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This paper is concerned with the 𝐿
2
− 𝐿
∞
filtering problem for a kind of Takagi-Sugeno (T-S) fuzzy stochastic system with time-

varying delay and parameter uncertainties. Parameter uncertainties in the system are assumed to satisfy global Lipschitz conditions.
And the attention of this paper is focused on the stochastically mean-square stability of the filtering error system, and the 𝐿

2
− 𝐿
∞

performance level of the output error with the disturbance input. The method designed for the delay-dependent filter is developed
based on linear matrix inequalities. Finally, the effectiveness of the proposed method is substantiated with an illustrative example.

1. Introduction

It is well known that many phenomena in engineering
have unavoidable uncertain factors that are modeled by the
stochastic differential equation. And in recent years, the
stochastic system has been widely studied. A great number of
investigations on stochastic systems have been reported in the
literature. For example, the adaptive back stepping controller
has been addressed in [1, 2] for stochastic nonlinear systems
in a strict-feedback form.When the time delay appears, [3, 4]
have investigated the stability of the time-delay stochastic
neutral networks; controllers under different performance
levels have been designed for the stochastic system in [5–
7] for the delay-dependent controller, 𝐻

∞
output feedback

controller, and 𝐿
2
− 𝐿
∞

controller, respectively. And [8–
14] have studied the controlling and filtering problem for
stochastic jumping systems. However, the results mentioned
above are only suitable for the nonlinear systems which have
exact known nonlinear dynamics models. As an efficient
technique to linearize the nonlinear differential equations,
T-S fuzzy model [15] can offer a good way to represent the
nonlinear dynamics models.

By using T-S fuzzy model, nonlinear systems turn into
linear input-output relations which could be handled easily
by appropriate fuzzy sets. This method can be seen in the
stirred tank reactor system in [16] and the truck trailer

system in [17]. Nowadays, the researches of T-S fuzzy system
have grown into a great number. A lot of results have been
reported in the literature. For example, the stability and
control problem of T-S fuzzy systems have been investigated
in [18–22] and the references therein.

On the other hand, state estimation has been found
in many practical applications and it has been extensively
studied over decades. It aims at estimating the unavailable
state variables or their combination for the given system
[23, 24]. As a branch of state estimation theory, the filter-
ing problem has become an important research field. The
𝐻
∞

filtering problem for the T-S fuzzy system has been
addressed in [25–30]; [31–33] have considered the 𝐿

2
− 𝐿
∞

filtering problem for delayed T-S fuzzy systems with different
method. Moreover, robust filters are investigated in [34–36]
for stochastic nonlinear systems.

Following above discussion, T-S fuzzy model could be
used to divide the nonlinear stochastic systems into several
subsystems. And during the past decade, many problems
have been tackled. Reference [37] deals with the robust fault
detection problem for T-S fuzzy stochastic systems. And [38,
39] consider the stabilization for the fuzzy stochastic systems
with delays. References [40–43] have studied the control
problem for fuzzy stochastic systems. An adaptive fuzzy con-
troller has been designed for stochastic nonlinear systems in
[44]. Reference [45] addresses the passivity of the stochastic
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T-S fuzzy system. Solutions to fuzzy stochastic differential
equations with local martingales have been addressed in
[46]. Then recognizing the value of state estimating when
state variables are unavailable, it is important to research the
filtering problem for T-S fuzzy stochastic systems. However,
there are few results available to the best of the authors
knowledge, especially the results on 𝐿

2
−𝐿
∞
filtering problem

for the fuzzy stochastic systems.
As a consequence, this paper will focus on the robust

fuzzy delay-dependent 𝐿
2
− 𝐿
∞

filter design for a T-S
fuzzy stochastic system with time-varying delay and norm-
bounded parameter uncertainties by using the Lyapunov-
Krasovskii functional technique and some useful free-
weighting matrices. The obtained sufficient conditions are
expressed in terms of linear matrix inequality (LMI)
approach.The remainder of this paper is organized as follows.
The filter design problem is formulated in Section 2. And
Section 3 gives our main results. In Section 4, a numerical
example is shown to illustrate the effectiveness of the pro-
posed methods. Finally, we conclude the paper in Section 5.

Notation. The notation used in this paper is fairly stan-
dard. The superscript “𝑇” stands for matrix transposition.
Throughout this paper, for real symmetric matrices𝑋 and 𝑌,
the notation 𝑋 ≥ 𝑌 (resp., 𝑋 > 𝑌) means that the matrix
𝑋 − 𝑌 is positive semidefinite (resp., positive definite). R𝑛
denotes the 𝑛-dimensional Euclidean space andR𝑚×𝑛 denotes
the set of all 𝑚 × 𝑛 real matrices. 𝐼 stands for an identity
matrix of appropriate dimension, while 𝐼

𝑛
∈ R𝑛 denotes a

vector of ones. The notation ∗ is used as an ellipsis for terms
that are induced by symmetry. diag(. . .) stands for a block-
diagonal matrix. | ⋅ | denotes the Euclidean norm for vectors
and ‖ ⋅ ‖ denotes the spectral norm for matrices. L

2
[0,∞)

represents the space of square-integrable vector functions
over [0,∞). E(⋅) stands for the mathematical expectation
operator. Matrix dimensions, if not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Problem Formulation and Preliminaries

Consider the time-delay T-S fuzzy stochastic system with
time-varying parameter uncertainties as the following form:

(Σ) : 𝑑𝑥 (𝑡)

=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) {[(𝐴

𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥 (𝑡)

+ (𝐴
𝑑𝑖
+Δ𝐴
𝑑𝑖
(𝑡)) 𝑥 (𝑡−𝜏 (𝑡))+𝐵

𝑖
V (𝑡)] 𝑑𝑡

+ [(𝐻
𝑖
+ Δ𝐻
𝑖
(𝑡)) 𝑥 (𝑡)

+ (𝐻
𝑑𝑖
+Δ𝐻
𝑑𝑖
(𝑡)) 𝑥 (𝑡−𝜏 (𝑡))] 𝑑𝜔 (𝑡)} ,

𝑑𝑦 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐶

𝑖
𝑥 (𝑡) + 𝐶

𝑑𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝐷

𝑖
V (𝑡)] 𝑑𝑡,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐿

𝑖
𝑥 (𝑡)] ,

𝑥 (𝑡) = 𝜑 (𝑡) , 𝑡 ∈ [−ℎ
2
, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑚 is the system state; 𝜑(𝑡) is a given differential
initial function on [−ℎ

2
,0];𝜔(𝑡) is a scalar zeromeanGaussian

white noise process with unit covariance; 𝑦(𝑡) ∈ R𝑛 is the
measured output; 𝑧(𝑡) ∈ R𝑙 is a signal to be estimated;
V(𝑡) ∈ R𝑠 is the noise signal which belongs toL

2
[0,∞); 𝜏(𝑡)

is a continuous differentiable function representing the time-
varying delay in 𝑥(𝑡), which is assumed to satisfy for all 𝑡 ≥ 0,

0 ≤ ℎ
1
≤ 𝜏 (𝑡) < ℎ

2
. (2)

In the considered fuzzy stochastic system, 𝐴
𝑖
, 𝐴
𝑑𝑖
, 𝐵
𝑖
, 𝐻
𝑖
,

𝐻
𝑑𝑖
, 𝐶
𝑖
, 𝐶
𝑑𝑖
, 𝐷
𝑖
, and 𝐿

𝑖
are known constant matrices with

appropriate dimensions. Δ𝐴
𝑖
(𝑡), Δ𝐴

𝑑𝑖
(𝑡), Δ𝐻

𝑖
(𝑡), and

Δ𝐻
𝑑𝑖
(𝑡) represent the unknown time-varying parameter

uncertainties and are assumed to satisfy

[
Δ𝐴
𝑖
(𝑡) Δ𝐴

𝑑𝑖
(𝑡)

Δ𝐻
𝑖
(𝑡) Δ𝐻

𝑑𝑖
(𝑡)
] = [

𝑀
1𝑖

𝑀
2𝑖

]𝐹
𝑖
(𝑡) [𝑁1𝑖 𝑁2𝑖] , (3)

where 𝑀
1𝑖
, 𝑀
2𝑖
, 𝑁
1𝑖
, and 𝑁

2𝑖
are known real constant

matrices and the unknown time-varying matrix function
satisfying

𝐹
𝑖
(𝑡)
𝑇
𝐹
𝑖
(𝑡) ≤ 𝐼 ∀𝑡. (4)

And using the fuzzy theory, there always have for all 𝑡,

𝜌
𝑖
(𝑠 (𝑡)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟,

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) = 1. (5)

The fuzzy filters we considered are as follows:

𝑑𝑥 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐴

𝑓𝑖
𝑥 (𝑡) 𝑑𝑡 + 𝐵

𝑓𝑖
𝑑𝑦 (𝑡)] ,

�̂� (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) [𝐿

𝑓𝑖
𝑥 (𝑡)] ,

(6)

in which the fuzzy rules have the same representations as in
(1). 𝑥(𝑡) ∈ R𝑛 and �̂�(𝑡) ∈ R𝑙. 𝐴

𝑓𝑖
, 𝐵
𝑓𝑖
, and 𝐿

𝑓𝑖
are the filters

needed to be determined.

Remark 1. It is worth to mention that there are two
approaches for the filter design in fuzzy systems. The imple-
mentation of the filter could be chosen to depend on or not
depend on the fuzzy rules when the fuzzy model is available
or not. And it is obvious to see that the former filter related
to the fuzzy rules is less conserve and more complex. So we
assume that the fuzzy is known here, which means the fuzzy-
rule-dependent filter is investigated in this paper as in (6).

Let 𝜉(𝑡) = [𝑥(𝑡)𝑇 𝑥(𝑡)
𝑇
]
𝑇

and 𝑒(𝑡) = 𝑧(𝑡) − �̂�(𝑡).
And the filtering error dynamic system can be written as

(Σ̃) : 𝑑𝜉 (𝑡)

= [(𝐴 + Δ𝐴 (𝑡)) 𝜉 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡))𝐾𝜉 (𝑡 − 𝜏 (𝑡))

+𝐵V (𝑡) ] 𝑑𝑡

+ [(�̃� + Δ�̃� (𝑡)) 𝜉 (𝑡) + (�̃�
𝑑
+ Δ�̃�
𝑑
(𝑡))

×𝐾𝜉 (𝑡 − 𝜏 (𝑡)) ] 𝑑𝜔 (𝑡) ,

𝑒 (𝑡) = �̃�𝜉 (𝑡) ,

(7)
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where

𝐴 = [
𝐴 0

𝐵
𝑓
𝐶 𝐴
𝑓

] , 𝐴
𝑑
= [

𝐴
𝑑

𝐵
𝑓
𝐶
𝑑1

] ,

�̃� = [
𝐻 0

0 0
] , Δ𝐴 (𝑡) = [

Δ𝐴 (𝑡) 0

0 0
] ,

Δ𝐴
𝑑
(𝑡) = [

Δ𝐴
𝑑
(𝑡)

0
] , 𝐵 = [

𝐵

𝐵
𝑓
𝐷
] ,

Δ�̃� (𝑡) = [
Δ𝐻 (𝑡) 0

0 0
] , Δ�̃�

𝑑
(𝑡) = [

Δ𝐻
𝑑
(𝑡)

0
] ,

�̃�
𝑑
= [

𝐻
𝑑

0
] , 𝐴 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑖
,

𝐴
𝑑
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑑𝑖
, 𝐶 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐶

𝑖
,

𝐻 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))𝐻

𝑖
, 𝐻

𝑑
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡))𝐻

𝑑𝑖
,

𝐶
𝑑
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐶

𝑑𝑖
, 𝐵 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐵

𝑖
,

𝐷 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐷

𝑖
, �̃� = [𝐿 −𝐿

𝑓
] ,

𝐴
𝑓
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐴

𝑓𝑖
, 𝐵

𝑓
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐵

𝑓𝑖
,

𝐿
𝑓
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑓𝑖
, 𝐿 =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑖
,

𝐿
𝑑
=

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) 𝐿

𝑑𝑖
, 𝐾 = [𝐼 0] ,

Δ𝐴 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐴

𝑖
(𝑡) ,

Δ𝐴
𝑑
(𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐴

𝑑𝑖
(𝑡) ,

Δ𝐻 (𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐻

𝑖
(𝑡) ,

Δ𝐻
𝑑
(𝑡) =

𝑟

∑

𝑖=1

𝜌
𝑖
(𝑠 (𝑡)) Δ𝐻

𝑑𝑖
(𝑡) .

(8)

We intend to design sets of fuzzy filters in the form of (6)
in this paper, such that for any scalar 0 ≤ ℎ

1
< ℎ
2
and a

prescribed level of noise attenuation 𝛾 > 0, the filtering error
system (Σ̃) could be mean square stable. Moreover, the error
system (Σ̃) satisfies 𝐿

2
− 𝐿
∞

performance.
Throughout the paper, we adopt the following definitions

and lemmas, which help to complete the proof of the main
results.

Definition 2. The system (Σ) is said to be robust stochastic
mean-square stable if there exists 𝛿(𝜀) > 0 for any 𝜀 > 0 such
that

E (‖𝑥 (𝑡)‖
2
) < 𝜀, 𝑡 > 0, (9)

when sup
−ℎ≤𝑠≤0

E(‖𝜑(𝑠)‖
2
) < 𝛿(𝜀), for any uncertain variables.

And in addition,

lim
𝑡→∞

E (‖𝑥(𝑡)‖
2
) = 0, (10)

for any initial conditions.

Definition 3. The robust stochastic mean-square stable sys-
tem (Σ̃) is said to satisfy the 𝐿

2
− 𝐿
∞

performance, for the
given scalar 𝛾 > 0 and any nonzero V(𝑡) ∈ 𝐿

2
[0,∞), and the

system (Σ̃) satisfies

‖𝑒(𝑡)‖
∞
< 𝛾‖V(𝑡)‖2, (11)

and for any uncertain variables, where

‖𝑒(𝑡)‖
2

∞
:= sup
𝑡

𝑒(𝑡)
𝑇
𝑒 (𝑡) . (12)

Lemma 4. For the given matrices𝑀,𝑁, 𝐹 with 𝐹𝑇𝐹 ≤ 𝐼 and
positive scalar 𝜀 > 0, the following inequality holds:

𝑀𝐹𝑁 + (𝑀𝐹𝑁)
𝑇
≤ 𝜀𝑀𝑀

𝑇
+ 𝜀
−1
𝑁
𝑇
𝑁. (13)

3. Robust Stochastic Stabile

First, we define the following variables for convenience:

Φ (𝑡) = (𝐴 + Δ𝐴 (𝑡)) 𝜉 (𝑡) + (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡))𝐾𝜉 (𝑡 − 𝜏 (𝑡))

+ 𝐵V (𝑡) ,

𝑔 (𝑡) = (�̃� + Δ�̃� (𝑡)) 𝜉 (𝑡) + (�̃�
𝑑
+ Δ�̃�
𝑑
(𝑡))𝐾𝜉 (𝑡 − 𝜏 (𝑡)) .

(14)

Theorem 5. The filtering error system (Σ̃) is robust stochastic
mean square stable and (11) is satisfied for any time-varying
delay 0 ≤ ℎ

1
≤ 𝜏(𝑡) < ℎ

2
, if there exist matrices 𝑃 = 𝑃

𝑇
> 0,

𝑅 = 𝑅
𝑇
> 0, 𝑄

𝑖
= 𝑄
𝑇

𝑖
> 0, 𝑍

𝑖
= 𝑍
𝑇

𝑖
> 0, 𝑇

1𝑖
, 𝑇
2𝑖
, 𝑖 = 1, 2, such

that the following matrix inequalities hold:

[
𝑃 �̃�
𝑇

�̃� 𝛾
2
𝐼
] > 0, Ψ = [

Ω Ψ
12

∗ Ψ
22

] < 0, (15)

where

Ω =

[
[
[
[
[
[
[

[

Ω
11

0 0 Ω
14

0 𝑃𝐵

∗ Ω
22

0 Ω
24

0 0

∗ ∗ Ω
33

Ω
34

0 0

∗ ∗ ∗ Ω
44

0 0

∗ ∗ ∗ ∗ Ω
55

0

∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]

]

,
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Ψ
12
= [�̃�1 �̃�2 ℎ21�̃�1 ℎ21�̃�2 ℎ21�̆�

𝑇
𝐾
𝑇
𝑍1 ℎ21�̆�

𝑇
𝐾
𝑇
𝑍2 �̆�𝑃] ,

Ψ
22
= diag {−𝑍

2
, −𝑍
2
, −ℎ
21
𝑍
1
, −ℎ
21
𝑍
1
, −ℎ
21
𝑍
1
,

−ℎ
21
𝑍
2
, −𝑃} ,

Ω
11
= 𝑃 (𝐴 + Δ𝐴 (𝑡)) + (𝐴 + Δ𝐴 (𝑡))

𝑇

𝑃

+ 𝐾
𝑇
(𝑄
1
+ 𝑄
2
+ (ℎ
2
− ℎ
1
) 𝑅)𝐾,

Ω
14
= 𝑃 (𝐴

𝑑
+ Δ𝐴
𝑑
(𝑡)) ,

Ω
22
= −𝑄
1
+ 𝑇
1
+ 𝑇
𝑇

1
, Ω

24
= −𝑇
1
+ 𝑇
1
,

Ω
33
= −𝑄
2
− 𝑇
2
− 𝑇
𝑇

2
, Ω

34
= 𝑇
2
− 𝑇
𝑇

2
,

Ω
44
= −𝑇
1
− 𝑇
𝑇

1
+ 𝑇
2
+ 𝑇
𝑇

2
,

Ω
55
=

−𝑅

(ℎ
2
− ℎ
1
)
,

�̃�
1
= [0 𝑇

𝑇

1
0 𝑇
𝑇

1
0 0]
𝑇

,

�̃�
2
= [0 0 𝑇

𝑇

2
𝑇
𝑇

2
0 0]
𝑇

,

�̆� = [𝐴
𝑇
+ Δ𝐴
𝑇
(𝑡) 0 0 𝐴

𝑇

𝑑
+ Δ𝐴
𝑇

𝑑
(𝑡) 0 𝐵

𝑇
]
𝑇

,

�̆� = [�̃�
𝑇
+ Δ�̃�

𝑇
(𝑡) 0 0 �̃�

𝑇

𝑑
+ Δ�̃�

𝑇

𝑑
(𝑡) 0 0]

𝑇

,

ℎ
21
= ℎ
2
− ℎ
1
.

(16)

Proof. Define the following Lyapunov-Krasovskii candidate
for system (Σ̃):

𝑉 (𝜉 (𝑡) , 𝑡) = 𝜉
𝑇
(𝑡) 𝑃𝜉 (𝑡) + ∫

𝑡

𝑡−ℎ
1

𝜉
𝑇
(𝑠) 𝐾
𝑇
𝑄
1
𝐾𝜉 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−ℎ
2

𝜉
𝑇
(𝑠) 𝐾
𝑇
𝑄
2
𝐾𝜉 (𝑠) 𝑑𝑠

+ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
𝐾Φ (𝑠) 𝑑𝑠 𝑑𝛽

+ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠)

+ ∫

−ℎ
1

−ℎ
2

∫

𝑡

𝑡+𝛽

𝜉
𝑇
(𝑠) 𝐾
𝑇
𝑅𝐾𝜉 (𝑠) 𝑑𝑠 𝑑𝛽.

(17)

When V(𝑡) = 0,

𝑑𝑉 (𝜉 (𝑡) , 𝑡) = L𝑉 (𝜉 (𝑡) , 𝑡) + 2𝜉𝑇 (𝑡) 𝑃𝑔 (𝑡) 𝑑𝜔 (𝑡) . (18)
By using the Newton-Leibnitz formula, the following

equations can be got for any matrices 𝑇
1
, 𝑇
2
with appropriate

dimensions:

2𝜂
𝑇
(𝑡) 𝑇
1
𝐾[𝜉 (𝑡 − ℎ

1
) − 𝜉 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

Φ (𝑠) 𝑑𝑠

−∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠)] = 0,

2𝜂
𝑇
(𝑡) 𝑇
2
𝐾[𝜉 (𝑡 − 𝜏 (𝑡)) − 𝜉 (𝑡 − ℎ

2
) − ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

Φ (𝑠) 𝑑𝑠

−∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔 (𝑠) 𝑑𝜔 (𝑠)] = 0,

(𝜏 (𝑡) − ℎ
1
) 𝜂
𝑇
(𝑡) 𝑇
1
𝑍
−1

1
𝑇
𝑇

1
𝜂 (𝑡)

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝜂
𝑇
(𝑡) 𝑇
1
𝑍
−1

1
𝑇
𝑇

1
𝜂 (𝑡) 𝑑𝑠 = 0,

(ℎ
2
− 𝜏 (𝑡)) 𝜂

𝑇
(𝑡) 𝑇
2
𝑍
−1

1
𝑇
𝑇

2
𝜂 (𝑡)

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝜂
𝑇
(𝑡) 𝑇
2
𝑍
−1

1
𝑇
𝑇

2
𝜂 (𝑡) 𝑑𝑠 = 0,

(19)

where

𝑇
1
= [0 𝑇

𝑇

1
0 𝑇
𝑇

1
0]
𝑇

,

𝑇
2
= [0 0 𝑇

𝑇

2
𝑇
𝑇

2
0]
𝑇

.

(20)

And 𝜂(𝑡) is a new vector defined as follows:

𝜂
𝑇
(𝑡) = [𝜉

𝑇
(𝑡) 𝜉
𝑇
(𝑡 − ℎ

1
)𝐾
𝑇
𝜉
𝑇
(𝑡 − ℎ

2
)𝐾
𝑇
𝜉
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐾

𝑇
(∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉(𝑠)
𝑇
𝑑𝑠)𝐾

𝑇
] . (21)

By the above formulas (19) and Lemma 4, we can deduce that

L𝑉 (𝜉 (𝑡) , 𝑡)
= 2𝜉
𝑇
(𝑡) 𝑃Φ (𝑡) + 𝑔

𝑇
(𝑡) 𝑃𝑔 (𝑡) + 𝜉

𝑇
(𝑡) 𝐾
𝑇
𝑄
1
𝐾𝜉 (𝑡)

+ 𝜉
𝑇
(𝑡) 𝐾
𝑇
𝑄
2
𝐾𝜉 (𝑡) − 𝜉

𝑇
(𝑡 − ℎ

1
)𝐾
𝑇
𝑄
1
𝐾𝜉 (𝑡 − ℎ

1
)

− 𝜉
𝑇
(𝑡 − ℎ

2
)𝐾
𝑇
𝑄
2
𝐾𝜉 (𝑡 − ℎ

2
) + ℎ
21
Φ
𝑇
(𝑡) 𝐾
𝑇
𝑍
1
𝐾Φ (𝑡)

+ ℎ
21
𝑔(𝑡)
𝑇
𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑡) − ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉
𝑇
(𝑠) 𝐾
𝑇
𝑅𝐾𝜉 (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
𝐾Φ (𝑠) 𝑑𝑠

− ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠 + ℎ

21
Φ
𝑇
(𝑡) 𝐾
𝑇
𝑅𝐾Φ (𝑡)

≤ 𝜂
𝑇
(𝑡) [Ω+ℎ

21
𝑇
1
𝑍
−1

1
𝑇
𝑇

1
+�̂� (𝐾

𝑇
(ℎ
2
− ℎ
1
) 𝑍
2
𝐾 + 𝑃) �̂�

+ 𝐴𝐾
𝑇
ℎ
21
𝑍
1
𝐾𝐴
𝑇
+ ℎ
21
𝑇
2
𝑍
−1

1
𝑇
𝑇

2

+𝑇
1
𝑍
−1

2
𝑇
𝑇

1
+ 𝑇
2
𝑍
−1

2
𝑇
𝑇

2
] 𝜂 (𝑡)
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− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

[𝜂
𝑇
(𝑡) 𝑇
1
+ Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐾Φ (𝑠) + 𝑇

𝑇

1
𝜂 (𝑡)] 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

[𝜂
𝑇
(𝑡) 𝑇
2
+ Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐾Φ (𝑠) + 𝑇

𝑇

2
𝜂 (𝑡)] 𝑑𝑠

+ (∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔(𝑠)𝑑𝜔(𝑠))

𝑇

𝐾
𝑇
𝑍
2
𝐾(∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠))

+ (∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔(𝑠)𝑑𝜔(𝑠))

𝑇

𝐾
𝑇
𝑍
2
𝐾(∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔 (𝑠) 𝑑𝜔 (𝑠))

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔
𝑇
(𝑠)𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠,

(22)

where

Ω =

[
[
[
[
[

[

Ω
11

0 0 Ω
14

0

∗ Ω
22

0 Ω
24

0

∗ ∗ Ω
33

Ω
34

0

∗ ∗ ∗ Ω
44

0

∗ ∗ ∗ ∗ Ω
55

]
]
]
]
]

]

𝐴 = [(𝐴 + Δ𝐴 (𝑡))
𝑇

0 0 (𝐴
𝑑
+ Δ𝐴
𝑑
(𝑡))
𝑇

0]

𝑇

,

�̂� = [(�̃� + Δ�̃� (𝑡))
𝑇

0 0 (�̃�
𝑑
+ Δ�̃�
𝑑
(𝑡))
𝑇

0]

𝑇

.

(23)

During the analysis, it can be seen that

(∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔(𝑠)𝑑𝜔(𝑠))

𝑇

𝐾
𝑇
𝑍
2
𝐾(∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔 (𝑠) 𝑑𝜔 (𝑠))

+ (∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔 (𝑠) 𝑑𝜔 (𝑠))

𝑇

𝐾
𝑇
𝑍
2
𝐾(∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔 (𝑠) 𝑑𝜔 (𝑠))

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

𝑔
𝑇
(𝑠) 𝐾
𝑇
𝑍
2
𝐾𝑔 (𝑠) 𝑑𝑠 = 0,

(24)

− ∫

𝑡−ℎ
1

𝑡−𝜏(𝑡)

[𝜂
𝑇
(𝑡) 𝑇
1
+ Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐾Φ (𝑠) + 𝑇

𝑇

1
𝜂 (𝑡)] 𝑑𝑠

− ∫

𝑡−𝜏(𝑡)

𝑡−ℎ
2

[𝜂
𝑇
(𝑡) 𝑇
2
+ Φ
𝑇
(𝑠) 𝐾
𝑇
𝑍
1
] 𝑍
−1

1

× [𝑍
1
𝐾Φ (𝑠) + 𝑇

𝑇

2
𝜂 (𝑡)] 𝑑𝑠 < 0.

(25)

And applying the Schur complement to (15), we can derive
the following inequality with V(𝑡) = 0:

Ω + ℎ
21
𝑇
1
𝑍
−1

1
𝑇
𝑇

1
+ �̂� (𝐾

𝑇
ℎ
21
𝑍
2
𝐾 + 𝑃) �̂� + 𝑇

1
𝑍
−1

2
𝑇
𝑇

1

+ 𝐴𝐾
𝑇
ℎ
21
𝑍
1
𝐾𝐴
𝑇
+ ℎ
21
𝑇
2
𝑍
−1

1
𝑇
𝑇

2
+ 𝑇
2
𝑍
−1

2
𝑇
𝑇

2
< 0.

(26)

From (22)–(26), we can get that

L𝑉 (𝜉 (𝑡) , 𝑡) < 0, (27)

which ensures that system (Σ̃) with V(𝑡) = 0 is robustly
stochastically stable according to Definition 2 and [47]. By
Itô’s formula, it is easy to derive

E (𝑉 (𝜉 (𝑡) , 𝑡)) = E(∫
𝑡

0

L𝑉 (𝜉 (𝑠) , 𝑠) 𝑑𝑠) . (28)

Nowwe establish the 𝐿
2
−𝐿
∞
performance of the filtering

error system (Σ̃). It is easy to obtain

L𝑉 (𝜉 (𝑡) , 𝑡) − 𝜔(𝑡)𝑇𝜔 (𝑡)

≤ 𝜂
𝑇
(𝑡) [Ω + ℎ

21
�̃�
1
𝑍
−1

1
�̃�
𝑇

1
+ �̆� (𝐾

𝑇
ℎ
21
𝑍
2
𝐾 + 𝑃) �̆�

+ �̆�𝐾
𝑇
ℎ
21
𝑍
1
𝐾�̆�
𝑇
+ ℎ
21
�̃�
2
𝑍
−1

1
�̃�
𝑇

2

+ �̃�
1
𝑍
−1

2
�̃�
𝑇

1
+ �̃�
2
𝑍
−1

2
�̃�
𝑇

2
] 𝜂 (𝑡) .

(29)

Then applying the Schur complement formula to (15), we
can get

𝜂
𝑇
(𝑡) [Ω + (ℎ

2
− ℎ
1
) �̃�
1
𝑍
−1

1
�̃�
𝑇

1
+ �̆� (𝐾

𝑇
ℎ
21
𝑍
2
𝐾 + 𝑃) �̆�

+ �̃�
2
𝑍
−1

2
�̃�
𝑇

2
+ �̆�𝐾

𝑇
ℎ
21
𝑍
1
𝐾�̆�
𝑇
+ ℎ
21
�̃�
2
𝑍
−1

1
�̃�
𝑇

2

+ �̃�
1
𝑍
−1

2
�̃�
𝑇

1
] 𝜂 (𝑡) < 0,

(30)

for all 𝑡 > 0, where

𝜂
𝑇
(𝑡) = [𝜉

𝑇
(𝑡) 𝜉
𝑇
(𝑡 − ℎ

1
)𝐾
𝑇
𝜉
𝑇
(𝑡 − ℎ

2
)𝐾
𝑇
𝜉
𝑇
(𝑡 − 𝜏 (𝑡)) 𝐾

𝑇
(∫

𝑡−ℎ
1

𝑡−ℎ
2

𝜉(𝑠)
𝑇
𝑑𝑠)𝐾

𝑇 V (𝑡)] . (31)
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Therefore, for all 𝜂(𝑡) ̸= 0, L𝑉(𝜉(𝑡), 𝑡) − 𝜔(𝑡)𝑇𝜔(𝑡) < 0, which
means

𝜉
𝑇
(𝑡) 𝑃𝜉 (𝑡) ≤ 𝑉 (𝜉 (𝑡) , 𝑡) < ∫

𝑡

0

𝜔(𝑠)
𝑇
𝜔 (𝑠) 𝑑𝑠. (32)

Then using the Schur complement to the first formula in (15),
we have �̃�𝑇�̃� < 𝛾2𝑃, which guarantees

𝑒(𝑡)
𝑇
𝑒 (𝑡) − 𝜉

𝑇
(𝑡) �̃�
𝑇
�̃�𝜉 (𝑡)

< 𝛾
2
𝜉
𝑇
(𝑡) 𝑃𝜉 (𝑡) < 𝛾

2
∫

𝑡

0

𝜔(𝑠)
𝑇
𝜔 (𝑠) 𝑑𝑠

≤ 𝛾
2
∫

∞

0

𝜔(𝑠)
𝑇
𝜔 (𝑠) 𝑑𝑠.

(33)

Therefore, ‖𝑒‖
∞
< 𝛾‖𝜔‖

2
for any zero mean Gaussian white

noise process 𝜔(𝑡) with unit covariance.

Remark 6. The system we studied is a time-varying delay
system containing the information of both the lower bound
and the upper bound of time delay. By such a consideration,
delay-dependent result is more reliable and approaches to
reality that not all the delays begin with 0 moment.

Remark 7. It is worth mentioning that Theorem 5 can be
easily extended to investigate the robust 𝐻

∞
filtering design

problem for the systems (Σ̃) with parameter uncertainties.

Now we are in a position to present a sufficient condition
for the solvability of robust 𝐿

2
− 𝐿
∞

filtering problem.

Theorem 8. Consider the uncertain T-S fuzzy stochastic time-
varying delay system (Σ) and a constant scalar 𝛾 > 0. The
robust 𝐿

2
−𝐿
∞
filtering problem is solvable if there exist scalars

𝜀
𝑖
> 0 and matrices𝑊 > 0, 𝑋 > 0, 𝑅 > 0, 𝑄

𝑖
> 0, 𝑍

𝑖
> 0, 𝑇

1𝑖
,

𝑇
2𝑖
, 𝑖 = 1, 2; Φ

1𝑖
, Φ
2𝑖
, Φ
3𝑖
, Φ
4𝑖
, 1 ≤ 𝑖 ≤ 𝑟, {Υ

𝑖
= Υ
𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑟},

{Δ
𝑖𝑗
, 1 ≤ 𝑖 < 𝑗 ≤ 𝑟}, and such that the following LMIs hold:

𝑋 −𝑊 > 0, (34)

[
[
[
[

[

Υ
1
Δ
12

⋅ ⋅ ⋅ Δ
1𝑟

∗ Υ
2
⋅ ⋅ ⋅ Δ

2𝑟

...
... d

...
∗ ∗ ⋅ ⋅ ⋅ Υ

𝑟

]
]
]
]

]

< 0, (35)

[
Γ
𝑖𝑖
− Υ
𝑖
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
Θ
𝑖

∗ −𝜀
𝑖

] < 0, (1 ≤ 𝑖 ≤ 𝑟) , (36)

[

[

Γ
𝑖𝑗
+ Γ
𝑗𝑖
− Δ
𝑖𝑗
− Δ
𝑇

𝑖𝑗
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
+ 𝜀
𝑗
Ξ
𝑗
Ξ
𝑇

𝑗
Θ
𝑖
Θ
𝑗

∗ −𝜀
𝑖
0

∗ ∗ −𝜀
𝑖

]

]

< 0,

(1 ≤ 𝑖 < 𝑗 ≤ 𝑟) ,

(37)

[
[
[
[

[

𝑊 𝑊 𝐿
𝑇

𝑗
− Φ
𝑇

3𝑖

∗ 𝑋 𝐿
𝑇

𝑗

∗ ∗ 𝛾
2
𝐼

]
]
]
]

]

> 0, (1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑟) , (38)

where

Θ
𝑇

𝑖
= [𝑀

𝑇

1𝑖
𝑊 𝑀

𝑇

1𝑖
𝑋 01∗9 ℎ21𝑀𝑇1𝑖𝑍1 ℎ21𝑀

𝑇

2𝑖
𝑍2 𝑀

𝑇

2𝑖
𝑋 𝑀

𝑇

2𝑖
] ,

Ξ
𝑇

𝑖
= [𝑁
𝑇

1𝑖
𝑁
𝑇

1𝑖
0 0 𝑁

𝑇

2𝑖
0
10∗1

] ,

Γ
𝑖𝑗
= [

[

Γ
11

Γ
12

Γ
13

∗ Γ
22

0
4∗4

∗ ∗ Γ
33

]

]

,

Γ
11
=

[
[
[
[
[
[
[
[
[
[

[

𝐺
11

𝐺
12

0 0 𝐺
15

0 𝐺
17

∗ 𝐺
22

0 0 𝐺
25

0 𝐺
27

∗ ∗ 𝐺
33

0 𝐺
35

0 0

∗ ∗ ∗ 𝐺
44

𝐺
45

0 0

∗ ∗ ∗ ∗ 𝐺
55

0 0

∗ ∗ ∗ ∗ ∗ −
𝑅

ℎ
21

0

∗ ∗ ∗ ∗ ∗ ∗ −𝐼

]
]
]
]
]
]
]
]
]
]

]

,

𝐺
11
= 𝑊𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑊+𝑄

1
+ 𝑄
2
+ ℎ
21
𝑅,

𝐺
12
= 𝑊𝐴

𝑖
+ 𝐴
𝑇

𝑖
𝑋 + 𝐶

𝑇

𝑗
Φ
𝑇

1𝑖
+ Φ
𝑇

2𝑖
+ 𝑄
1
+ 𝑄
2
+ ℎ
21
𝑅,

𝐺
15
= 𝑊𝐴

𝑑𝑖
, 𝐺

17
= 𝑊𝐵

𝑖
,

𝐺
22
= 𝑋
𝑇
𝐴
𝑖
+ Φ
1𝑖
𝐶
𝑗
+ 𝐶
𝑇

𝑗
Φ
𝑇

1𝑖
+ 𝐴
𝑇

𝑖
𝑋 + 𝑄

1
+ 𝑄
2
+ ℎ
21
𝑅,

𝐺
25
= 𝑋
𝑇
𝐴
𝑑𝑖
+ Φ
1𝑖
𝐶
𝑑𝑗
,

𝐺
27
= 𝑋
𝑇
𝐵
𝑖
+ Φ
1𝑖
𝐷
𝑗
,

𝐺
33
= −𝑄
1
+ 𝑇
1
+ 𝑇
𝑇

1
, 𝐺

35
= −𝑇
1
+ 𝑇
𝑇

1
,

𝐺
44
= −𝑄
2
− 𝑇
2
− 𝑇
𝑇

2
, 𝐺

45
= 𝑇
2
− 𝑇
𝑇

2
,

𝐺
55
= −𝑇
1
− 𝑇
𝑇

1
+ 𝑇
2
+ 𝑇
𝑇

2
,

Γ
12
= [�̃�
1
�̃�
2
ℎ
21
�̃�
1
ℎ
21
�̃�
2
] ,

Γ
22
= diag {−𝑍

2
, −𝑍
2
, −ℎ
21
𝑍
1
, −ℎ
21
𝑍
1
} ,

Γ
13
=

[
[
[
[
[
[
[
[
[
[
[
[

[

ℎ
21
𝐴
𝑇

𝑖
𝑍
1
ℎ
21
𝐻
𝑇

𝑖
𝑍
2
𝐻
𝑇

𝑖
𝑋 𝐻

𝑇

𝑖

ℎ
21
𝐴
𝑇

𝑖
𝑍
1
ℎ
21
𝐻
𝑇

𝑖
𝑍
2
𝐻
𝑇

𝑖
𝑋 𝐻

𝑇

𝑖

0 0 0 0

0 0 0 0

ℎ
21
𝐴
𝑇

𝑑𝑖
𝑍
1
ℎ
21
𝐻
𝑇

𝑑𝑖
𝑍
2
𝐻
𝑇

𝑑𝑖
𝑋 𝐻
𝑇

𝑑𝑖

0 0 0 0

ℎ
21
𝐵
𝑇

𝑖
𝑍
1

0 0 0

]
]
]
]
]
]
]
]
]
]
]
]

]

,

Γ
33
= diag{−ℎ

21
𝑍
1
, −ℎ
21
𝑍
2
, [
−𝑋 −𝐼

∗ −Φ
4𝑖

]} .

(39)

When the LMIs (34)–(38) are feasible, the time-
dependent filter we desired here can be chosen as

𝐴
𝑓𝑖
= 𝜎
−1
Φ
2𝑖
𝑊
−1
𝛽
−𝑇
, 𝐵

𝑓𝑖
= 𝜎
−1
Φ
1𝑖
,

𝐿
𝑓𝑖
= Φ
3𝑖
𝑊
−1
𝛽
−𝑇
, 𝑖 = 1, . . . , 𝑟,

(40)

where 𝜎 and 𝛽 are nonsingular matrices satisfying 𝜎𝛽𝑇 = 𝐼 −
𝑋𝑊
−1.

Proof. Similar to [33], we know that 𝐼−𝑋𝑊−1 is nonsingular.
Therefore, there always exist nonsingular matrices 𝜎 and 𝛽
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such that 𝜎𝛽𝑇 = 𝐼 − 𝑋𝑊
−1 holds. Then we define the

nonsingular matrices Λ
1
and Λ

2
as follows:

Λ
1
= [

𝑊
−1

𝐼

𝛽
𝑇

𝑜
] ; Λ

2
= [

𝐼 𝑋

0 𝜎
𝑇] . (41)

Define 𝑈 = Λ
2
Λ
−1

1
. Then there is

𝑈 = [
𝑋 𝜎

𝜎
𝑇
𝛽
−1
𝑊
−1
(𝑋
𝑊
)𝑊
−1
𝛽
−𝑇] > 0. (42)

Now using Lemma 4 and recalling (36), we can deduce
that

Λ =

𝑟

∑

𝑖=1

𝜌
2

𝑖
(𝑠 (𝑡)) [Γ

𝑖𝑖
+ Θ
𝑖
𝐹
𝑖
(𝑡) Ξ
𝑇

𝑖
+ Ξ
𝑖
𝐹
𝑖
(𝑡) Θ
𝑇

𝑖
]

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜌
𝑖
(𝑠 (𝑡)) 𝜌

𝑗
(𝑠 (𝑡))

× [Γ
𝑖𝑗
+ Θ
𝑖
𝐹
𝑖
(𝑡) Ξ
𝑇

𝑖
+ Ξ
𝑖
𝐹
𝑖
(𝑡) Θ
𝑇

𝑖
+ Γ
𝑗𝑖

+Θ
𝑖
𝐹
𝑗
(𝑡) Ξ
𝑇

𝑗
+ Ξ
𝑗
𝐹
𝑗
(𝑡) Θ
𝑇

𝑗
]

<

𝑟

∑

𝑖=1

𝜌
2

𝑖
(𝑠 (𝑡)) [Γ

𝑖𝑖
+ 𝜀
−1

𝑖
Θ
𝑖
Θ
𝑇

𝑖
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
]

+

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜌
𝑖
(𝑠 (𝑡)) 𝜌

𝑗
(𝑠 (𝑡))

× [Γ𝑖𝑗 + 𝜀
−1

𝑖
ΘΘ
𝑇

𝑖
+ 𝜀
𝑖
Ξ
𝑖
Ξ
𝑇

𝑖
+ Γ
𝑗𝑖
+ 𝜀
−1

𝑗
ΘΘ
𝑇

𝑗

+ 𝜀
𝑗
Ξ
𝑗
Ξ
𝑇

𝑗
]

<

𝑟

∑

𝑖=1

𝜌
2

𝑖
(𝑠 (𝑡)) Υ

𝑖
+

𝑟

∑

𝑖=1

𝑟

∑

𝑗>𝑖

𝜌
𝑖
(𝑠 (𝑡)) 𝜌

𝑗
(𝑠 (𝑡)) [Δ

𝑖𝑗
+ Δ
𝑇

𝑗𝑖
]

=

[
[
[
[

[

𝜌
1
(𝑠(𝑡))𝐼

𝜌
2
(𝑠(𝑡))𝐼

...
𝜌
𝑟
(𝑠(𝑡))𝐼

]
]
]
]

]

𝑇

[
[
[
[

[

Υ
1
Δ
12

⋅ ⋅ ⋅ Δ
1𝑟

∗ Δ
2
⋅ ⋅ ⋅ Δ

2𝑟

...
... d

...
∗ ∗ ⋅ ⋅ ⋅ Υ

𝑟

]
]
]
]

]

[
[
[
[

[

𝜌
1
(𝑠 (𝑡)) 𝐼

𝜌
2
(𝑠 (𝑡)) 𝐼

...
𝜌
𝑟
(𝑠 (𝑡)) 𝐼

]
]
]
]

]

< 0.

(43)

We can deduce that

{diag(Λ−𝑇
2
[
𝑊
−1

0

0 𝐼
] , 𝐼, . . . , [

𝜎
−𝑇

0

0 𝐼
])}Λ

{diag(Λ−𝑇
2
[
𝑊
−1

0

0 𝐼
] , 𝐼, . . . , [

𝜎
−1

0

0 𝐼
])}

= [
Ω Ψ
12

∗ Ψ
22

] < 0,

(44)

which is equivalent to (15). Therefore, it is easy to see that
the condition in Theorem 5 and the LMIs in (34)–(37) are
equivalent. Finally, it can be concluded that the filtering error
system (Σ̃) is stochastically stable with 𝐿

2
− 𝐿
∞
performance

level 𝛾.

Remark 9. The desired 𝐿
2
− 𝐿
∞

filters can be constructed
by solving the LMIs in (34)–(38), which can be implemented
by using standard numerical algorithms, and no tuning of
parameters will be involved.

Remark 10. In the proof of above Theorem, we adopt (25),
(26), and Newton-Leibnitz formula to reduce the conser-
vatism. Moreover, the results obtained in Theorems 5 and
8 can be further extended based on fuzzy or piecewise
Lyapunov-Krasovskii function.

4. Numerical Example

In this section, a numerical example is provided to show the
effectiveness of the results obtained in the previous section.

Example 1. Consider the T-S fuzzy stochastic system (Σ̃) with
model parameters given as follows:

𝐴
1
= [

−2.3 0

0.2 −1.1
] , 𝐴

𝑑1
= [

−0.2 0.2

−0.16 −0.18
] ,

𝐴
2
= [

−2.1 0.1

0.1 −1.4
] ,

𝐻
1
= [

−0.4 0.1

0.3 −0.5
] , 𝐻

𝑑1
= [

−0.01 0.02

0.01 −0.05
] ,

𝐻
2
= [

−0.1 0.2

0.1 −0.5
] ,

𝐶
1
= [1 −0.4] , 𝐶

𝑑1
= [−0.4 −0.1] ,

𝐶
2
= [−0.2 0.4] , 𝐶

𝑑2
= [−0.4 0.5] ,

𝐿
1
= [1.5 −0.6] , 𝐿

2
= [−0.3 0.2] ,

𝐷
1
= 0.2, 𝐷

2
= −0.2,

𝐵
1
= [

0.9

−0.2
] , 𝐵

2
= [

0.3

−0.1
] ,

𝐴
𝑑2
= [

−0.18 0

−0.22 −0.24
] , 𝐻

𝑑2
= [

−0.05 0.01

0.03 −0.04
] .

(45)

And the parameter uncertainties are shown as:

𝑀
11
= [

0.1 0.2

−0.5 0.1
] , 𝑀

12
= [

−0.2 0.1

0.3 −0.1
] ,

𝑀
21
= [

0.8 −0.1

−0.1 0.2
] ,

𝑁
11
= [

0 −0.3

0.1 − 0.2
] , 𝑁

21
= [

−0.2 0

0.2 0.1
] ,

𝑀
22
= [

−0.1 0.2

0.4 −0.2
] ,

𝑁
12
= [

−0.5 0

0.2 −0.3
] , 𝑁

22
= [

0 −0.2

0 0.1
] .

(46)

The membership functions are

ℎ
1
(𝑥
1
(𝑡)) = (1 −

3𝑥
1

1 + exp (6𝑥
1
(𝑡) + 2)

) ,

ℎ
2
(𝑥
1
(𝑡)) = 1 − ℎ

1
(𝑥
1
(𝑡)) .

(47)

By using the Matlab LMI Control Toolbox, we have
the robust 𝐿

2
− 𝐿
∞

filtering problem which is solvable to
Theorem 8. It can be calculated that for any 0 < ℎ

1
(𝑡) ≤ 3,
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Figure 1: State responses of 𝑥(𝑡) and 𝑥(𝑡).
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Figure 2: Responses of the error signal 𝑒(𝑡).

0 < ℎ
2
(𝑡) ≤ 8, 𝛾 = 0.42 the robust 𝐿

2
− 𝐿
∞

filtering problem
can be solved. A desired fuzzy filter can be constructed as in
the form of (6) with

𝐴
𝑓1
= [

−5.4320 0.4511

1.8159 −1.5495
] ,

𝐴
𝑓2
= [

−8.1142 3.4902

2.9687 −5.9058
] ,

𝐵
𝑓1
= [

−1.0301

0.1040
] , 𝐵

𝑓2
= [

−1.0171

0.0415
] ,

𝐿
𝑓1
= [−0.3063 −0.0422] ,

𝐿
𝑓2
= [−0.2667 −0.0422] .

(48)

The simulation results of the state response of the plant
and the filter are given in Figure 1, where the initial condition
is 𝑥
0
(𝑡) = [0.4 2.5]

𝑇, 𝑥
0
(𝑡) = [0.1 0.1]

𝑇. Figure 2 shows
the simulation results of the signal 𝑒(𝑡), and the exogenous
disturbance input V(𝑡) is given by V(𝑡) = 12/(5 + 2𝑡), 𝑡 ≥ 0,
which belongs toL

2
[0,∞).

5. Conclusion

This paper considers the robust 𝐿
2
−𝐿
∞
filter design problem

for the uncertain T-S fuzzy stochastic system with time-
varying delay.AnLMI approachhas beendeveloped to design
the fuzzy filter ensuring not only the robust stochastic mean-
square stability but also a prescribed 𝐿

2
− 𝐿
∞

performance
level of the filtering error system for all admissible uncer-

tainties. A numerical example has been provided to show the
effectiveness of the proposed filter design methods.
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