
Research Article
State-Feedback Stabilization for Stochastic High-Order
Nonlinear Systems with Time-Varying Delays

Fangzheng Gao,1 Zheng Yuan,2 and Fushun Yuan1

1 School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China
2 School of Civil and Architecture Engineering, Anyang Institute of Technology, Anyang 455000, China

Correspondence should be addressed to Fangzheng Gao; gaofz@126.com

Received 15 June 2013; Revised 3 September 2013; Accepted 12 December 2013; Published 30 January 2014

Academic Editor: Shawn X. Wang

Copyright © 2014 Fangzheng Gao et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates the problem of state-feedback stabilization for a class of stochastic high-order nonlinear systems with time-
varying delays. Under the weaker conditions on the power order and the nonlinear growth, by using the method of adding a power
integrator, a state-feedback controller is successfully designed, and the global asymptotic stability in the probability of the resulting
closed-loop system is proven with the help of an appropriate Lyapunov-Krasovskii functional. A simulation example is given to
demonstrate the effectiveness of the proposed design procedure.

1. Introduction

It is well known that stochastic modeling has come to play
an important role in the field of engineering where stochastic
differential equations have been applied for the analysis and
control of stochastic systems. As a consequence, the study
of stochastic nonlinear systems has drawn an increasing
attention in the past decades [1–9]. Especially, by applying the
so-called method of adding a power integrator [10], which
can be viewed as the latest achievement of the traditional
backstepping method, a series of research results for stochas-
tic high-order nonlinear systems have been achieved [11–18].

On the other hand, time delay extensively exists in various
engineering systems, such as electrical networks, microwave
oscillator, and hydraulic systems. It is well known that the
existence of time delay often deteriorates the control perfor-
mance of systems and even causes the instability of closed-
loop systems [19]. Therefore, the control design and stability
analysis of time-delay systems has been an active research
area within the automation and control community. In recent
years, by employing the Lyapunov-Krasovskii method or
Lyapunov-Razumikhin method to deal with the time delay,
control theory and techniques for time-delay linear systems
were developed and many advanced methods such as time-
delay partitioning method and input-output method have

been established; see, for instance, [20–25] and reference
therein. However, for the time-delay nonlinear systems, there
exist many open problems which are so important and
interesting at least from the theoretical point of view and
have been paid careful attention; see, for example, the lastly
published papers [26–29].

In this paper, we consider a class of stochastic high-order
systems with time-varying delays described by

𝑑𝑥
𝑖 (𝑡)

= ℎ
𝑖 (𝑡) 𝑥
𝑝𝑖

𝑖+1
(𝑡) + 𝑓

𝑖
(𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝑑 (𝑡))) 𝑑𝑡

+ 𝑔
𝑇

𝑖
(𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝑑 (𝑡))) 𝑑𝑤, 𝑖 = 1, . . . , 𝑛 − 1,

𝑑𝑥
𝑛 (𝑡)

= ℎ
𝑛 (𝑡) 𝑢

𝑝𝑛 (𝑡) + 𝑓
𝑛
(𝑡, 𝑥
𝑛 (𝑡) , 𝑥𝑛 (𝑡 − 𝑑 (𝑡))) 𝑑𝑡

+ 𝑔
𝑇

𝑛
(𝑡, 𝑥
𝑛 (𝑡) , 𝑥𝑛 (𝑡 − 𝑑 (𝑡))) 𝑑𝑤,

(1)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛 is system state vector and

𝑢 ∈ 𝑅 is control input, respectively; 𝑥
𝑖
= (𝑥
1
, . . . , 𝑥

𝑖
)
𝑇,

𝑥
𝑛

= 𝑥; 𝑑(𝑡) : 𝑅
+

→ [0, 𝑑] is the time-varying delay
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satisfying ̇𝑑(𝑡) ≤ 𝜂 < 1 for a known constant 𝜂; 𝑝
𝑖
∈ 𝑅
≥1

odd :=

{𝑝/𝑞 | 𝑝 and 𝑞 are positive odd integers, and 𝑝 ≥ 𝑞} are
said to be the high orders of the system; ℎ

𝑖
(𝑡), 𝑖 = 1, . . . , 𝑛, are

disturbed virtual control coefficients; 𝑤 is an𝑚-dimensional
independent standardWiener process defined on a complete
probability space (Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃) with Ω being a sample
space, F being a 𝜎-field, {F

𝑡
}
𝑡≥0

being a filtration, and 𝑃

being a probabilitymeasure.The functions𝑓
𝑖
: 𝑅
+
×𝑅
𝑖
×𝑅
𝑖
→

𝑅 and 𝑔
𝑖
: 𝑅
+
× 𝑅
𝑖
× 𝑅
𝑖
→ 𝑅
𝑚 are assumed to be locally

Lipschitz with 𝑓
𝑖
(𝑡, 0, 0) = 0 and 𝑔

𝑖
(𝑡, 0, 0) = 0.

It is worth pointing out that, when 𝑝
𝑖
= 1 and ℎ

𝑖
(𝑡) = 1,

system (1) degenerates to the stochastic time-delay system
in strict-feedback form, whose study on feedback control
problem has achieved great development in recent years; see,
for example, [30–33] and reference therein. However, when
𝑝
𝑖
> 1, the control design for system (1) is challenging because

on one hand, the presence of the fractional power makes
system (1) not only nonsmooth but also having the uncon-
trollable unstable linearization, and on the other hand, the
existence of time-delay effectmakes the common assumption
on the high-order systems nonlinearities infeasible andwhich
conditions should be placed to the nonlinearities remains
unanswered. To the best of the authors’ knowledge, up to
now only [34, 35] two papers considered the state-feedback
stabilization problem of system (1) under the strict power
order restriction (𝑝

1
= 𝑝
2

= ⋅ ⋅ ⋅ = 𝑝
𝑛

= 𝑝) and some
rigorous growth condition. However, from both practical
and theoretical points of view, it is somewhat restrictive to
require system (1) to satisfy such restrictions. Immediately,
the following interesting questions are proposed. Is it possible
to relax the power order restriction and the nonlinear growth
condition? Under these weaker conditions, how to design a
state-feedback controller such that the closed-loop system is
globally asymptotically stable in probability?

Inspired by the recent works [15, 29], we will solve
the aforementioned problems here. The contribution of this
paper is highlighted as follows.

(i) By comparisonwith the existing results in [34, 35], the
power order restriction is completely removed, the
nonlinear growth condition is largely relaxed, and a
much weaker sufficient condition is given.

(ii) Different from the result in the deterministic case
[29], in which the controller need not satisfy the
locally Lipschitz condition, for stochastic system,
to guarantee the existence and uniqueness of the
solution, the designed controller must guarantee that
the closed-loop system satisfies the locally Lipschitz
condition. Hence, how to construct the controller
constitutes one of the main contributions.

(iii) Due to the appearance of high-order, time-varying
delay and nonlinear assumption, how to construct
an appropriate Lyapunov-Krasovskii functional for
system (1), especially under the assumption that
𝑓
𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝑑(𝑡))) and 𝑔

𝑖
(𝑡, 𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝑑(𝑡))) are

not bounded linearly, is a nontrivial work.

The remainder of this paper is organized as follows.
Section 2 offers notations and some preliminary results.

Section 3 presents the control design procedure and themain
result, while Section 4 gives a simulation example to illustrate
the theoretical finding of this paper. Finally, concluding
remarks are proposed in Section 5.

2. Notations and Preliminary Results

Throughout this paper, the following notations are adopted.
𝑅
+ denotes the set of all nonnegative real numbers and 𝑅

𝑛

denotes the real 𝑛-dimensional space. 𝑅+odd := {𝑝/𝑞 | 𝑝

and 𝑞 positive integers}, 𝑅≥1odd := {𝑝/𝑞 | 𝑝 and 𝑞 are
positive odd integers, and 𝑝 ≥ 𝑞}. For a given vector
or matrix 𝑋, 𝑋𝑇 denotes its transpose, Tr{𝑋} denotes its
trace when 𝑋 is square, and |𝑋| is the Euclidean norm of
a vector 𝑋. 𝐶([−𝑑, 0]; 𝑅𝑛) denotes the space of continuous
𝑅
𝑛-value functions on [−𝑑, 0] endowed with the norm ‖ ⋅ ‖

defined by ‖𝑓‖ = sup
𝑥∈[−𝑑,0]

|𝑓(𝑥)| for 𝑓 ∈ 𝐶([−𝑑, 0]; 𝑅
𝑛
).

𝐶
𝑏

F0
([−𝑑, 0]; 𝑅

𝑛
) denotes the family of all F

0
-measurable

bounded 𝐶([−𝑑, 0]; 𝑅
𝑛
)-valued random variables 𝜉 = {𝜉(𝜃) :

−𝑑 ≤ 𝑠 ≤ 0}. 𝐶𝑖 denotes the set of all functions with
continuous 𝑖th partial derivatives; 𝐶1,2(𝑅+; 𝑅𝑛 × [−𝑑,∞))

denotes the family of all nonnegative functions 𝑉(𝑡, 𝑥) on
[−𝑑,∞) × 𝑅

𝑛 which are 𝐶1 in 𝑡 and 𝐶
2 in 𝑥; 𝐶1,2 denotes the

family of all functions which are 𝐶1 in the first argument and
𝐶
2 in the second argument.
Consider the following stochastic time-delay system:

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡))) 𝑑𝑡

+ 𝑔 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡))) 𝑑𝑤,

(2)

with initial data {𝑥(𝜃) : −𝑑 ≤ 𝑠 ≤ 0} = 𝜉 ∈ 𝐶
𝑏

F0
, where

𝑑(𝑡) : 𝑅
+

→ [0, 𝑑] is a Borel measurable function; 𝑤
is an 𝑚-dimensional independent standard Wiener process
defined on a complete probability space (Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃).
The functions𝑓 : 𝑅

+
× 𝑅
𝑛
× 𝑅
𝑛
→ 𝑅
𝑛 and𝑔 : 𝑅

+
× 𝑅
𝑛
× 𝑅
𝑛
→

𝑅
𝑛×𝑚 are locally Lipschitzwith𝑓(𝑡, 0, 0) = 0 and𝑔(𝑡, 0, 0) = 0.

Definition 1 (see [32]). For any given 𝑉(𝑡, 𝑥(𝑡)) ∈ 𝐶
1,2

associated with system (2), the differential operator L is
defined as

L𝑉 =
𝜕𝑉

𝜕𝑡
+
𝜕𝑉

𝜕𝑥
𝑓 +

1

2
Tr{𝑔𝑇 𝜕

2
𝑉

𝜕𝑥2
𝑔} . (3)

Lemma 2 (see [32]). For system (2), if there is a func-
tion 𝑉(𝑡, 𝑥(𝑡)) ∈ 𝐶

1,2
(𝑅
+
; 𝑅
𝑛
× [−𝑑,∞)) and two class

𝐾
∞

functions 𝛽
1
(⋅) and 𝛽

2
(⋅), such that

𝛽
1 (|𝑥 (𝑡)|) ≤ 𝑉 (𝑡, 𝑥 (𝑡)) ≤ 𝛽

2
( sup
−𝑑≤𝑠≤0

|𝑥 (𝑡 + 𝑠)|) ,

L𝑉 ≤ −𝑊(𝑥 (𝑡)) ,

(4)

where𝑊(𝑥(𝑡)) is a nonnegative continuous function, then
(i) there exists a unique solution on [−𝑑,∞);
(ii) the equilibrium 𝑥 = 0 is globally stable in probability

and the solution 𝑥(𝑡) satisfies

𝑃{ lim
𝑡→∞

𝑊(𝑥 (𝑡)) = 0} = 1. (5)
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Especially, if 𝑊(𝑥(𝑡)) is a positive definite function, then
the equilibrium 𝑥 = 0 is globally asymptotically stable (GAS)
in probability.

In the remainder of this section, we list several lemmas
that serve as the basis for the development of a state-feedback
controller for system (1). They are the key tools for adding a
power integrator technique.

Lemma 3 (see [36]). For 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, and 𝑝 ≥ 1 being a
constant, the following inequalities hold:

󵄨󵄨󵄨󵄨𝑥 + 𝑦
󵄨󵄨󵄨󵄨
𝑝
≤ 2
𝑝−1 󵄨󵄨󵄨󵄨𝑥
𝑝
+ 𝑦
𝑝󵄨󵄨󵄨󵄨 ,

(|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
1/𝑝

≤ |𝑥|
1/𝑝

+
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨
1/𝑝

≤ 2
(𝑝−1)/𝑝

(|𝑥| +
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨)
1/𝑝

.

(6)

If 𝑝 ≥ 1 is odd, then

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝑝
≤ 2
𝑝−1 󵄨󵄨󵄨󵄨𝑥
𝑝
− 𝑦
𝑝󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝑥
1/𝑝

− 𝑦
1/𝑝󵄨󵄨󵄨󵄨󵄨

≤ 2
(𝑝−1)/𝑝

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
1/𝑝

.

(7)

Lemma 4 (see [37]). For 𝑥, 𝑦 ∈ 𝑅 and positive real number 𝑝,
the following inequality holds:

󵄨󵄨󵄨󵄨𝑥
𝑝
− 𝑦
𝑝󵄨󵄨󵄨󵄨 ≤ 𝑝

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑝−1

+ 𝑦
𝑝−1󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
(𝑥 − 𝑦)

𝑝−1
+ 𝑦
𝑝−1󵄨󵄨󵄨󵄨󵄨

,

(8)

where 𝑐 = 𝑝 for 1 < 𝑝 ≤ 2 and 𝑐 = 𝑝2
𝑝−1 for 𝑝 > 2.

Lemma5 (see [38]). Let 𝑥 and𝑦 be real variables; then for any
positive real numbers 𝑎,𝑚, and 𝑛, one has

𝑎|𝑥|
𝑚󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
𝑛
≤ 𝑏|𝑥|

𝑚+𝑛

+
𝑛

𝑚 + 𝑛
(
𝑚 + 𝑛

𝑚
)

−𝑚/𝑛

𝑎
(𝑚+𝑛)/𝑛

𝑏
−𝑚/𝑛󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨
𝑚+𝑛

,

(9)

where 𝑏 > 0 is any real number.

3. Controller Design and Main Result

The objective of this paper is to design a state-feedback
controller of the form

𝑢 = 𝑢 (𝑥) , (10)

such that system (1) is GAS in probability at the origin.
To this end, the following assumptions regarding system

(1) are imposed.

Assumption 6. For 𝑖 = 1, . . . , 𝑛, there are positive constants 𝑐
𝑖1

and 𝑐
𝑖2
such that

𝑐
𝑖1
≤ ℎ
𝑖 (𝑡) ≤ 𝑐

𝑖2
. (11)

Assumption 7. For 𝑖 = 1, . . . , 𝑛, there are nonnegative smooth
functions 𝑎

𝑖1
(𝑥
𝑖
), 𝑎
𝑖2
(𝑥
𝑖
) and constants 𝜏

1
≥ 𝜏
2
≥ ⋅ ⋅ ⋅ ≥ 𝜏

𝑛
≥ 0

such that
󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝑑 (𝑡)))

󵄨󵄨󵄨󵄨

≤ 𝑎
𝑖1
(𝑥
𝑖
)

𝑖

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

(𝑟𝑖+𝜏𝑖)/𝑟𝑗

+
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨

(𝑟𝑖+𝜏𝑖)/𝑟𝑗
) ,

󵄨󵄨󵄨󵄨𝑔𝑖 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝑑 (𝑡)))
󵄨󵄨󵄨󵄨

≤ 𝑎
𝑖2
(𝑥
𝑖
)

𝑖

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

(2𝑟𝑖+𝜏𝑖)/2𝑟𝑗

+
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨

(2𝑟𝑖+𝜏𝑖)/2𝑟𝑗
) ,

(12)

where 𝑟
1
= 1 and 𝑟

𝑖+1
= (𝑟
𝑖
+ 𝜏
𝑖
)/𝑝
𝑖
> 0. Let 𝑟

0
= max{𝑟

𝑖
}

and 𝛼
𝑖
= 𝑟
0
/𝑟
𝑖
, 𝑖 = 1, . . . , 𝑛. Meanwhile, one of the following

conditions should be satisfied:
(i) 𝑟
𝑛
+ 𝜏
𝑛
≥ 𝑟
𝑖
is required if 𝛼

𝑖
= 1 or 𝛼

𝑖
≥ 2, 𝑖 = 1, . . . , 𝑛;

(ii) 𝑟
𝑛
+ 𝜏
𝑛
≥ 2𝑟
𝑖
is required if condition (i) does not hold.

Remark 8. Assumption 7 is a generalization of the homoge-
neous growth condition introduced in [15], where 𝑑(𝑡) = 0.
The assumption plays an essential role in ensuring the locally
Lipschitz condition of the closed-loop system, which guaran-
tees the existence and uniqueness of the solution. Moreover,
it is worth pointing out that Assumption 7 encompasses the
assumption in existing results [34, 35]. Specifically, when 𝑝

𝑖
=

𝑝 ∈ 𝑅
>2

odd, 𝜏𝑖 = 𝜏, and 𝑎
𝑖1
(𝑥
𝑖
) = 𝑎
𝑖2
(𝑥
𝑖
) = 𝑎, Assumption 7 can

be seen to reduce to the condition used in [35]. Moreover,
when 𝑝

𝑖
= 𝑝 and 𝑎

𝑖1
(𝑥
𝑖
) = 𝑎
𝑖2
(𝑥
𝑖
) = 𝑎 by choosing 𝜏

𝑖
= 𝑝 − 1,

Assumption 7 reduces to the following condition:
󵄨󵄨󵄨󵄨𝑓𝑖 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝑑 (𝑡)))

󵄨󵄨󵄨󵄨

≤ 𝑎

𝑖

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

𝑝

+
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨

𝑝

) ,

󵄨󵄨󵄨󵄨𝑔𝑖 (𝑡, 𝑥𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝑑 (𝑡)))
󵄨󵄨󵄨󵄨

≤ 𝑎

𝑖

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

(𝑝+1)/2

+
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨

(𝑝+1)/2

) ,

(13)

which is equivalent to that in [34].

Remark 9. It should be emphasized that the available state-
feedback results for high-order stochastic time-delay system
(1) in [34, 35] are all based on the strict power order restriction
(𝑝
1
= 𝑝
2
= ⋅ ⋅ ⋅ = 𝑝

𝑛
= 𝑝). In this paper, for 𝑝

𝑖
, we only need a

much more general condition: 𝑝
𝑖
∈ 𝑅
≥1

odd, 𝑖 = 1, . . . , 𝑛, which
means that the power order restriction is completely removed
in this paper.

Without loss of generality, we assume that 𝜏
𝑖
= 𝑝
𝑖
/𝑑
𝑖
with

𝑝
𝑖
being any even integer and 𝑑

𝑖
being any odd integer, under
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which and with the definition of 𝑟
𝑖
in Assumption 7, we know

that 𝑟
𝑖
∈ 𝑅
+

odd. For general 𝑟𝑖, a similar technique in [39] can
be used.

Choose 𝑙 ≥ 1 to satisfy 𝑟
𝑛
+ 𝜏
𝑛
≥ (𝑟
𝑖
+ 𝜏
𝑖
)/𝑙 and 𝑟

0
≥

(𝑟
𝑖
+ 𝜏
𝑖
)/𝑙, 𝑖 = 1, . . . , 𝑛. With Assumption 7, 𝜎 is chosen in the

following manner.

(a) Choose 𝜎 = 𝑟
0
if condition (i) of Assumption 7 is

satisfied.

(b) 𝜎 can be chosen as any 𝜎 ∈ 𝑅
+

odd satisfying 𝑟
𝑛
+

𝜏
𝑛
≥ 𝜎 ≥ max

1≤𝑖≤𝑛
{(𝑟
𝑖
+ 𝜏
𝑖
)/𝑙, 2𝑟

𝑖
} if condition (ii) of

Assumption 7 holds.

Now, we are in the position to give the controller design
procedure by applying the method of adding a power inte-
grator. To simplify the deduction procedure, we sometimes
denote 𝜒(𝑡) by 𝜒.

Step 1. Define 𝜉
1
= 𝑥
𝜎

1
and choose the Lyapunov functional

𝑉
1

= 𝑊
1
+ (𝑛/(1 − 𝜂)) ∫

𝑡

𝑡−𝑑(𝑡)
𝑥
4𝑙𝜎

1
(𝑠)𝑑𝑠, where 𝑊

1
=

(1/(4𝑙𝜎 − 𝜏
1
))𝑥
4𝑙𝜎−𝜏1

1
. With the help of Assumptions 6 and 7

and Lemma 5, we have

L𝑉
1
≤ ℎ
1
𝑥
4𝑙𝜎−𝜏1−1

1
𝑥
𝑝1

2

+ 𝑎
11
𝑥
4𝑙𝜎−𝜏1−1

1
(
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨
1+𝜏1

+
󵄨󵄨󵄨󵄨𝑥1 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
1+𝜏1

)

+ (4𝜎 − 𝜏
1
− 1) 𝑎

2

12
𝑥
4𝑙𝜎−𝜏1−2

1

× (
󵄨󵄨󵄨󵄨𝑥1

󵄨󵄨󵄨󵄨
2+𝜏1

+
󵄨󵄨󵄨󵄨𝑥1 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
2+𝜏1

)

+
𝑛

1 − 𝜂
𝑥
4𝑙𝜎

1
−
𝑛 (1 − ̇𝑑 (𝑡))

1 − 𝜂
𝑥
4𝑙𝜎

1
(𝑡 − 𝑑 (𝑡))

≤ ℎ
1
𝑥
4𝑙𝜎−𝜏1−1

1
(𝑥
𝑝1

2
− 𝑥
∗𝑝1

2
)

− (𝑛 − 1) 𝑥
4𝑙𝜎

1
(𝑡 − 𝑑 (𝑡)) + ℎ

1
𝑥
4𝑙𝜎−𝜏1−1

1
𝑥
∗𝑝1

2

+ 𝑥
4𝑙𝜎

1
(

𝑛

1 − 𝜂
+ 𝑎
11
+ (4𝜎 − 𝜏

1
− 1) 𝑎

2

12
+ 𝑙
11
+ 𝑙
12
) ,

(14)

where 𝑙
11
(𝑥
1
) ≥ ((4𝑙𝜎 − 𝜏

1
− 1)/4𝑙𝜎) × ((1 +

𝜏
1
)/2𝑙𝜎)

(1+𝜏1)/(4𝑙𝜎−𝜏1−1) × 𝑎
4𝑙𝜎/(4𝑙𝜎−𝜏1−1)

11
and 𝑙

12
(𝑥
1
) ≥

((4𝑙𝜎 − 𝜏
1

− 2)/4𝑙𝜎) × ((2 + 𝜏
1
)/2𝑙𝜎)

(2+𝜏1)/(4𝑙𝜎−𝜏1−2) ×

[(4𝜎 − 𝜏
1

− 1)𝑎
2

12
]
4𝑙𝜎/(4𝑙𝜎−𝜏1−2) are nonnegative smooth

functions.

Obviously, the first virtual controller

𝑥
∗

2
= −

1

𝑐
11

(𝑛 +
𝑛

1 − 𝜂
+ 𝑎
11
+ (4𝜎 − 𝜏

1
− 1) 𝑎

2

12

+ 𝑙
11
+ 𝑙
12
)𝑥
(1+𝜏1)/𝑝1

1

:= −𝛽
𝑟2/𝜎

1
𝜉
𝑟2/𝜎

1
,

(15)

with 𝛽
1
> 0 being smooth results in

L𝑉
1
≤ − 𝑛𝜉

4𝑙

1
− (𝑛 − 1) 𝜉

4𝑙

1
(𝑡 − 𝑑 (𝑡))

+ ℎ
1
𝜉
(4𝑙𝜎−𝜏1−1)/𝜎

1
(𝑥
𝑝1

2
− 𝑥
∗𝑝1

2
) .

(16)

Remark 10. It is necessary to mention that in the first design
step, the functions 𝑙

11
(𝑥
1
) and 𝑙

12
(𝑥
1
) have been provided

with explicit expression in order to deduce the completely
explicit virtual controller. However, in the later design steps,
sometimes for the sake of briefness, we will not explicitly
write out the functions which are easily defined.

Inductive Step. Suppose at step 𝑘−1 that there are a𝐶2, proper
and positive definite Lyapunov function 𝑉

𝑘−1
, and a set of

virtual controllers 𝑥∗
1
, . . . , 𝑥

∗

𝑘−1
defined by

𝑥
∗

1
= 0, 𝜉

1
= 𝑥
𝜎/𝑟1

1
− 𝑥
∗𝜎/𝑟1

1
,

𝑥
∗

2
= −𝛽
𝑟2/𝜎

1
𝜉
𝑟2/𝜎

1
, 𝜉
2
= 𝑥
𝜎/𝑟2

2
− 𝑥
∗𝜎/𝑟2

2
,

...
...

𝑥
∗

𝑘
= −𝛽
𝑟𝑘/𝜎

𝑘−1
𝜉
𝑟𝑘/𝜎

𝑘−1
, 𝜉
𝑘
= 𝑥
𝜎/𝑟𝑘

𝑘
− 𝑥
∗𝜎/𝑟𝑘

𝑘
,

(17)

with 𝛽
1
> 0, . . . , 𝛽

𝑘−1
> 0 being smooth, such that

L𝑉
𝑘−1

≤ − (𝑛 − 𝑘 + 2)

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
− (𝑛 − 𝑘 + 1)

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡))

+ ℎ
𝑘−1

𝜉
(4𝑙𝜎−𝜏𝑘−1−𝑟𝑘−1)/𝜎

𝑘−1
(𝑥
𝑝𝑘−1

𝑘
− 𝑥
∗𝑝𝑘−1

𝑘
) .

(18)

To complete the induction, at the 𝑘th step, we choose the
following Lyapunov functional candidate

𝑉
𝑘
(𝑥
𝑘
) = 𝑉
𝑘−1

(𝑥
𝑘−1

) + 𝑊
𝑘
(𝑥
𝑘
)

+
𝑛 − 𝑘 + 1

1 − 𝜂
∫

𝑡

𝑡−𝑑(𝑡)

𝜉
4𝑙

𝑘
(𝑠) 𝑑𝑠,

(19)

where

𝑊
𝑘
(𝑥
𝑘
) = ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑟𝑘 − 𝑥

∗𝜎/𝑟𝑘

𝑘
)
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑑𝑠. (20)
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Noting that 𝜎/𝑟
𝑖

≥ 2, using a similar method as in
[40], 𝑉

𝑘
can be shown to be 𝐶2, proper and positive definite.

Moreover, we can obtain

𝜕𝑊
𝑘

𝜕𝑥
𝑘

= 𝜉
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘
,

𝜕
2
𝑊
𝑘

𝜕𝑥2
𝑘

=
4𝑙𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝑟
𝑘

𝜉
((4𝑙−1)𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘
𝑥
(𝜎−𝑟𝑘)/𝑟𝑘

𝑘
,

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑘
𝜕𝑥
𝑖

=
𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑘

=
4𝑙𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝜎
𝜉
((4𝑙−1)𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘

𝜕𝑥
∗𝜎/𝑟𝑘

𝑘

𝜕𝑥
𝑖

,

𝜕𝑊
𝑘

𝜕𝑥
𝑖

= −
4𝑙𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝜎

𝜕𝑥
∗𝜎/𝑟𝑘

𝑘

𝜕𝑥
𝑖

× ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑟𝑘 − 𝑥

∗𝜎/𝑟𝑘

𝑘
)
((4𝑙−1)𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑑𝑠,

𝜕
2
𝑊
𝑘

𝜕𝑥2
𝑖

=
4𝑙𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝜎
⋅
(4𝑙 − 1) 𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝜎
(
𝜕𝑥
∗𝜎/𝑟𝑘

𝑘

𝜕𝑥
𝑖

)

2

× ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑟𝑘 − 𝑥

∗𝜎/𝑟𝑘

𝑘
)
((4𝑙−2)𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑑𝑠

−
4𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝜎

𝜕
2
𝑥
∗𝜎/𝑟𝑘

𝑘

𝜕𝑥2
𝑖

× ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑟𝑘 − 𝑥

∗𝜎/𝑟𝑘

𝑘
)
((4𝑙−1)𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑑𝑠,

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

=
4𝑙𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝜎
⋅
(4𝑙 − 1) 𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝜎

×
𝜕𝑥
∗𝜎/𝑟𝑘

𝑘

𝜕𝑥
𝑖

𝜕𝑥
∗𝜎/𝑟𝑘

𝑘

𝜕𝑥
𝑗

× ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑟𝑘 − 𝑥

∗𝜎/𝑟𝑘

𝑘
)
((4𝑙−2)𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑑𝑠,

(21)

where 𝑖, 𝑗 = 1, . . . , 𝑘 − 1, 𝑖 ̸= 𝑗.
Using (19), (20), and (21), it follows that

L𝑉
𝑘

≤ − (𝑛 − 𝑘 + 2)

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
− (𝑛 − 𝑘 + 1)

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡))

+ ℎ
𝑘−1

𝜉
(4𝑙𝜎−𝜏𝑘−1−𝑟𝑘−1)/𝜎

𝑘−1
(𝑥
𝑝𝑘−1

𝑘
− 𝑥
∗𝑝𝑘−1

𝑘
)

+ ℎ
𝑘
𝜉
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘
𝑥
𝑝𝑘

𝑘+1
+ 𝜉
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘
𝑓
𝑘

+

𝑘−1

∑

𝑖=1

𝜕𝑊
𝑘

𝜕𝑥
𝑖

(ℎ
𝑖
𝑥
𝑖+1

+ 𝑓
𝑖
) +

1

2

𝑘−1

∑

𝑖,𝑗=1,𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑗

󵄨󵄨󵄨󵄨󵄨

+
1

2

𝑘−1

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥2
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

2

+
1

2

𝑘−1

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑘
𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑘

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

+
1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥2
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑘

󵄨󵄨󵄨󵄨󵄨

2

+
𝑛 − 𝑘 + 1

1 − 𝜂
𝜉
4𝑙

𝑘

−
(𝑛 − 𝑘 + 1) (1 − ̇𝑑 (𝑡))

1 − 𝜂
𝜉
4𝑙

𝑘
(𝑡 − 𝑑 (𝑡)) .

(22)

In order to proceed further, an appropriate bounding
estimate should be given for each term on the right-hand side
of (22). This is accomplished in the following propositions
whose technical proofs are given in the Appendix.

Proposition 11. There exists a positive constant 𝑙
𝑘1
such that

ℎ
𝑘−1

𝜉
(4𝑙𝜎−𝜏𝑘−1−𝑟𝑘−1)/𝜎

𝑘−1
(𝑥
𝑝𝑘−1

𝑘
− 𝑥
∗𝑝𝑘−1

𝑘
) ≤

1

4
𝜉
4𝑙

𝑘−1
+ 𝜉
4𝑙

𝑘
𝑙
𝑘1
. (23)

Proposition 12. There exists a nonnegative smooth function
𝑙
𝑘2
such that

𝜉
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘
𝑓
𝑘
≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝜉

4𝑙

𝑘
𝑙
𝑘2
. (24)

Proposition 13. There exists a nonnegative smooth function
𝑙
𝑘3
such that

𝑘−1

∑

𝑖=1

𝜕𝑊
𝑘

𝜕𝑥
𝑖

(ℎ
𝑖
𝑥
𝑖+1

+ 𝑓
𝑖
)

≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝜉

4𝑙

𝑘
𝑙
𝑘3
.

(25)

Proposition 14. There exists a nonnegative smooth function
𝑙
𝑘4
such that

1

2

𝑘−1

∑

𝑖,𝑗=1,𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑗

󵄨󵄨󵄨󵄨󵄨

≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝜉

4𝑙

𝑘
𝑙
𝑘4
.

(26)

Proposition 15. There exists a nonnegative smooth function
𝑙
𝑘5
such that

1

2

𝑘−1

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥2
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

2

≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝜉

4𝑙

𝑘
𝑙
𝑘5
.

(27)
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Proposition 16. There exists a nonnegative smooth function
𝑙
𝑘6
such that

1

2

𝑘−1

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑘
𝜕𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑘

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝜉

4𝑙

𝑘
𝑙
𝑘6
.

(28)

Proposition 17. There exists a nonnegative smooth function
𝑙
𝑘7
such that

1

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥2
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑘

󵄨󵄨󵄨󵄨󵄨

2

≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝜉

4𝑙

𝑘
𝑙
𝑘7
.

(29)

Substituting (23)–(29) into (22) yields

L𝑉
𝑘
≤ − (𝑛 − 𝑘 + 1)

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
− (𝑛 − 𝑘)

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡))

+ ℎ
𝑘
𝜉
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘
(𝑥
𝑝𝑘

𝑘+1
− 𝑥
∗𝑝𝑘

𝑘+1
)

+ ℎ
𝑘
𝜉
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘
𝑥
∗𝑝𝑘

𝑘+1
+ 𝜉
4𝑙

𝑘
(

7

∑

𝑗=1

𝑙
𝑘𝑗
+
𝑛 − 𝑘 + 1

1 − 𝜂
) .

(30)

Now, it easy to see that the virtual controller

𝑥
∗

𝑘+1

= −
1

𝑐
𝑘1

(𝑛 − 𝑘 + 1 +

7

∑

𝑗=1

𝑙
𝑘𝑗
+
𝑛 − 𝑘 + 1

1 − 𝜂
) 𝜉
(𝑟𝑘+𝜏𝑘)/𝜎𝑝𝑘

𝑘

:= −𝛽
𝑟𝑘+1/𝜎

𝑘
𝜉
𝑟𝑘+1/𝜎

𝑘

(31)

renders

L𝑉
𝑘
≤ − (𝑛 − 𝑘 + 1)

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖

− (𝑛 − 𝑘)

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡))

+ ℎ
𝑘
𝜉
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘
(𝑥
𝑝𝑘

𝑘+1
− 𝑥
∗𝑝𝑘

𝑘+1
) .

(32)

Finally, when 𝑘 = 𝑛, 𝑥
𝑛+1

= 𝑥
∗

𝑛+1
= 𝑢 is the actual control.

By choosing the actual control law,

𝑢 = −𝛽
𝑟𝑛+1/𝜎

𝑛
𝜉
𝑟𝑛+1/𝜎

𝑛
, (33)

we get

L𝑉
𝑛
≤ −

𝑛

∑

𝑖=1

𝜉
4𝑙

𝑖
, (34)

where

𝑉
𝑛
=

𝑛

∑

𝑖=1

𝑊
𝑖
+

𝑛

∑

𝑖=1

𝑛 − 𝑖 + 1

1 − 𝜂
∫

𝑡

𝑡−𝑑(𝑡)

𝜉
4𝑙

𝑖
(𝑠) 𝑑𝑠. (35)

We are now ready to state the main theorem of this paper.

Theorem 18. If Assumptions 6 and 7 hold for stochastic high-
order nonlinear time-delay system (1), under the state-feedback
controller (33), then the closed-loop system has a unique
solution on [−𝑑,∞) and the equilibrium at the origin of the
closed-loop system is GAS in probability.

Proof . We proveTheorem 18 in two steps.
Step 1. We first prove that 𝑢

𝑝𝑛 in (1) satisfies the locally
Lipschitz condition.

From (17), (33), and 𝑟
𝑛+1

𝑝
𝑛
= 𝑟
𝑛
+ 𝜏
𝑛
, one has

𝑢
𝑝𝑛 = −(𝛽

1
𝑥
𝜎/𝑟1

1
+ ⋅ ⋅ ⋅ + 𝛽

𝑛
𝑥
𝜎/𝑟𝑛

𝑛
)
(𝑟𝑛+𝜏𝑛)/𝜎

, (36)

where 𝛽
𝑖
= 𝛽
𝑛
, . . . , 𝛽

𝑖
. Then, for 𝑖 = 1, . . . , 𝑛,

𝜕𝑢
𝑝𝑛

𝜕𝑥
𝑖

= −𝐴
𝑖
(𝛽
1
𝑥
𝜎/𝑟1

1
+ ⋅ ⋅ ⋅ + 𝛽

𝑛
𝑥
𝜎/𝑟𝑛

𝑛
)
(𝑟𝑛+𝜏𝑛−𝜎)/𝜎

, (37)

where

𝐴
𝑖
=
𝑟
𝑛
+ 𝜏
𝑛

𝑟
𝑖

𝛽
𝑖
𝑥
(𝜎−𝑟𝑖)/𝑟𝑖

𝑖
+

𝑛−1

∑

𝑗=1

𝑟
𝑗
+ 𝜏
𝑗

𝜎

𝜕𝛽
𝑗

𝜕𝑥
𝑖

𝑥
𝜎/𝑟𝑗

𝑗
. (38)

By the definition of 𝜎, we know that 𝑟
𝑛
+ 𝜏 ≥ 𝜎 ≥

max
1≤𝑖≤𝑛

{𝑟
𝑖
} > 0, which implies that

𝜎 − 𝑟
𝑖

𝑟
𝑖

≥ 0,
𝑟
𝑛
+ 𝜏
𝑛
− 𝜎

𝜎
≥ 0, (39)

from which, (37), (38), and 𝛽
𝑖
’s being smooth, we obtain that

𝜕𝑢
𝑝𝑛/𝜕𝑥
𝑖
is continuous. Therefore, 𝑢𝑝𝑛 is 𝐶1.

Since 𝑓
𝑖
and 𝑔

𝑖
are assumed to be locally Lipschitz, so

the system consisting of (1), (17), and (33) satisfies the locally
Lipschitz condition.
Step 2.Then we prove that the origin of closed-loop system is
GAS in probability.

From the definitions of 𝑊
𝑖
’s, we easily see that ∑𝑛

𝑖=1
𝑊
𝑖
,

as the function of 𝑥, is positive, definite, and radially
unbounded.Then, by (34), (35), and Lemma 4.3 in [41], there
exist 𝐾

∞
functions 𝛽

1
, 𝛽
2
, and 𝛽

3
such that

𝛽
1
(
󵄨󵄨󵄨󵄨𝜉 (𝑡)

󵄨󵄨󵄨󵄨) ≤ 𝑉
𝑛
(𝑡, 𝜉
𝑡 (𝜃)) ≤ 𝛽

2
( sup
−𝑑≤𝜃≤0

󵄨󵄨󵄨󵄨𝜉𝑡 (𝑡 + 𝜃)
󵄨󵄨󵄨󵄨) ,

L𝑉
𝑛
≤ −𝛽
3
(
󵄨󵄨󵄨󵄨𝜉 (𝑡)

󵄨󵄨󵄨󵄨) .

(40)

With the help of Lemma 2, we conclude that the closed-loop
systemhas a unique solution on [−𝑑,∞), and the equilibrium
𝜉 = 0 is GAS in probability.This together with the definitions
of 𝑥∗
𝑖
’s directly concludes that the origin 𝑥 = 0 of system (1)

is also GAS in probability. Thus, the proof is completed.
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Figure 1: The responses of closed-loop system (41) and (42).

Remark 19. In the deterministic work [29], strong stability
theory [42] guarantees the existence of a solution; hence, the
locally Lipschitz condition need not to be satisfied. While
for stochastic system, according to the existing stochastic
stability theory, to guarantee the existence and uniqueness of
the solution, the designed controller must guarantee that the
closed-loop system satisfies the locally Lipschitz condition.
What should be emphasized is that how to guarantee the
constructed Lyapunov functional being 𝐶

2 and the closed-
loop systems satisfying the locally Lipschitz condition simul-
taneously is one of the difficulties in this paper.

Remark 20. Since Itô stochastic differentiation involves not
only the gradient but also the higher order Hessian term
in the Lyapunov design procedure, many tedious nonlinear
terms will arise in the design process, especially in the
case of the appearance of high order, time-varying delay
and nonlinear assumption. How to deal with these terms is
another difficulty of this paper.

Remark 21. From the above design procedure, we can see
that the upper bound of the change rate of time delays has
important impact on the control effort. To keep the control
effort within the certain range, the upper bound of the change
rate of time delays cannot be arbitrarily close to 1, which
should be considered in practical engineering design.

4. Simulation Example

To illustrate the effectiveness of the proposed controller, we
consider the following low-dimensional system

𝑑𝑥
1
= (1.5 + 0.5 cos 𝑡) 𝑥5/3

2
𝑑𝑡 +

1

4
𝑥
5/3

1
(𝑡 − 𝑑 (𝑡)) 𝑑𝑡,

𝑑𝑥
2
= 𝑢
3
+
1

4
𝑥
1
sin𝑥
1
𝑑𝑡 +

1

8
𝑥
4/3

2
(𝑡 − 𝑑 (𝑡)) 𝑑𝑤,

(41)

where 𝑑(𝑡) = (1/3)(1 + sin(𝑡)).
It is evident that, even though system (41) is simple,

it could not be globally asymptotically stabilized using the
design method presented in [34, 35] because of the unsatisfi-
ability of the power order restriction. However, if we choose
𝜏
1
= 𝜏
2
= 2/3which together with 𝑟

1
= 1 and𝑝

1
= 5/3implies

that 𝑟
2
= 1, it is easy to get |𝑓

1
| ≤ (1/4)|𝑥

1
(𝑡 − 𝑑(𝑡))|

5/3,
|𝑓
2
| ≤ (1/4)|𝑥

1
|
5/3, and |𝑔

2
| ≤ (1/8)|𝑥

2
(𝑡 − 𝑑(𝑡))|

4/3. Clearly,
Assumption 7 is satisfied. Moreover, noting that 1 ≤ 1.5 +

0.5 cos 𝑡 ≤ 2 and ̇𝑑(𝑡) = (1/3) cos 𝑡 ≤ (1/3) < 1, the controller
proposed in this paper is applicable.

By choosing 𝑙 = 1 and 𝜎 = 1, following the design
procedure given in Section 3, we can get

𝑥
∗

2
= − (5 + 𝑙

11
) 𝑥
1
,

𝑢 = −(
5

2
+ 𝑙
21
+ 𝑙
22
+ 𝑙
23
)

5/27

𝜉
5/27

2
,

(42)

where 𝛽
1
= 5 + 𝑙

11
, 𝜉
2
= 𝑥
2
+ 𝛽
1
𝑥
1
, 𝑙
11

= (7/12) × (5/6)
5/7

×

(1/4)
12/7, 𝑙
21

= 54 × (10/3)
4
+ (5/12) × (3/7)

7/5
× (10/3)

12/5,
𝑙
22

= (5/12)×(3/7)
7/5

×(1/4)
12/5, and 𝑙

23
= 2+2𝛽

4/3

1
+(3/4)×

(1 + 𝛽
4/3

1
)
3.

In the simulation, we choose the initial values 𝑥
1
(0) = 1

and 𝑥
2
(0) = −1. Figure 1 gives the responses of (41) and

(42). From the figure, we can see that under the constructed
controller, the solution process of the closed-loop system
asymptotically converges to zero almost surely. We can
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also see that a little larger control effort is needed at the
beginning. As mentioned in [32], when there exist stochastic
disturbances and time delays, the effort of a controller
designed based on the backstepping method is bigger than
the common case, to which attention should be paid in
practical use.

5. Conclusion

This paper deals with the state-feedback stabilization problem
for a class of stochastic high-order nonlinear time-delay sys-
tems under weaker conditions. The designed state-feedback
controller ensures that the origin of the closed-loop system
is GAS in probability. It should be noted that the proposed
controller can only work well when the whole state vector
is measurable. Therefore, a natural and more interesting
problem is how to design output feedback stabilization
controller for the systems studied in the paper if only partial
state vector is being measurable, which is now under our
further investigation.

Appendix

Proof of Proposition 11. There are two different cases for the
proof.

If 𝑟
𝑘
𝑝
𝑘−1

< 𝜎, using (17), it follows from Lemma 3 that

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑝𝑘−1

𝑘
− 𝑥
∗𝑝𝑘−1

𝑘

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑥
𝜎/𝑟𝑘

𝑘
)
𝑝𝑘−1𝑟𝑘/𝜎

− (𝑥
∗𝜎/𝑟𝑘

𝑘
)
𝑝𝑘−1𝑟𝑘/𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2
(𝜎−𝑝𝑘−1𝑟𝑘)/𝜎󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨
𝑝𝑘−1𝑟𝑘/𝜎

.

(A.1)

Noting that 𝑝
𝑘−1

𝑟
𝑘
= 𝑟
𝑘−1

+ 𝜏
𝑘−1

, by (A.1), from Assumptions
6 and 7 and Lemma 5, it can be obtained that

ℎ
𝑘−1

𝜉
(4𝑙𝜎−𝜏𝑘−1−𝑟𝑘−1)/𝜎

𝑘−1
(𝑥
𝑝𝑘−1

𝑘
− 𝑥
∗𝑝𝑘−1

𝑘
)

≤ 𝑐
𝑘−1,2

2
(𝜎−𝑝𝑘−1𝑟𝑘)/𝜎

×
󵄨󵄨󵄨󵄨𝜉𝑘−1

󵄨󵄨󵄨󵄨
(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨
𝑝𝑘−1𝑟𝑘/𝜎

≤
1

4
𝜉
4𝑙

𝑘−1
+ 𝑙
𝑘,1,1

𝜉
4𝑙

𝑘
,

(A.2)

where 𝑙
𝑘,1,1

is a positive constant.
If 𝑟
𝑘
𝑝
𝑘−1

≥ 𝜎, from (17) and Lemma 4, we can get
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑝𝑘−1

𝑘
− 𝑥
∗𝑝𝑘−1

𝑘

󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑥
𝜎/𝑟𝑘

𝑘
)
𝑝𝑘−1𝑟𝑘/𝜎

− (𝑥
∗𝜎/𝑟𝑘

𝑘
)
𝑝𝑘−1𝑟𝑘/𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
󵄨󵄨󵄨󵄨󵄨
𝑥
𝜎/𝑟𝑘

𝑘
− 𝑥
∗𝜎/𝑟𝑘

𝑘

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑥
𝜎/𝑟𝑘

𝑘
− 𝑥
∗𝜎/𝑟𝑘

𝑘
)
(𝑝𝑘−1𝑟𝑘−𝜎)/𝜎

− (𝑥
∗𝜎/𝑟𝑘

𝑘
)
(𝑝𝑘−1𝑟𝑘−𝜎)/𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨 (
󵄨󵄨󵄨󵄨𝜉𝑘−1

󵄨󵄨󵄨󵄨
(𝑝𝑘−1𝑟𝑘−𝜎)/𝜎

+
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨
(𝑝𝑘−1𝑟𝑘−𝜎)/𝜎

) ,

(A.3)

where 𝑐 and 𝑐 are positive constants.

By applying Lemma 5, we have

ℎ
𝑘−1

𝜉
(4𝑙𝜎−𝜏𝑘−1−𝑟𝑘−1)/𝜎

𝑘−1
(𝑥
𝑝𝑘−1

𝑘
− 𝑥
∗𝑝𝑘−1

𝑘
)

≤ 𝑐
𝑘−1,2

󵄨󵄨󵄨󵄨𝜉𝑘−1
󵄨󵄨󵄨󵄨
(4𝑙𝜎−𝜏𝑘−1−𝑟𝑘−1)/𝜎

𝑐
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨

× (
󵄨󵄨󵄨󵄨𝜉𝑘−1

󵄨󵄨󵄨󵄨
(𝑝𝑘−1𝑟𝑘−𝜎)/𝜎

+
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨
(𝑝𝑘−1𝑟𝑘−𝜎)/𝜎

)

≤
1

4
𝜉
4𝑙

𝑘−1
+ 𝑙
𝑘,1,2

𝜉
4𝑙

𝑘
,

(A.4)

where 𝑙
𝑘,1,2

is a positive constant.
By choosing 𝑙

𝑘1
= max{𝑙

𝑘,1,1
, 𝑙
𝑘,1,2

}, with (A.2) and (A.4),
we can obtain that

ℎ
𝑘−1

𝜉
(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎

𝑘−1
(𝑥
𝑝𝑘−1

𝑘
− 𝑥
∗𝑝𝑘−1

𝑘
) ≤

1

4
𝜉
4𝑙

𝑘−1
+ 𝑙
𝑘1
𝜉
4𝑙

𝑘
. (A.5)

Proof of Proposition 12. According to (17), Assumption 7, and
Lemma 3, it follows that
󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨

≤ 𝑎
𝑘1

𝑘

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨
(𝑟𝑘+𝜏𝑘)/𝑟𝑖

+
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
(𝑟𝑘+𝜏𝑘)/𝑟𝑖

)

= 𝑎
𝑘1

𝑘

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝜉𝑖 + 𝛽

𝑖−1
𝜉
𝑖−1

󵄨󵄨󵄨󵄨
𝑟𝑖/𝜎

)
(𝑟𝑘+𝜏𝑘)/𝑟𝑖

+ 𝑎
𝑘1

𝑘

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝜉𝑖 (𝑡 − 𝑑 (𝑡)) + 𝛽

𝑖−1
𝜉
𝑖−1 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
𝑟𝑖/𝜎

)
(𝑟𝑘+𝜏𝑘)/𝑟𝑖

≤ 𝑎
𝑘1

𝑘

∑

𝑖=1

(1 + 𝛽
(𝑟𝑘+𝜏𝑘)/𝜎

𝑖−1
)

× (
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨
(𝑟𝑘+𝜏)/𝜎

+
󵄨󵄨󵄨󵄨𝜉𝑖 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
(𝑟𝑘+𝜏𝑘)/𝜎

)

≤ 𝑎
𝑘1

𝑘

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨
(𝑟𝑘+𝜏𝑘)/𝜎

+
󵄨󵄨󵄨󵄨𝜉𝑖 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
(𝑟𝑘+𝜏𝑘)/𝜎

) ,

(A.6)

where 𝛽
0
= 𝜉
0
= 0 and 𝑎

𝑘1
is a nonnegative smooth function.

By using (A.6) and Lemma 5, we have

𝜉
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑘
𝑓
𝑘

≤
󵄨󵄨󵄨󵄨𝜉𝑘

󵄨󵄨󵄨󵄨
(4𝑙𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑎
𝑘1

×

𝑘

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨
(𝑟𝑘+𝜏𝑘)/𝜎

+
󵄨󵄨󵄨󵄨𝜉𝑖 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
(𝑟𝑘+𝜏𝑘)/𝜎

)

≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝑙

𝑘2
𝜉
4𝑙

𝑘
,

(A.7)

where 𝑙
𝑘2
is a nonnegative smooth function.
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Proof of Proposition 13. Note that

𝑥
∗𝜎/𝑟𝑘

𝑘
= −𝛽
𝑘−1

𝜉
𝑘−1

= −

𝑘−1

∑

𝑖=1

𝐵
𝑖
𝑥
𝜎/𝑟𝑖

𝑖
, (A.8)

where

𝐵
𝑖
= {

𝛽
𝑘−1

, . . . , 𝛽
𝑖
, 𝑖 = 1, . . . , 𝑘 − 2,

1, 𝑖 = 𝑘 − 1.
(A.9)

Then, for 𝑖 = 1, . . . , 𝑛, we have

𝜕𝑥
∗𝜎/𝑟𝑘

𝑘

𝜕𝑥
𝑖

= −

𝑘−1

∑

𝑗=1

𝜕𝐵
𝑗

𝜕𝑥
𝑖

𝑥
𝜎/𝑟𝑖

𝑖
−
𝜎

𝑟
𝑖

𝐵
𝑖
𝑥
(𝜎−𝑟𝑖)/𝑟𝑖

𝑖
. (A.10)

By (17), (21), (A.6), (A.10), and Assumptions 6 and 7, we
get

𝑘−1

∑

𝑖=1

𝜕𝑊
𝑘

𝜕𝑥
𝑖

(ℎ
𝑖
𝑥
𝑝𝑖

𝑖+1
+ 𝑓
𝑖
)

=

𝑘−1

∑

𝑖=1

(−
4𝑙𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝜎

𝜕𝑥
∗𝜎/𝑟𝑘

𝑘

𝜕𝑥
𝑖

× ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑟𝑘 − 𝑥

∗𝜎/𝑟𝑘

𝑘
)
((4𝑙−1)𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑑𝑠)

× (ℎ
𝑖
𝑥
𝑝𝑖

𝑖+1
+ 𝑓
𝑖
)

≤

𝑘−1

∑

𝑖=1

𝑏
𝑘

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨
((4𝑙−1)𝜎−𝜏𝑘)/𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑥
∗𝜎/𝑟𝑘

𝑘

𝜕𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑐
𝑖2

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑝𝑖

𝑖+1

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑓𝑖

󵄨󵄨󵄨󵄨)

≤ 𝑏
𝑘

𝑘−1

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨
((4𝑙−1)𝜎−𝜏𝑘)/𝜎󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨
(𝜎−𝑟𝑖)/𝑟𝑖

(𝑐
𝑖2

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑝𝑖

𝑖+1

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑓𝑖

󵄨󵄨󵄨󵄨 )

≤ 𝑏
𝑘

𝑘−1

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨
((4𝑙−1)𝜎−𝜏𝑘)/𝜎

(
󵄨󵄨󵄨󵄨𝜉𝑖 + 𝛽

𝑖−1
𝜉
𝑖−1

󵄨󵄨󵄨󵄨
𝑟𝑖/𝜎

)
(𝜎−𝑟𝑖)/𝑟𝑖

× [

[

𝑐
𝑖2
(
󵄨󵄨󵄨󵄨𝜉𝑖+1 + 𝛽

𝑖
𝜉
𝑖

󵄨󵄨󵄨󵄨
𝑟𝑖+1/𝜎

)
𝑝𝑖

+ 𝑎

𝑖

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

(𝑟𝑖+𝜏𝑖)/𝜎

+
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨

(𝑟𝑖+𝜏𝑖)/𝜎

)]

]

≤ 𝑏̃
𝑘

𝑘−1

∑

𝑖=1

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨
((4𝑙−1)𝜎−𝜏𝑘)/𝜎

(
󵄨󵄨󵄨󵄨𝜉𝑖−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨)
(𝜎−𝑟𝑖)/𝜎

× [

[

(
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝜉𝑖+1
󵄨󵄨󵄨󵄨)
𝑝𝑖𝑟𝑖+1/𝜎

+

𝑖

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨

(𝑟𝑖+𝜏𝑖)/𝜎

+
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨

(𝑟𝑖+𝜏𝑖)/𝜎

)]

]

≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝑙

𝑘3
𝜉
4𝑙

𝑘
,

(A.11)

where 𝑏
𝑘
, 𝑏
𝑘
, and 𝑏̃

𝑘
are nonnegative smooth functions.

It is noted that 𝑟
𝑖
satisfies 𝑝

𝑖
𝑟
𝑖+1

= 𝑟
𝑖
+ 𝜏
𝑖
and 𝜏
𝑖
≥ 𝜏
𝑘
and

by Lemma 5, we have

𝑘−1

∑

𝑖=1

𝜕𝑊
𝑘

𝜕𝑥
𝑖

(ℎ
𝑖
𝑥
𝑝𝑖

𝑖+1
+ 𝑓
𝑖
)

≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝑙

𝑘3
𝜉
4𝑙

𝑘
,

(A.12)

where 𝑙
𝑘3
is a nonnegative smooth function.

Proof of Proposition 14. From (17), Assumption 7, and
Lemma 3, it follows that

󵄨󵄨󵄨󵄨𝑔𝑘
󵄨󵄨󵄨󵄨 ≤ 𝑎
𝑘2

𝑘

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨
(2𝑟𝑘+𝜏𝑘)/2𝑟𝑖

+
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
(2𝑟𝑘+𝜏𝑘)/2𝑟𝑖

)

= 𝑎
𝑘2

𝑘

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝜉𝑖 + 𝛽

𝑖−1
𝜉
𝑖−1

󵄨󵄨󵄨󵄨
𝑟𝑖/𝜎

)
(2𝑟𝑘+𝜏𝑘)/2𝑟𝑖

+ 𝑎
𝑘2

𝑘

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝜉𝑖 (𝑡 − 𝑑 (𝑡))

+ 𝛽
𝑖−1

𝜉
𝑖−1 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
𝑟𝑖/𝜎

)
(2𝑟𝑘+𝜏𝑘)/2𝑟𝑖

≤ 𝑎
𝑘2

𝑘

∑

𝑖=1

(1 + 𝛽
(2𝑟𝑘+𝜏𝑘)/2𝜎

𝑖−1
)

× (
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨
(2𝑟𝑘+𝜏𝑘)/2𝜎

+
󵄨󵄨󵄨󵄨𝜉𝑖 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
(2𝑟𝑘+𝜏𝑘)/2𝜎

)

≤ 𝑎
𝑘2

𝑘

∑

𝑖=1

(
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨
(2𝑟𝑘+𝜏𝑘)/2𝜎

+
󵄨󵄨󵄨󵄨𝜉𝑖 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
(2𝑟𝑘+𝜏𝑘)/2𝜎

) ,

(A.13)

where 𝛽
0
= 𝜉
0
= 0 and 𝑎

𝑘2
is a nonnegative smooth function.

According to (17) and (21), we have

1

2

𝑘−1

∑

𝑖,𝑗=1,𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑗

󵄨󵄨󵄨󵄨󵄨

=
1

2

𝑘−1

∑

𝑖,𝑗=1,𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4𝑙𝜎 − 𝜏
𝑘
− 𝑟
𝑘

𝜎
⋅
(4𝑙 − 1) 𝜎 − 𝜏

𝑘
− 𝑟
𝑘

𝜎

×
𝜕𝑥
∗𝜎/𝑚𝑖

𝑘

𝜕𝑥
𝑖

𝜕𝑥
∗𝜎/𝑚𝑘

𝑘

𝜕𝑥
𝑗

× ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑟𝑘 − 𝑥

∗𝜎/𝑟𝑘

𝑘
)
((4𝑙−2)𝜎−𝜏𝑘−𝑟𝑘)/𝜎

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑗

󵄨󵄨󵄨󵄨󵄨



10 Abstract and Applied Analysis

≤ 𝑑
𝑘

𝑘−1

∑

𝑖,𝑗=1,𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨
((4𝑙−2)𝜎−𝜏𝑘)/𝜎󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨
(𝜎−𝑟𝑖)/𝑟𝑖

×
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨

(𝜎−𝑟𝑗)/𝑟𝑗 󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑗

󵄨󵄨󵄨󵄨󵄨

≤ 𝑑
𝑘

𝑘−1

∑

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑖

∑

𝑚=1

𝑗

∑

𝑝=1

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨
((4𝑙−2)𝜎−𝜏𝑘)/𝜎

|𝑥
𝑖
|
(𝜎−𝑟𝑖)/𝑟𝑖 ×

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨

(𝜎−𝑟𝑗)/𝑟𝑗

× (
󵄨󵄨󵄨󵄨𝑥𝑚

󵄨󵄨󵄨󵄨
(2𝑟𝑖+𝜏𝑖)/2𝑟𝑚

+
󵄨󵄨󵄨󵄨𝑥𝑚 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
(2𝑟𝑖+𝜏𝑖)/2𝑟𝑚

)

× (
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑝

󵄨󵄨󵄨󵄨󵄨

(2𝑟𝑗+𝜏𝑗)/2𝑟𝑝

+
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑝 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨

(2𝑟𝑗+𝜏𝑗)/2𝑟𝑝
)

≤ 𝑑
𝑘

𝑘−1

∑

𝑖,𝑗=1,𝑖 ̸= 𝑗

𝑖

∑

𝑚=1

𝑗

∑

𝑝=1

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨
((4𝑙−2)𝜎−𝜏𝑘)/𝜎

(
󵄨󵄨󵄨󵄨𝜉𝑖−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨)
(𝜎−𝑟𝑖)/𝜎

× (
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗−1

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨
)
(𝜎−𝑟𝑗)/𝜎

× (
󵄨󵄨󵄨󵄨𝜉𝑚

󵄨󵄨󵄨󵄨
(2𝑟𝑖+𝜏𝑖)/2𝜎

+
󵄨󵄨󵄨󵄨𝜉𝑚 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨
(2𝑟𝑖+𝜏𝑖)/2𝜎

)

× (
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑝

󵄨󵄨󵄨󵄨󵄨

(2𝑟𝑗+𝜏𝑗)/2𝜎

+
󵄨󵄨󵄨󵄨󵄨
𝜉
𝑝 (𝑡 − 𝑑 (𝑡))

󵄨󵄨󵄨󵄨󵄨

(2𝑟𝑗+𝜏𝑗)/2𝜎

) ,

(A.14)

where 𝑑
𝑘
, 𝑑
𝑘
, and 𝑑

𝑘
are nonnegative smooth functions.

Noting that 𝜏
𝑖
≥ 𝜏
𝑘
and 𝜏
𝑗
≥ 𝜏
𝑘
, by applying Lemma 5 to

the above inequality, we have

1

2

𝑘−1

∑

𝑖,𝑗=1,𝑖 ̸= 𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑖

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑇

𝑗

󵄨󵄨󵄨󵄨󵄨

≤
1

8

𝑘−1

∑

𝑖=1

𝜉
4𝑙

𝑖
+
1

8

𝑘

∑

𝑖=1

𝜉
4𝑙

𝑖
(𝑡 − 𝑑 (𝑡)) + 𝑙

𝑘4
𝜉
4𝑙

𝑘
,

(A.15)

where 𝑙
𝑘4
is a nonnegative smooth function.

In a similar way, Propositions 15–17 can be proved and
they are omitted here.
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[2] M. Krstić and H. Deng, Stabilization of Nonlinear Uncertain
Systems, Communications and Control Engineering Series,
Springer, New York, NY, USA, 1998.
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