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In many applications we need to solve an orthogonal transformation tensorQ ∈ 𝑆𝑂(3) from a tensorial equation Q̇ =WQ under a
given spin historyW. In this paper, we address some interesting issues about this equation. A general solution of Q is obtained by
transforming the governing equation into a new one in the space of R𝑃3. Then, we develop a novel method to solve Q in terms of
a single parameter, whose governing equation is a single nonlinear ordinary differential equation (ODE).

1. Introduction

Among many classical Lie groups, the three-dimensional
rotation group 𝑆𝑂(3) is the most widely used one. For
its numerous engineering applications the development of
simpler algorithms to calculate 𝑆𝑂(3) under a large rotation
has received a considerable attention in the literature. A
comprehensive review on the spacecraft attitude was given by
Shuster [1] and on the solid mechanics by Atluri and Cazzani
[2]. A framework of minimal parameterizations of the rota-
tion matrix was proposed by Bauchau and Trainelli [3].

The purpose of searching for a suitable spin tensor, in
a word, is to find a reference configuration with zero spin
throughout the whole motion, such that the constitutive
equation for a rate-type material under large deformation
can be objectively integrated. To characterize this spin-free

reference configuration/corotational frame, an orthogonal
transformation tensor Q, connecting the spin-free and the
fixed configurations due to the nonzero spin tensor denoted
byW, satisfies the following tensorial differential equation:

Q̇ = WQ. (1)

It does not lose any generality to assume that the initial
condition of Q is an identity; that is, Q(0) = I

3
. Throughout

this paper, a superimposed dot denotes the differential with
respect to the current time 𝑡. Computational techniques were
proposed by Rubinstein and Atluri [4] for integrating (1),
which required a constant rate of rotation for each time step.

It should be noted that the history ofQ can be represented
by the histories of three Euler’s angles 𝜃, 𝜙, and 𝜓 as follows
[5]:

Q = (

cos𝜓 cos𝜙 − cos 𝜃 sin𝜙 sin𝜓 cos𝜓 sin𝜙 + cos 𝜃 cos𝜙 sin𝜓 sin𝜓 sin 𝜃
− sin𝜓 cos𝜙 − cos 𝜃 sin𝜙 cos𝜓 − sin𝜓 sin𝜙 + cos 𝜃 cos𝜙 cos𝜓 cos𝜓 sin 𝜃

sin 𝜃 sin𝜙 − sin 𝜃 cos𝜙 cos 𝜃
) , (2)

and the corresponding differential equations are
𝜔
1
=

̇
𝜃 cos𝜙 + �̇� sin 𝜃 sin𝜙,

𝜔
2
=

̇
𝜃 sin𝜙 − �̇� sin 𝜃 cos𝜙,

𝜔
3
= ̇𝜙 + �̇� cos 𝜃.

(3)

Provided that the angular velocities 𝜔
1
, 𝜔
2
, and 𝜔

3
are given,

the above nonlinear ordinary differential equations (ODEs)
need to be integrated in a time-marching direction.

For an effective representation of the rotation matrix, it
has led to the development of numerous techniques in the last
several decades, and the review of the properties, advantages,
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and shortcomings of these parameterization techniques can
be found in Ibrahimbegovic [6], Borri et al. [7], and Bauchau
andTrainelli [3]. To represent the three-dimensional rotation,
usually the number of parameters is three, like the Euler
parameters, the Rodrigues parameters, and the modified
Rodrigues parameters. However, these representations con-
tain certain singularities, and their governing equations are

highly nonlinear in nature. The procedures for finding the
solutions of rotation matrix involving these nonlinear ODEs
systems are usually very complicated.

It is known that the spatial orientation Q ∈ 𝑆𝑂(3) of
a rigid body rotation can be expressed in terms of the unit
quaternion [8]:

Q = (

𝑞
2

0
+ 𝑞
2

1
− 𝑞
2

2
− 𝑞
2

3
2 (𝑞
1
𝑞
2
+ 𝑞
0
𝑞
3
) 2 (𝑞

1
𝑞
3
− 𝑞
0
𝑞
2
)

2 (𝑞
1
𝑞
2
− 𝑞
0
𝑞
3
) 𝑞
2

0
− 𝑞
2

1
+ 𝑞
2

2
− 𝑞
2

3
2 (𝑞
2
𝑞
3
+ 𝑞
0
𝑞
1
)

2 (𝑞
1
𝑞
3
+ 𝑞
0
𝑞
2
) 2 (𝑞

2
𝑞
3
− 𝑞
0
𝑞
1
) 𝑞
2

0
− 𝑞
2

1
− 𝑞
2

2
+ 𝑞
2

3

). (4)

These parameters are obtained by using the stereographic
projection of

S
3
:= {𝑞 = (q, 𝑞

0
) ∈ R
4
| ‖q‖2 + 𝑞2

0
= 1} (5)

onto R3 by a two-fold covering; see, for example, Goldstein
[5]. In the above, ‖q‖ denotes the Euclidean norm of q ∈

R3. Liu [8] has presented a four-dimensional Lie-algebra
representation of the quaternion formulation of 𝑆𝑂(3).

It is known that 𝑆𝑈(2) is diffeomorphic to the three-
dimensional sphere S2 and 𝑆𝑂(3) is diffeomorphic to the
quotient space of the three-dimensional sphere by the
antipodal equivalence, hence diffeomorphic to the three-
dimensional projective space [9]. According to [10] we can
define the real projective space as follows. Let R𝑃𝑛 be the
set of all straight lines through the origin in R𝑛. a and b ∈

R𝑛 represent the same line if and only if there is a nonzero
constant 𝜆 ∈ R such that a = 𝜆b, which constitutes an
equivalence class denoted by [a] = {b | b ∼ a} with b ∼ a
meaning that a = 𝜆b for some 𝜆 ̸= 0. Note that R𝑃𝑛 = (R𝑛 −

{0})/∼. The coordinates of any a ∈ R𝑛 such that b = [a] are
called homogeneous coordinates for b.

In this paper, a simpler solution method ofQ is proposed
by expressing the orientation equations in terms of local
coordinates, yielding a scalar differential equation which
can avoid the singularity. For a specified level of accuracy
in numerical integration, a scalar equation requires less
CPU time than an equivalent transcendental set of ODEs
as shown in (3). To interpret the results of integration, the
time evolution of orientation is presented as a curve with a
single parameter in the three-dimensional topological space
R𝑃3. The local coordinate is an example of a globally defined
nonsingular parameterization of rotations, which is suitable
for treating the computations of large rotations.

2. A Decomposition of Q
We denote the spin matrix by

W = (

0 −𝜔
3

𝜔
2

𝜔
3

0 −𝜔
1

−𝜔
2

𝜔
1

0

) , (6)

and the corresponding angular velocity vector is

𝜔 = (𝜔
1
, 𝜔
2
, 𝜔
3
)
T
, (7)

whose magnitude is denoted by

‖𝜔‖ := (𝜔
2

1
+ 𝜔
2

2
+ 𝜔
2

3
)

1/2

. (8)

Also the instantaneous spin axis in the three-dimensional
space is denoted by

(𝜂
1
, 𝜂
2
, 𝜂
3
)
T
:=

1

‖𝜔‖

(𝜔
1
, 𝜔
2
, 𝜔
3
)
T
. (9)

When the spin axis is fixed, it can be viewed as a two-
dimensional (2D) spin since the rotation only occurs on the
plane which is perpendicular to a fixed axis. While the spin
axis is varying with time, it is a three-dimensional (3D) spin.

In what follows, we present a novel method to explore
the general solution of Q. Since Q is orthogonal, it belongs
to the special orthogonal group with dimensions three; that
is, Q ∈ 𝑆𝑂(3). Although (1) can be defined by nine
simultaneous ordinary differential equations (ODEs), only
three of them are independent. In geometry, Q, an element
of 𝑆𝑂(3), represents a certain 3D algebraic surface in a real
space of nine dimensions. It is unwise to find the analytical
solution of (1) by solving these simultaneous ODEs. Here,
the problem is solved by a judicious consideration based on a
novel technique. For the sake of convenience, let us define a
matrix operator F which applies to W and has the following
form:

F (W) := I
3
+

sin𝑤
‖𝜔‖

W +

(1 − cos𝑤)
‖𝜔‖
2

W2, (10)

where 𝑤(𝑡) := ∫

𝑡

0
‖𝜔(𝜏)‖𝑑𝜏.

We consider a subset of (6), by defining the following 2D
spin matrix:

W
1
= (

0 0 0

0 0 −𝜔
1

0 𝜔
1

0

) , (11)
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from which we have

F (W
1
) = (

1 0 0

0 cos𝜔
1
− sin𝜔

1

0 sin𝜔
1

cos𝜔
1

) , (12)

where

𝜔
1
(𝑡) := ∫

𝑡

0

𝜔
1
(𝜏) 𝑑𝜏. (13)

It is cunning to presume that the solution of Q can be
decomposed into

Q = F (W
1
)Q
1
, (14)

withQ
1
an unknownmatrix belonging to 𝑆𝑂(3). Substituting

it into (1) leads to

Q̇
1
= AQ

1
, Q

1
(0) = I

3
, (15)

where

A := F(W
1
)
T
[WF (W

1
) − Ḟ (W

1
)] = (

0 −�̇�
1
−�̇�
2

�̇�
1

0 0

�̇�
2

0 0

)

(16)

is a skew-symmetric matrix with

�̇�
1
:= 𝜔
3
cos𝜔
1
− 𝜔
2
sin𝜔
1
,

�̇�
2
:= −𝜔

2
cos𝜔
1
− 𝜔
3
sin𝜔
1
.

(17)

The decomposition in (14) leads to a simpler spin matrix
A for Q

1
in (16), with only two independent inputs �̇�

1
and

�̇�
2
. For a given angular velocity (𝜔

1
(𝑡), 𝜔
2
(𝑡), 𝜔
3
(𝑡)), it is easy

to find the matrix F by (13) and (12). However, in order
to obtain Q we still require to find Q

1
. In this paper, an

analytic procedure will be developed to solve this problem for
arbitrary inputs �̇�

1
and �̇�
2
generated from the angular velocity

(𝜔
1
(𝑡), 𝜔
2
(𝑡), 𝜔
3
(𝑡)).

3. A Projective Transformation

The system of ODEs deduced from A in (16) can be written
as

�̇�
0
= −�̇�
1
𝑋
1
− �̇�
2
𝑋
2
, �̇�

1
= �̇�
1
𝑋
0
,

�̇�
2
= �̇�
2
𝑋
0
.

(18)

The initial values of𝑋
0
,𝑋
1
, and𝑋

2
are assumed to be𝑋

0
(0),

𝑋
1
(0), and𝑋

2
(0), respectively. So the determination ofQ

1
(𝑡)

is now equivalent to searching a general solution of (18); that
is,

X (𝑡) = Q
1
(𝑡)X
0
, (19)

whereQ
1
(0) = I

3
, X
0
= X(0), and

X (𝑡) := (

𝑋
0 (𝑡)

𝑋
1
(𝑡)

𝑋
2
(𝑡)

) . (20)

Let

𝑥
1
:=

𝑋
1

𝑋
0

, 𝑥
2
:=

𝑋
2

𝑋
0

(21)

be the homogeneous coordinates ofR𝑃3.Then, the use of (18)
implies

�̇�
0

𝑋
0

= −x ⋅ u̇, (22)

𝑑

𝑑𝑡

(𝑋
0
x) = 𝑋

0
u̇, (23)

where

x := (
𝑥
1

𝑥
2

) , u̇ := (
�̇�
1

�̇�
2

) (24)

are the output and input of (22) and (23), respectively.
The inner product of (23) with x and the use of (22)

render

x ⋅ ẋ = −

�̇�
0

𝑋
0

(‖x‖2 + 1) . (25)

Integrating (25) leads to

‖x (𝑡)‖2 =




X
0






2

𝑋
2

0
(𝑡)

− 1. (26)

By (21), it is equivalent to ‖X(𝑡)‖ = ‖X
0
‖; that is, the length

of the vector X is preserved under the action of 𝑆𝑂(3) group.
Obviously,X

0
cannot be a zero vector; otherwise,X(𝑡)will be

a zero vector for all 𝑡 > 0.
By eliminating 𝑋

0
, (22) and (23) can be combined into a

nonlinear differential equations system for x:

ẋ − (u̇ ⋅ x) x = u̇. (27)

The transformation made in this section projects the three-
dimensional vector (𝑋

0
, 𝑋
1
, 𝑋
2
)
T
∈ S2
‖X0‖, whereS

2

‖X0‖means
a three-dimensional sphere with a constant radius ‖X

0
‖, into

a two-dimensional vector (𝑥
1
, 𝑥
2
)
T in the topological space

R𝑃3, which is correlated intimately with the two independent
inputs of u̇.

4. The Main Results

4.1. Two Theorems. In this section we are going to prove two
main theorems.

Theorem 1. The solution of x governed by (27) with an initial
condition x(0) = x

0
can be explicitly expressed in terms of a

single variable 𝑧:

x = z (𝑧)
cos 𝑧 − x

0
⋅ k̇ sin 𝑧

, (28)

z (𝑧) = x
0
+ [sin 𝑧 + x

0
⋅ k̇ (cos 𝑧 − 1)] k̇, (29)
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where v is a constant unit vector (with ‖v̇‖ = 1), and 𝑧 is
governed by a nonlinear ODE:

̇
𝑧 =

(V̇
1
�̇�
2
− V̇
2
�̇�
1
) [‖z‖2 + (cos 𝑧 − x

0
⋅ k̇ sin 𝑧)2]

(sin 𝑧 + x
0
⋅ k̇ cos 𝑧) [𝑥

2
(0) V̇
1
− 𝑥
1
(0) V̇
2
]

+

𝑧
2
(𝑧) �̇�
1
− 𝑧
1
(𝑧) �̇�
2

𝑥
2 (0) V̇1 − 𝑥1 (0) V̇2

,

(30)

under the initial condition 𝑧(0) = 0.

Proof. The proof of this theorem is quite lengthy, and we
divide it into five parts.

(A) Mixing the Input and Output. Consider the following
transformations of variables:

ẋ = ẇ + k̇, (31)

u̇ = 𝑐ẇ + 𝑑k̇, (32)

where v̇ is a constant vector with norm ‖v̇‖ = 1 to be given,
and the vector ẇ and the other two scalars 𝑐 and 𝑑 are allowed
to be time-varying. We will determine v̇, ẇ, 𝑐, and 𝑑 below,
under the assumptions 𝑐 ̸= 𝑑 and 𝑐 ̸= 1.

Substituting (31) and its integral into (23) we can obtain

ẇ +

�̇�
0

(1 − 𝑐)𝑋
0

w =

𝑑 − 1

1 − 𝑐

k̇ −
�̇�
0

(1 − 𝑐)𝑋
0

k, (33)

where v(𝑡) := 𝑡v̇.
Upon defining

̇𝑦

𝑦

=

�̇�
0

(1 − 𝑐)𝑋0

, (34)

equation (33) becomes

ẇ +

̇𝑦

𝑦

w =

𝑑 − 1

1 − 𝑐

k̇ −
̇𝑦

𝑦

k, (35)

the solution of which is

w (𝑡) =

𝑦 (0)

𝑦 (𝑡)

w
0
+ ∫

𝑡

0

[𝑑 (𝜏) − 1] 𝑦 (𝜏)

[1 − 𝑐 (𝜏)] 𝑦 (𝑡)

k̇𝑑𝜏

− ∫

𝑡

0

̇𝑦 (𝜏)

𝑦 (𝑡)

k (𝜏) 𝑑𝜏,

(36)

where w
0
= w(0) = x

0
. The last term can be integrated by

parts, leading to

w (𝑡) = −k (𝑡) +
𝑦 (0)

𝑦 (𝑡)

x
0
+ k̇∫
𝑡

0

𝑧 (𝜏) 𝑦 (𝜏)

𝑦 (𝑡)

𝑑𝜏, (37)

where

𝑧 :=

𝑑 − 𝑐

1 − 𝑐

(38)

is a time function. Under the conditions 𝑐 ̸= 1 and 𝑐 ̸= 𝑑, 𝑧 is
a well-defined nonzero function. It is remarkable that (37)
expresses w in terms of a constant unit vector v̇.

(B) Governing Equations of w and 𝑦. From (25) and (34) it
follows that

x ⋅ ẋ
‖x‖2 + 1

= (𝑐 − 1)

̇𝑦

𝑦

. (39)

The inner product of w + v and (35) is

ẇ ⋅ (w + k) +
̇𝑦

𝑦

(w + k) ⋅ (w + k)

=

𝑑 − 1

1 − 𝑐

(w + k) ⋅ k̇,

(40)

and by (31) we have

ẇ ⋅ (w + k) + k̇ ⋅ (w + k) = x ⋅ ẋ,

(w + k) ⋅ (w + k) = ‖x‖2.
(41)

Thus (40) can be changed to

x ⋅ ẋ +
̇𝑦

𝑦

‖x‖2 = 𝑧 (w + k) ⋅ k̇, (42)

which upon using (39) becomes

(𝑐‖x‖2 + 𝑐 − 1)
̇𝑦

𝑦

= 𝑧 (w + k) ⋅ k̇. (43)

Without losing any generality we may select 𝑐 as

𝑐 =

1 − 𝑏

‖x‖2 + 1
, (44)

where 𝑏 > 0 is a time function to be determined; hence, (43)
becomes

̇𝑦

𝑦

=

−𝑧

𝑏

(w + k) ⋅ k̇. (45)

Equations (35) and (45) are composed as the governing
equations system for (w, 𝑦), with v being the input.

(C) Explicit Form of 𝑦. Noting (37), (45) changes to

̇𝑦 (𝑡) = −

𝑦 (0) 𝑧 (𝑡)

𝑏 (𝑡)

x
0
⋅ k̇ −

1

𝑏 (𝑡)

∫

𝑡

0

𝑧 (𝑡) 𝑧 (𝜏) 𝑦 (𝜏) 𝑑𝜏. (46)

Define

𝑡

:= ∫

𝑡

0

1

𝑏 (𝜏)

𝑑𝜏, (47)

and the relation between 𝑡 and 𝑡 is one-to-one, since 𝑏 > 0.
Now, 𝑦 is viewed as a function of 𝑡, such that

𝑑𝑦 (𝑡

)

𝑑𝑡


= −𝑦 (0) 𝑧 (𝑡

) x
0
⋅ k̇ − ∫

𝑡


0

𝑧 (𝑡

) 𝑧 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

(48)

by (46) and (47).
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From (48) we have

𝑦

(𝑧 (𝑡

)) = −𝑦 (0) x

0
⋅ k̇ − ∫

𝑧(𝑡

)

0

𝑦 (𝑧 (𝑠)) 𝑑𝑧 (𝑠) , (49)

where 𝑦 denotes the differential with respect to 𝑧, which is
defined by

𝑧 (𝑡

) := ∫

𝑡


0

𝑧 (𝑠) 𝑑𝑠. (50)

Taking the differential of (49) with respect to 𝑧 again, we can
obtain

𝑦

= −𝑦. (51)

The solution of 𝑦 is

𝑦 = cos 𝑧 − x
0
⋅ k̇ sin 𝑧, (52)

where 𝑦(0) = 1 and 𝑦

(0) = −x

0
⋅ k̇ are imposed. It is

interesting that we have a closed-form solution of 𝑦 in terms
of 𝑧.

(D) Explicit Form of x. Now, substituting (52) into (37)
and integrating the resultant, the explicit form of x can be
obtained as follows:

x = w + k =
z
𝑦

, (53)

where

z := x
0
+ sin 𝑧k̇ + x

0
⋅ k̇ (cos 𝑧 − 1) k̇. (54)

If 𝑧 can be solved, the solution of x is obtained. Defining
the vector z as given in (29) and substituting (52) for 𝑦 into
the above equation, we obtain (28). The square norm of x is
given by

‖x‖2 = ‖z‖2

𝑦
2
. (55)

(E) The Governing Equation of 𝑧. It can be seen that the
single parameter of variable 𝑧 plays the major role to express
the solutions of 𝑦 and x above. The issue to find 𝑧 is very
important as being given below. Using (35), (38), and (53) we
have

ẇ = −

̇𝑦

𝑦
2
z + (𝑧 − 1) k̇. (56)

Substituting (56) for ẇ into (32) and using (38), one has

u̇ = −

𝑐 ̇𝑦

𝑦
2
z + 𝑧k̇. (57)

From (44) and (55) the term 𝑐 reads as

𝑐 =

(1 − 𝑏) 𝑦
2

‖z‖2 + 𝑦2
, (58)

which together with

𝑧 = 𝑏
̇
𝑧, (59)

a result deduced from (50) and (47), and ̇𝑦 = 𝑦
 ̇
𝑧 being

substituted into (57), renders

u̇ =

(𝑏 − 1) 𝑦
 ̇
𝑧z

‖z‖2 + 𝑦2
+ 𝑏

̇
𝑧k̇. (60)

In component form we have

�̇�
1
=

(𝑏 − 1) 𝑦
 ̇
𝑧𝑧
1

‖z‖2 + 𝑦2
+ 𝑏

̇
𝑧V̇
1
, (61)

�̇�
2
=

(𝑏 − 1) 𝑦
 ̇
𝑧𝑧
2

‖z‖2 + 𝑦2
+ 𝑏

̇
𝑧V̇
2
. (62)

The above two equations can be used to solve 𝑏 and ̇
𝑧.

Eliminating ̇
𝑧 from the above two equations we can obtain

𝑏 (𝑡) =

𝐹
1
(𝑧) �̇�
2
− 𝐹
2
(𝑧) �̇�
1

V̇
1
�̇�
2
− V̇
2
�̇�
1
+ 𝐹
1
(𝑧) �̇�
2
− 𝐹
2
(𝑧) �̇�
1

, (63)

where

𝐹
1
(𝑧) :=

𝑦

𝑧
1

‖z‖2 + 𝑦2
,

𝐹
2
(𝑧) :=

𝑦

𝑧
2

‖z‖2 + 𝑦2
.

(64)

It can be seen that 𝑏 is a function of 𝑧 and 𝑡, and the latter is
induced by the inputs �̇�

1
and �̇�

2
. Multiplying (62) by 𝐹

1
and

(61) by 𝐹
1
and then subtracting them we obtain

̇
𝑧 =

𝐹
1 (𝑧) �̇�2 − 𝐹2 (𝑧) �̇�1

𝑏 [𝐹
1
(𝑧) V̇
2
− 𝐹
2
(𝑧) V̇
1
]

. (65)

After substituting (63) for 𝑏 into the above equation we can
derive

̇
𝑧 =

[V̇
1
+ 𝐹
1
(𝑧)] �̇�

2
− [V̇
2
+ 𝐹
2
(𝑧)] �̇�

1

𝐹
1 (𝑧) V̇2 − 𝐹2 (𝑧) V̇1

. (66)

It is a first order ODE for 𝑧 under the initial condition 𝑧(0) =
0, the integration of which gives 𝑧(𝑡). With the aid of (64),
(52), and (29) and through some manipulations the above
equation leads to (30). This ends the proof ofTheorem 1.

Theorem 2. The solutions of X are represented by

𝑋
0 (𝑡) =

(cos 𝑧 − x
0
⋅ k̇ sin 𝑧) 


X
0






√‖z‖2 + (cos 𝑧 − x
0
⋅ k̇ sin 𝑧)2

, (67)
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𝑋
1
(𝑡) =

𝑧
1 (𝑧)





X
0






√‖z‖2 + (cos 𝑧 − x
0
⋅ k̇ sin 𝑧)2

, (68)

𝑋
2 (𝑡) =

𝑧
2
(𝑧)





X
0






√‖z‖2 + (cos 𝑧 − x
0
⋅ k̇ sin 𝑧)2

. (69)

Proof. From (63), (52), and (65) the history of 𝑏 can be
obtained.Thus, from (58) and (59) the histories of 𝑐 and 𝑧 can
be calculated, respectively, whereas through (26) and (55) the
history of𝑋

0
can be evaluated as follows:

𝑋
0
(𝑡) =

𝑦




X
0






√‖z‖2 + 𝑦2
. (70)

Inserting (52) for 𝑦 into the above equation we can derive
(67). The last two components 𝑋

1
and 𝑋

2
of X can be

obtained explicitly via (21), (67), and (28), fromwhich we can
derive (68) and (69). This ends the proof of Theorem 2.

From (67)–(69) it is obvious that ‖X(𝑡)‖ = ‖X
0
‖; that is,

(𝑋
0
(𝑡), 𝑋
1
(𝑡), 𝑋
2
(𝑡))

T
∈ S2
‖X0‖, where S2

‖X0‖ means a three-
dimensional sphere with a constant radius ‖X

0
‖. Therefore,

the above mappings belong to 𝑆𝑂(3), which preserves the
invariant length of X. The above result is significant upon
recalling the number of parameters used in the Euler’s angels
is three and the governing equations are three nonlinear
ODEs. Here, we only need a single parameter 𝑧 and a
nonlinear ODE in (66).

4.2. The Choice of v. If we choose

V̇
1
=

�̇�
1 (0)

√�̇�
2

1
(0) + �̇�

2

2
(0)

, V̇
2
=

�̇�
2 (0)

√�̇�
2

1
(0) + �̇�

2

2
(0)

, (71)

we have 𝑏(0) = 1 by (63). In (29) we expand the two-
dimensional vector z in the plane by two oblique coordinates

x
0
and v̇, which are subjected to the constraint that they

are not parallel; that is, 𝑥
2
(0)V̇
1
− 𝑥
1
(0)V̇
2

̸= 0; otherwise,
the denominators in (30) are zero, which would lead to an
undefined differential equation for 𝑧. In the whole process
𝑏(𝑡) > 0 should hold. Upon 𝑏(𝑡) < 𝑒

0
, where 0 < 𝑒

0
< 1 is

a given constant, at some time instant, say 𝑡
0
, the numerical

integration process is restarted with new values of V̇
1
and V̇
2

given by

V̇
1
=

�̇�
1
(𝑡
0
)

√�̇�
2

1
(𝑡
0
) + �̇�
2

2
(𝑡
0
)

, V̇
2
=

�̇�
2
(𝑡
0
)

√�̇�
2

1
(𝑡
0
) + �̇�
2

2
(𝑡
0
)

, (72)

and at the same time we set 𝑧(𝑡
0
) = 0, 𝑥

1
(𝑡
0
) = 𝑋

1
(𝑡
0
)/𝑋
0
(𝑡
0
),

and 𝑥
2
(𝑡
0
) = 𝑋

2
(𝑡
0
)/𝑋
0
(𝑡
0
).

4.3.TheComputation of Q. First we calculateQ
1
by the above

method. Select three independent initial values of X
0
; for

example,

(

𝑋
1

0
(0) 𝑋

2

0
(0) 𝑋

3

0
(0)

𝑋
1

1
(0) 𝑋

2

1
(0) 𝑋

3

1
(0)

𝑋
1

2
(0) 𝑋

2

2
(0) 𝑋

3

2
(0)

) = (

1 1 1

1 1 0

1 0 1

) . (73)

The corresponding solutions are denoted by

(

𝑋
1

0
(𝑡) 𝑋

2

0
(𝑡) 𝑋

3

0
(𝑡)

𝑋
1

1
(𝑡) 𝑋

2

1
(𝑡) 𝑋

3

1
(𝑡)

𝑋
1

2
(𝑡) 𝑋

2

2
(𝑡) 𝑋

3

2
(𝑡)

) , (74)

and from (19) we obtain

Q
1 (𝑡) = (

𝑋
1

0
(𝑡) 𝑋

2

0
(𝑡) 𝑋

3

0
(𝑡)

𝑋
1

1
(𝑡) 𝑋

2

1
(𝑡) 𝑋

3

1
(𝑡)

𝑋
1

2
(𝑡) 𝑋

2

2
(𝑡) 𝑋

3

2
(𝑡)

)(

1 1 1

1 1 0

1 0 1

)

−1

= (

𝑋
2

0
(𝑡) + 𝑋

3

0
(𝑡) − 𝑋

1

0
(𝑡) 𝑋

1

0
(𝑡) − 𝑋

3

0
(𝑡) 𝑋

1

0
(𝑡) − 𝑋

2

0
(𝑡)

𝑋
2

1
(𝑡) + 𝑋

3

1
(𝑡) − 𝑋

1

1
(𝑡) 𝑋

1

1
(𝑡) − 𝑋

3

1
(𝑡) 𝑋

1

1
(𝑡) − 𝑋

2

1
(𝑡)

𝑋
2

2
(𝑡) + 𝑋

3

2
(𝑡) − 𝑋

1

2
(𝑡) 𝑋

1

2
(𝑡) − 𝑋

3

2
(𝑡) 𝑋

1

2
(𝑡) − 𝑋

2

2
(𝑡)

)

(75)

Then, inserting the above equation for Q
1
(𝑡) and (12) for F

into (14) we can obtainQ(𝑡):

Q (𝑡) = (

1 0 0

0 cos𝜔
1
− sin𝜔

1

0 sin𝜔
1

cos𝜔
1

)(

𝑋
2

0
(𝑡) + 𝑋

3

0
(𝑡) − 𝑋

1

0
(𝑡) 𝑋

1

0
(𝑡) − 𝑋

3

0
(𝑡) 𝑋

1

0
(𝑡) − 𝑋

2

0
(𝑡)

𝑋
2

1
(𝑡) + 𝑋

3

1
(𝑡) − 𝑋

1

1
(𝑡) 𝑋

1

1
(𝑡) − 𝑋

3

1
(𝑡) 𝑋

1

1
(𝑡) − 𝑋

2

1
(𝑡)

𝑋
2

2
(𝑡) + 𝑋

3

2
(𝑡) − 𝑋

1

2
(𝑡) 𝑋

1

2
(𝑡) − 𝑋

3

2
(𝑡) 𝑋

1

2
(𝑡) − 𝑋

2

2
(𝑡)

) . (76)
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Figure 1: Error between the exact and the numerical solution provided by the single-parameter method.

4.4. Numerical Tests. In order to give a criterion to assess
our numerical method we first derive a closed-form solution
of Q
1
in the appendix under the angular velocities 𝜔

1
=

Ω − 𝜔, 𝜔
2
= − sinΩ𝑡, and 𝜔

3
= cosΩ𝑡, where Ω and 𝜔 are

parameters of angular frequencies.
We calculate (𝑋

0
(𝑡), 𝑋
1
(𝑡), 𝑋
2
(𝑡)) by the above single-

parameter method with 𝑒
0

= 0.999. The initial value is
(𝑋
0
(0), 𝑋

1
(0), 𝑋

2
(0)) = (5, 2, 10) and we fix𝜔 = 2,Ω = 3. We

apply the Euler method to integrate (30) by using a stepsize
ℎ = 0.0001.The errors between exact solutions and numerical
solutions are plotted in Figure 1, whose maximum errors are
1.55 × 10

−4, 5.91 × 10−4, and 2.1 × 10−4, respectively.
Now, let us turn to the case of a large rotation in Figure 2

up to 𝑡 = 10, where 𝜔 = 10 and Ω = 5 were used. We
apply the Euler method to integrate (30) by using a stepsize
ℎ = 0.001 and 𝑒

0
= 0.96. Then the method in Section 4.3 is

used to computeQ, whose componential errors are shown in
Figures 2(a)–2(i), where the maximum error is smaller than
10
−3.The error of orthogonality is defined as ‖QTQ− I

3
‖with

Q calculated by the numerical method. From Figure 2(j) it
can be seen that the present numerical method can preserve
orthogonality almost exactly.

5. Conclusions

Upon comparing with some different representations of the
rotation group 𝑆𝑂(3), including the Euler’s angles representa-
tion, the Rodrigues parameters representation, and the mod-
ified Rodrigues parameters representation, we succeeded

to develop a simpler mathematical procedure to find an
analytical solution ofQ through a single parameter, where we
just need to solve a single nonlinear ODE. To interpret the
results of the integration, the time evolution of orientation is
presented as a curvewith a single parameter in the topological
space R𝑃3. The new local coordinate is a globally defined
nonsingular parameterization of rotations suitable for general
solutions of large rotations.

Appendix

For example, taking 𝜔
3
= cosΩ𝑡, 𝜔

2
= − sinΩ𝑡, and 𝜔

1
=

Ω − 𝜔 in (6) we have

�̇�
1
= cos𝜔𝑡, �̇�

2
= sin𝜔𝑡. (A.1)

We attempt to compare the analytic solution constructed by
the algorithm developed in the context to the closed-form
solution given in the following. For the input (A.1) we have

u𝑖𝑖𝑖 = −𝜔
2u̇, u̇ ⋅ u̇ = 1, u̇ ⋅ ü = 0, (A.2)

where the superscript 𝑖𝑖𝑖 in u𝑖𝑖𝑖 denotes the third-order
derivative of u with respect to time. The solution of above
equation is found to be

𝑋
0
(𝑡) = 𝑓

0
+ 𝑓
1
cos𝑚

0
𝑡 + 𝑓
2
sin𝑚
0
𝑡, (A.3)
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Figure 2: Component-wise errors of rotation matrix (a)–(i) and error of orthogonality (j) produced by the single-parameter method.

where

𝑚
0
:= √1 + 𝜔

2
, 𝑓

1
=

𝑋
0
(0)

𝑚
2

0

+

𝜔𝑋
2
(0)

𝑚
2

0

,

𝑓
2
=

−𝑋
1
(0)

𝑚
0

, 𝑓
0
=

𝜔
2
𝑋
0 (0)

𝑚
2

0

−

𝜔𝑋
2
(0)

𝑚
2

0

.

(A.4)

Taking the differential of (22) and using (23), and thus
substituting (A.1) and (A.2)

2
into those results andnoting that

(21), we obtain

cos𝜔𝑡𝑋
1
+ sin𝜔𝑡𝑋

2
= −�̇�
0
,

𝜔 sin𝜔𝑡𝑋
1
− 𝜔 cos𝜔𝑡𝑋

2
= �̈�
0
+ 𝑋
0
.

(A.5)

Solution of the above two equations for𝑋
1
and𝑋

2
renders

𝑋
1
=

1

𝜔

[sin𝜔𝑡 (�̈�
0
+ 𝑋
0
) − 𝜔 cos𝜔𝑡�̇�

0
] ,

𝑋
2
=

−1

𝜔

[cos𝜔𝑡 (�̈�
0
+ 𝑋
0
) + 𝜔 sin𝜔𝑡�̇�

0
] .

(A.6)
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Finally, substituting (A.3) and its differentials into the above
equations we obtain

𝑋
1
(𝑡) =

1

𝜔

sin𝜔𝑡 (𝑓
0
− 𝑓
1
𝜔
2 cos𝑚

0
𝑡 − 𝑓
2
𝜔
2 sin𝑚

0
𝑡)

+ cos𝜔𝑡 (𝑓
1
𝑚
0
sin𝑚
0
𝑡 − 𝑓
2
𝑚
0
cos𝑚

0
𝑡) ,

𝑋
2
(𝑡) =

1

𝜔

cos𝜔𝑡 (𝑓
1
𝜔
2 cos𝑚

0
𝑡 + 𝑓
2
𝜔
2 sin𝑚

0
𝑡 − 𝑓
0
)

+ sin𝜔𝑡 (𝑓
1
𝑚
0
sin𝑚
0
𝑡 − 𝑓
2
𝑚
0
cos𝑚

0
𝑡) .

(A.7)

In the form of (19) the components of Q
1
can be written as

follows:

𝑄
11

1
=

cos𝑚
0
𝑡 + 𝜔
2

𝑚
2

0

,

𝑄
12

1
=

− sin𝑚
0
𝑡

𝑚
0

,

𝑄
13

1
=

𝜔 (cos𝑚
0
𝑡 − 1)

𝑚
2

0

,

𝑄
21

1
=

𝜔 sin𝜔𝑡 (1 − cos𝑚
0
𝑡)

𝑚
2

0

+

cos𝜔𝑡 sin𝑚
0
𝑡

𝑚
0

,

𝑄
22

1
=

𝜔 sin𝜔𝑡 sin𝑚
0
𝑡

𝑚
0

+ cos𝜔𝑡 cos𝑚
0
𝑡,

𝑄
23

1
=

𝜔 cos𝜔𝑡 sin𝑚
0
𝑡

𝑚
0

−

sin𝜔𝑡 (1 + 𝜔2 cos𝑚
0
𝑡)

𝑚
2

0

,

𝑄
31

1
=

𝜔 cos𝜔𝑡 (cos𝑚
0
𝑡 − 1)

𝑚
2

0

+

sin𝜔𝑡 sin𝑚
0
𝑡

𝑚
0

,

𝑄
32

1
= sin𝜔𝑡 cos𝑚

0
𝑡 −

𝜔 cos𝜔𝑡 sin𝑚
0
𝑡

𝑚
0

,

𝑄
33

1
=

cos𝜔𝑡 (1 + 𝜔2 cos𝑚
0
𝑡)

𝑚
2

0

+

𝜔 sin𝜔𝑡 sin𝑚
0
𝑡

𝑚
0

.

(A.8)
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