ∈ 𝐿1(𝐸, 𝜇) and,
for any constant 𝑐,

𝜇 {𝑥 ∈ 𝐸 : |𝑤 − 𝑐| > 0} > 0, (13)

where 𝜇 is a Radon measure defined by 𝑑𝜇(𝑥) = 𝜔(𝑥)𝑑𝑥 with
a weight 𝜔(𝑥); then for any 𝑎 > 0, one obtains

∫
𝐸

Ψ(
𝑎

2

󵄨󵄨󵄨󵄨𝑤 − 𝑤𝐸
󵄨󵄨󵄨󵄨) 𝑑𝜇 ≤ ∫

𝐸

Ψ (𝑎 |𝑤|) 𝑑𝜇. (14)

Lemma 13. If 𝜔(𝑥) ∈ 𝐴
𝑟
(𝐸), then there exist constants 𝛼 > 1

and 𝐾, not dependent on 𝜔, such that

‖𝜔‖
𝛼,𝐵
≤ 𝐾|𝐵|

(1/𝛼)−1

‖𝜔‖
1,𝐵
, (15)

for all balls 𝐵 contained in 𝐸.

Lemma 14. The sharp maximal operator M♯
𝑠
is denoted

by Definition 1, and the potential operator 𝑃 is defined by
Definition 2 with the kernel function 𝐾(𝑥, 𝑦) satisfying the
standard estimates, 𝑤(𝑥) ∈ 𝐿

𝑡

(𝐸, Λ
𝑙

) ∩ 𝐶
∞

(Λ
𝑙

𝐸)(𝑙 =

1, 2, . . . , 𝑚), 𝑡 ≥ 1. Then, there exists a constant 𝐾 > 0,
independent of 𝑤, such that

∫
𝐵

󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝑡

𝑑𝑥 ≤ 𝐾|𝐵|
1+(1/𝑚)

‖𝑤‖
𝑡,𝐵
,

(16)

for all balls 𝐵 ⊂ 𝐸.

Proof . Let 𝐵 be a ball in 𝐸, using Lemma 10 on any 𝐵𝑟
𝑥
⊂ 𝐵,

we have

(
1

󵄨󵄨󵄨󵄨𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨

∫
𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨󵄨
𝑃 (𝑤) − (𝑃 (𝑤))

𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝑥)

1/𝑠

≤ 𝐾
󵄨󵄨󵄨󵄨𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨 diam (𝐵
𝑟

𝑥
)
󵄨󵄨󵄨󵄨𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨

−1/𝑠

‖𝑤‖
𝑠,𝐵
𝑟

𝑥

≤ 𝐾
󵄨󵄨󵄨󵄨𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨

1−(1/𝑠) diam (𝐵𝑟
𝑥
) ‖𝑤‖
𝑠,𝐵

≤ 𝐾|𝐵|
1−(1/𝑠)+(1/𝑚)

‖𝑤‖
𝑠,𝐵
.

(17)

From Lemma 14 in [7], it follows that

‖𝑤‖
𝑠,𝐵
≤ |𝐵|
(1/𝑠)−(1/𝑡)

‖𝑤‖
𝑡,𝐵
, (18)

where 0 < 𝑠 ≤ 𝑡 < ∞. Substituting (18) into (17) yields

(
1

󵄨󵄨󵄨󵄨𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨

∫
𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨󵄨
𝑃 (𝑤) − (𝑃 (𝑤))

𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝑥)

1/𝑠

≤ 𝐾|𝐵|
1−(1/𝑡)+(1/𝑚)

‖𝑤‖
𝑡,𝐵
.

(19)

Taking the supremum for 𝑟, we get that

sup
𝑟>0

(
1

󵄨󵄨󵄨󵄨𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨

∫
𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨󵄨
𝑃 (𝑤) − (𝑃 (𝑤))

𝐵
𝑟

𝑥

󵄨󵄨󵄨󵄨󵄨

𝑠

𝑑𝑥)

1/𝑠

≤ sup
𝑟>0

𝐾|𝐵|
1−(1/𝑡)+(1/𝑚)

‖𝑤‖
𝑡,𝐵

= 𝐾|𝐵|
1−(1/𝑡)+(1/𝑚)

‖𝑤‖
𝑡,𝐵
.

(20)

That is,

M
♯

𝑠
(𝑃 (𝑤)) ≤ 𝐾|𝐵|

1−(1/𝑡)+(1/𝑚)

‖𝑤‖
𝑡,𝐵
. (21)
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According to the definition of 𝐿𝑡(𝐸) norm and formula (21),
it yields

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤))

󵄩󵄩󵄩󵄩󵄩𝑡,𝐵
= (∫
𝐵

󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤))

󵄨󵄨󵄨󵄨󵄨

𝑡

𝑑𝑥)

1/𝑡

≤ (∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝐾|𝐵|
1−(1/𝑡)+(1/𝑚)

‖𝑤‖
𝑡,𝐵

󵄨󵄨󵄨󵄨󵄨

𝑡

𝑑𝑥)

1/𝑡

= 𝐾|𝐵|
1+(1/𝑚)

‖𝑤‖
𝑡,𝐵
.

(22)

Choosing Ψ(𝑡) = 2𝑡, 𝑎 = 2, and 𝜔(𝑥) ≡ 1 in Lemma 12, we
have

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄩󵄩󵄩󵄩󵄩𝑡,𝐵

= (∫
B

󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝑡

𝑑𝑥)

1/𝑡

≤ (∫
𝐵

2
𝑡
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤))

󵄨󵄨󵄨󵄨󵄨

𝑡

𝑑𝑥)

1/𝑡

≤ 𝐾|𝐵|
1+(1/𝑚)

‖𝑤‖
𝑡,𝐵
.

(23)

The proof of Lemma 14 has been completed.

Lemma 15. Suppose that 𝑤(𝑥) ∈ 𝐶∞(Λ𝑙𝐸) is a solution to the
𝐴-harmonic equation, 𝐸 ⊂ R𝑚 is a bounded domain, 𝑃 is a
potential operator with the kernel function 𝐾(𝑥, 𝑦) satisfying
the standard estimates, and the sharp maximal operatorM♯

𝑠
is

expressed by Definition 1, 1 ≤ 𝑠 < 𝑝, 𝑞 < ∞. Then, there exists
a constant 𝐾 > 0, such that

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄩󵄩󵄩󵄩󵄩𝑞,𝐵
≤ 𝐾‖𝑤‖

𝑝,𝜌𝐵
, (24)

where the ball 𝐵 ⊂ 𝐸with 𝜌𝐵 ⊂ 𝐸, constant 𝜌 > 1, the measure
𝜇 is defined by 𝑑𝜇 = 𝜔(𝑥)𝑑𝑥, weight 𝜔(𝑥) ∈ 𝐴

𝑟
(𝐸), 𝜔(𝑥) ≥

𝛿 > 0, for some 𝑟 > 1 and a constant 𝛿.

Proof. Because 1/𝑞 = ((𝛼 − 1)/𝛼𝑞) + (1/𝛼𝑞), for any 𝐵 with
𝜌𝐵 contained in 𝐸, using Lemmas 9 and 14, we have

(∫
𝐵

󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝜇)

1/𝑞

= (∫
𝐵

(
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
𝜔
1/𝑞

)
𝑞

𝑑𝑥)

1/𝑞

≤ (∫
𝐵

(
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝛼𝑞/(𝛼−1)

)𝑑𝑥)

(𝛼−1)/𝛼𝑞

× (∫
𝐵

𝜔
𝛼

𝑑𝑥)

1/𝑞𝛼

≤ 𝐾|𝐵|
(1−𝛼)/𝛼𝑞

‖𝜔‖
1/𝑞

1,𝐵

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄩󵄩󵄩󵄩󵄩𝑞𝛼/(𝛼−1),𝐵
.

(25)

According to Lemma 14 and Definition 5, letting 𝑝 = 𝑟 × 𝑧,
we get

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄩󵄩󵄩󵄩󵄩𝛼𝑞/(𝛼−1),𝐵

≤ 𝐾|𝐵|
1+(1/𝑚)

‖𝑤‖
𝛼𝑞/(𝛼−1),𝐵

= 𝐾|𝐵|
1+(1/𝑚)+((𝑧(𝛼−1)−𝛼𝑞)/𝛼𝑞𝑧)

‖𝑤‖
𝑧,𝜌𝐵
.

(26)

Therefore, we know that

(∫
𝐵

󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝜇)

1/𝑞

≤ 𝐾|𝐵|
(1−𝛼)/𝑞𝛼

‖𝜔‖
1/𝑞

1,𝐵
|𝐵|
1+(1/𝑚)+((𝑧(𝛼−1)−𝛼𝑞)/𝛼𝑞𝑧)

‖𝑤‖
𝑧,𝜌𝐵

= 𝐾|𝐵|
1+(1/𝑚)−(1/𝑧)

(𝜇 (𝐵))
1/𝑞

‖𝑤‖
𝑧,𝜌𝐵
.

(27)

Because of 1/𝑧 = (1/𝑝) + ((𝑝 − 𝑧)/𝑧𝑝), and using generalized
Hölder’s inequality, we get

‖𝑤‖
𝑧,𝜌𝐵
= (∫
𝜌𝐵

(|𝑤|𝜔
1/𝑝

𝜔
−1/𝑝

)
𝑧

𝑑𝑥)

1/𝑧

≤ (∫
𝜌𝐵

|𝑤|
𝑝

𝜔𝑑𝑥)

1/𝑝

⋅ (∫
𝜌𝐵

𝜔
1/(𝑟−1)

𝑑𝑥)

(𝑟−1)/𝑝

= ‖𝑤‖
𝑝,𝜌𝐵,𝜔

󵄩󵄩󵄩󵄩󵄩
𝜔
−1
󵄩󵄩󵄩󵄩󵄩

1/𝑝

1/(𝑟−1),𝜌𝐵

.

(28)

In the light of 𝜔 ∈ 𝐴
𝑟
(𝐸), finding details in [9], we know

sup
𝐵⊂𝐸

(
1

|𝐵|
∫
𝐵

𝜔𝑑𝑥)(
1

|𝐵|
∫
𝐵

(
1

𝜔
)

1/(𝑟−1)

𝑑𝑥)

1/(𝑟−1)

< ∞.

(29)

Therefore, we can see that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜔

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/𝑝

1/(𝑟−1),𝜌𝐵

= ‖𝜔‖
−1/𝑝

1,𝜌𝐵
⋅ ‖𝜔‖
1/𝑝

1,𝜌𝐵
⋅

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

𝜔

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/𝑝

1/(𝑟−1),𝜌𝐵

≤ 𝐾(𝜇(𝜌𝐵))
−1/𝑝󵄨󵄨󵄨󵄨𝜌𝐵

󵄨󵄨󵄨󵄨

1/𝑧

≤ 𝐾(𝜇 (𝜌𝐵))
−1/𝑝

|𝐵|
1/𝑧

.

(30)

In addition, considering 𝜔 ≥ 𝛿 > 0, so we have that

𝜇 (𝜌𝐵) = ∫
𝜌𝐵

𝑑𝜇 ≥ ∫
𝜌𝐵

𝛿𝑑𝑥 = 𝛿
󵄨󵄨󵄨󵄨𝜌𝐵
󵄨󵄨󵄨󵄨 . (31)

Combining (27), (28), and (31), we obtain

(∫
𝐵

󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝜇)

1/𝑞

≤ 𝐾
󵄨󵄨󵄨󵄨𝜌𝐵
󵄨󵄨󵄨󵄨

1+(1/𝑚)−(1/𝑝)

(𝜇 (𝐵))
1/𝑞

(∫
𝜌𝐵

|𝑤|
1/𝑝

𝑑𝜇)

1/𝑞

≤ 𝐾|𝐸|
1+(1/𝑚)−(1/𝑝)

(𝜇(𝐸))
1/𝑞

(∫
𝜌𝐵

|𝑤|
1/𝑝

𝑑𝜇)

1/𝑞

≤ 𝐾‖𝑤‖
𝑝,𝜌𝐵
.

(32)

Therefore, we finish the proof of this lemma.
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4. Demonstration of Main Results

According to the above definitions and lemmas, we will prove
these two theorems in detail. Firstly, let us proveTheorem 7.

Proof of Theorem 7. Let 𝐵 and 𝜌𝐵 ⊆ 𝐸, 𝑓 and 𝑔 are,
respectively, convex and concave increasing function, use
Lemma 15, and take 𝜔(𝑥) ≡ 1; then

A(𝜆
−1

(∫
𝐵

󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥))

1/𝑞

≤ A(𝜆
−1

𝐾(∫
𝜌𝐵

|𝑤|
𝑝

𝑑𝑥)

1/𝑝

)

= A((𝜆
−𝑝

𝐾
𝑝

∫
𝜌𝐵

|𝑤|
𝑝

𝑑𝑥)

1/𝑝

)

≤ 𝐶𝑓(𝜆
−𝑝

𝐾
𝑝

∫
𝜌𝐵

|𝑤|
𝑝

𝑑𝑥)

≤ 𝐶∫
𝜌𝐵

𝑓 (𝜆
−𝑝

𝐾
𝑝

|𝑤|
𝑝

) 𝑑𝑥.

(33)

Because 𝑓(𝑡) ≤ 𝐶A(𝑡1/𝑝), we know that

∫
𝜌𝐵

𝑓 (𝜆
−𝑝

𝐾
𝑝

|𝑤|
𝑝

) 𝑑𝑥 ≤ 𝐶∫
𝜌𝐵

A (𝐾𝜆
−1

|𝑤|) 𝑑𝑥. (34)

Furthermore, we obtain

A(𝜆
−1

(∫
𝐵

󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥))

1/𝑞

≤ 𝐶∫
𝜌𝐵

A (𝐾𝜆
−1

|𝑤|) 𝑑𝑥.

(35)

For function 𝑔, using Jensen’s inequality, we get

∫
𝐵

A (𝜆
−1
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑥

≤ 𝑔(∫
𝐵

𝑔
−1

(A (𝜆
−1
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
)) 𝑑𝑥)

≤ 𝑔(𝐶∫
𝐵

(𝜆
−1
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
)
𝑞

𝑑𝑥)

≤ 𝐶A((𝐶∫
𝐵

(𝜆
−1
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
)
𝑞

𝑑𝑥)

1/𝑞

)

= 𝐶A(𝜆
−1

(𝐶∫
𝐵

(
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
)
𝑞

𝑑𝑥)

1/𝑞

) .

(36)

Using the doubling property ofA for the above the formula,
we have

∫
𝐵

A (𝜆
−1
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑥

≤ 𝐾A(𝜆
−1

(∫
𝐵

󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

)

≤ 𝐾∫
𝜌𝐵

A (𝜆
−1

|𝑤|) 𝑑𝑥.

(37)

The proof of Theorem 7 has been finished.

Now, we will use Definition 4 and Theorem 7 to prove
Theorem 8.

Proof of Theorem 8. According to Definition 4, we can know

∫
𝐸

A (𝜆
−1
󵄨󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵
0

󵄨󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑥

≤ 𝐾 sup
𝐵⊆𝐸

∫
𝐵

A (𝜆
−1
󵄨󵄨󵄨󵄨󵄨
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑥

≤ 𝐾 sup
𝐵⊆𝐸

∫
𝜌𝐵

A (𝜆
−1

|𝑤|) 𝑑𝑥

≤ 𝐾 sup
𝐵⊆𝐸

∫
𝐸

A (𝜆
−1

|𝑤|) 𝑑𝑥.

(38)

Because sup
𝐵⊆𝐸
∫
𝐸

A(𝜆−1|𝑤|)𝑑𝑥 is independent on the ball 𝐵,
we obtain that

󵄩󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵
0

󵄩󵄩󵄩󵄩󵄩󵄩𝐿A
𝐸

≤ 𝐾‖𝑤‖
𝐿
A
𝐸

. (39)

We finish the proof of Theorem 8.

5. Applications

In this part, we firstly use Theorem 8 to do an estimate for a
solution to the Laplace equation Δ𝑢 = 0.

Example 16. Let 𝑢 be a differential 2-form in R𝑚, and

𝑢 =
1

𝜗
(𝑥
1
𝑑𝑥
2
∧ 𝑑𝑥
3
+ 𝑥
2
𝑑𝑥
1
∧ 𝑑𝑥
3
+ 𝑥
3
𝑑𝑥
1
∧ 𝑑𝑥
2
) , (40)

where 𝜗 = √𝑥2
1
+ 𝑥
2

2
+ 𝑥
2

3
. It is very easy to obtain that |𝑢| = 1

and 𝑑𝑢 = 0, so 𝑢 is a solution for the Laplace equationΔ𝑢 = 0.
If we take

A (𝑡) = 𝑡 log𝑡
+
= {
𝑡, 𝑡 ≤ 𝑒

𝑡 log𝑡, 𝑡 > 𝑒,
(41)

thenA(𝑡) is a Young function and belongs to the 𝐺(𝑝, 𝑞, 𝐶)-
class, with A(|𝑢|) ∈ 𝐿1(𝐸). According to Theorem 8, we get
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that, for any fixed 𝐵
0
⊂ 𝐸, there exists a constant 𝐾 > 0 such

that
󵄩󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑢)) − (M

♯

𝑠
(𝑃 (𝑢)))

𝐵
0

󵄩󵄩󵄩󵄩󵄩󵄩𝐿A
𝐸

≤ 𝐾‖1‖
𝐿
A
𝐸

, (42)

where ‖1‖
𝐿
A
𝐸

= inf{𝜆 > 0 | (1/|𝐸|) ∫
𝐸

A(𝜆−1log𝜆
+
)𝑑𝑡 < 1}.

Now, our aim is to prove the following corollary by using
Theorem 7.

Corollary 17. Suppose that the Young function A belongs to
the 𝐺(𝑝, 𝑞, 𝐶)-class, and 𝑤 ∈ 𝐶∞(Λ𝑙𝐸) is a solution to the
nonhomogenous 𝐴-harmonic equation. The sharp maximal
operator is noted by 𝑀♯

𝑠
, 𝑃 is the potential operator with

its kernel function 𝐾(𝑥, 𝑦) satisfying the standard estimates
(1 ≤ 𝑠 < 𝑝, 𝑞 < ∞), and the bounded 𝐸 ⊆ R𝑚 is the 𝐿A-
averaging domains. Then, there exists a constant 𝐾 > 0, such
that

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤))

󵄩󵄩󵄩󵄩󵄩𝐿A
𝐵

≤ 𝐾‖𝑤‖
𝐿
A
𝜌𝐵

, (43)

where 𝐵 ⊂ 𝐸 with 𝜌𝐵 ⊆ 𝐸, and the constant 𝜌 > 1.

Proof. By using Minkowski inequality, we know that
󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤))

󵄩󵄩󵄩󵄩󵄩𝐿A
𝐵

≤
󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄩󵄩󵄩󵄩󵄩𝐿A
𝐵

+
󵄩󵄩󵄩󵄩󵄩
(M
♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄩󵄩󵄩󵄩󵄩𝐿A
𝐵

.

(44)

From [12] and formula (22), we have

∫
𝐵

A (𝜆
−1
󵄨󵄨󵄨󵄨󵄨
(M
♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑡

= 𝑓 ⋅ 𝑓
−1

(∫
𝐵

A (𝜆
−1
󵄨󵄨󵄨󵄨󵄨
(M
♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
) 𝑑𝑡)

≤ 𝑓(𝐾∫
𝐵

𝑓
−1

(A (𝜆
−1
󵄨󵄨󵄨󵄨󵄨
(M
♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨
)) 𝑑𝑡)

≤ 𝑓(𝐾∫
𝐵

𝜆
−𝑞
󵄨󵄨󵄨󵄨󵄨
(M
♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑡)

≤ 𝑓(𝐾∫
𝐵

𝜆
−𝑞
󵄨󵄨󵄨󵄨󵄨
(M
♯

𝑠
(𝑃 (𝑤)))

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑡)

≤ 𝑓(𝐾𝜆
−𝑞

∫
𝐵

|𝑤|
𝑞

𝑑𝑡)

≤ 𝐾∫
𝐵

𝑓 (𝜆
−𝑞

|𝑤|
𝑞

) 𝑑𝑡

≤ 𝐾∫
𝐵

A (𝜆
−1

|𝑤|) 𝑑𝑡

≤ 𝐾‖𝑤‖
𝐿
A
𝜌𝐵

,

(45)

where𝜌 > 1. In addition, according toTheorem 7, there exists
a constant𝐾 such that

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤)) − (M

♯

𝑠
(𝑃 (𝑤)))

𝐵

󵄩󵄩󵄩󵄩󵄩𝐿A
𝐵

≤ 𝐾‖𝑤‖
𝐿
A
𝜌𝐵

. (46)

Substituting (45) and (46) into (44), we conclude that there
exists a constant𝐾 > 0, independent of 𝑤, such that

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤))

󵄩󵄩󵄩󵄩󵄩𝐿A
𝐵

≤ 𝐾‖𝑤‖
𝐿
A
𝜌𝐵

. (47)

The proof of Corollary 17 has been completed.

Virtually, we can obtain a global estimate about the
composition operator by using Definition 4.

Corollary 18. Suppose that the Young function A belongs to
the 𝐺(𝑝, 𝑞, 𝐶)-class, and 𝑤 ∈ 𝐶∞(Λ𝑙𝐸) is a solution to the
nonhomogenous𝐴-harmonic equation. Let the sharp maximal
operator be noted by 𝑀♯

𝑠
, 𝑃 is the potential operator with its

kernel function 𝐾(𝑥, 𝑦) satisfying standard estimates (1 ≤ 𝑠 <
𝑝, 𝑞 < ∞), and the bounded 𝐸 ⊆ R𝑚 is the 𝐿A-averaging
domains. Then, there exists a constant 𝐾 > 0 such that

󵄩󵄩󵄩󵄩󵄩
M
♯

𝑠
(𝑃 (𝑤))

󵄩󵄩󵄩󵄩󵄩𝐿A
𝐸

≤ 𝐾‖𝑤‖
𝐿
A
𝐸

, (48)

where 𝐵
0
is a fixed ball.
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