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This paper is concerned with adaptive neural control of nonlinear strict-feedback systems with nonlinear uncertainties, unmodeled
dynamics, and dynamic disturbances. To overcome the difficulty from the unmodeled dynamics, a dynamic signal is introduced.
Radical basis function (RBF) neural networks are employed to model the packaged unknown nonlinearities, and then an
adaptive neural control approach is developed by using backstepping technique. The proposed controller guarantees semiglobal
boundedness of all the signals in the closed-loop systems. A simulation example is given to show the effectiveness of the presented
control scheme.

1. Introduction

In the past decades, much attention has been paid on the
control design of complex nonlinear systems [1–11]. Many
remarkable control approaches in this area have been devel-
oped, including adaptive backstepping technique [1–3], fault
tolerant control [12–17], and and fuzzy control [18–29]. In
particular, adaptive backstepping approach has played an
important role in the control of strict-feedback nonlinear sys-
tems. Generally, adaptive backstepping provides a systematic
control approach to solve the tracking or regulation control
problems of uncertain nonlinear systems, in which the
classic adaptive control is applied to deal with the unknown
parameter and backstepping technique is used to construct
controller.Themain feature of adaptive backstepping control
is that it can handle the control problems of nonlinear systems
without the requirement of matching condition. Adaptive
backstepping technique was provided in [1] to obtain global
stability and asymptotic tracking performance for parametric
strict-feedback systems with overparameterization, and the
overparameterization was overcome by applying the tuning
functions in [2]. Then, a backstepping-based design was
extensively utilized to control different types of nonlinear
systems [30–35]. All the above control methods, however,

assume that the nonlinear functions of the control systems are
either known or bounded by known functions multiplying
uncertain parameters. This restriction makes the aforemen-
tioned methods inapplicable to the control of the systems
with unknown continuous nonlinear functions.

On the other hand, approximation-based adaptive neural
(or fuzzy) backstepping control has received increasing atten-
tion in recent years. In general, approximation-based adap-
tive backstepping technique is an effective control approach
for handling the control problemof highly uncertain complex
nonlinear strict-feedback systems, in which neural networks
or fuzzy systems are utilized to model the unknown non-
linear functions. So far, there exist some elegant results;
see, for example, [36–54] and the references therein. By
applying adaptive neural control together with backstepping,
in [36–43], many control approaches are developed for
single-input and single-output (SISO) nonlinear systems or
multi-input and multioutput (MIMO) nonlinear systems.
Alternatively, several fuzzy adaptive control strategies [19,
44–55] were developed to deal with the control problem
of uncertain nonlinear systems with strict-feedback form.
However, the above adaptive neural or fuzzy backstepping
control approaches required the controlled strict-feedback
nonlinear systems to be free of the unmodeled dynamics and
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dynamic disturbances. As stated in [56, 57], the unmodeled
dynamics and dynamic disturbances often appear in practical
systems [58, 59] due to the measurement noise, modeling
errors, external disturbances, modeling simplifications, or
changes with time variations, and they are also the resources
of the instability of the considered systems. Therefore, some
researchers have concentrated on the problem of control
design for nonlinear systems with unmodeled dynamics and
dynamic disturbances. In [56, 57], the problem of adaptive
backstepping control was investigated for a class of nonlinear
systems with dynamics uncertainties, in which the nonlinear
functions were assumed to be linear combinations of the
known functions with unknown parameters. Furthermore,
by using the approximation properties of fuzzy logic systems,
Tong et al. [58, 59] developed several fuzzy adaptive control
approaches for nonlinear systems in strict-feedback form,
where the number of adaptation laws depends on the number
of fuzzy base functions. The more fuzzy rules are applied to
improve approximation accuracy, the more adaptive parame-
ters will be needed, and, in this way, the online learning time
may be very large.

Inspired by previous works, this paper focuses on the
problem of adaptive neural control for nonlinear strict-
feedback systems with unmodeled dynamics and dynamic
disturbances. During the controller design, a dynamic signal
is introduced to handle the unmodeled dynamics and RBF
neural networks are used to approximate the unknown
nonlinearities, and then an adaptive neural control scheme
is systematically derived via backstepping. The proposed
controller guarantees that all the signals in the closed-
loop systems are semiglobally uniformly ultimately bounded
(SGUUB) in the sense of mean square. Compared with the
control approaches [58, 59], the main contributions of this
paper are summarized as follows: (1) the strict limitation
to the dynamic disturbances is relaxed, which can refer to
Remark 3; (2) by estimating the norm of the weight vector
of neural networks basis functions, the number of adaptive
parameters is not more than the order of the considered
nonlinear system.As a result, the burdensome computation is
significantly alleviated, whichmakes our control designmore
suitable for the practical applications.

The remainder of the paper is organized as follows. Sec-
tion 2 begins with the problem formulation and some preli-
minaries. A backstepping-based adaptive control scheme is
design in Section 3. In Section 4, a numerical example is giv-
en. Finally, the conclusion of this paper is shown in Section
5.

2. Problem Formulation and Preliminaries

In this paper, we consider a class of nonlinear strict-feedback
systems described by

�̇� = 𝑞 (𝑧, 𝑥) ,

�̇�
𝑖
= 𝑔
𝑖
(𝑥
𝑖
) 𝑥
𝑖+1

+ 𝑓
𝑖
(𝑥
𝑖
) + Δ
𝑖 (𝑥, 𝑧, 𝑡) , 𝑖 = 1, . . . , 𝑛 − 1,

�̇�
𝑛
= 𝑔
𝑛
(𝑥
𝑛
) 𝑢 + 𝑓

𝑛
(𝑥
𝑛
) + Δ
𝑛 (𝑥, 𝑧, 𝑡) ,

(1)

where 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇
∈ 𝑅𝑛, 𝑢 ∈ 𝑅, and 𝑦 ∈ 𝑅 are the

system state, control input, and system output, respectively,
𝑥
𝑖
= [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
]
𝑇

∈ 𝑅𝑖, 𝑓
𝑖
(⋅), and 𝑔

𝑖
(⋅) are unknown

smooth functions, and Δ
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are nonlinear

dynamic disturbances. The 𝑧-dynamics in (1) denotes the
unmodeled dynamics.

Remark 1. It is worth noting that many practical systems
such as the electromechanical system [59] transformable
into (1) have been investigated extensively during the last
decades from both theoretical and practical viewpoints; see,
for example, [56–59].

In order to facilitate the control design later, the below
assumptions are imposed on the system (1).

Assumption 2. For the dynamic disturbances Δ
𝑖
(𝑖 =

1, 2, . . . , 𝑛) in (1), there exist unknown nonnegative smooth
functions 𝜙

𝑖1
(⋅) and 𝜙

𝑖2
(⋅), such that

Δ 𝑖 (𝑥, 𝑧, 𝑡)
 ≤ 𝜙𝑖1 (

(𝑥1, . . . , 𝑥𝑖)
) + 𝜙𝑖2 (|𝑧|) . (2)

Remark 3. This assumption is similar to the one in [58, 59]
in which 𝜙

𝑖1
(⋅) and 𝜙

𝑖2
(⋅) are known. Assumption 2, however,

does not require them to be known.Therefore, Assumption 2
relaxes the restriction in the existing results.

Assumption 4 (see [59]). The unmodeled dynamics in (1)
is exponentially input-to-state practically stable (exp-ISpS);
that is, for the system �̇� = 𝑞(𝑧, 𝑥), there exists an exp-ISpS
Lyapunov function 𝑉(𝑧) such that

𝛼
1 (|𝑧|) ≤ 𝑉 (𝑧) ≤ 𝛼2 (|𝑧|) ,

𝜕𝑉 (𝑧)

𝜕𝑧
𝑞 (𝑧, 𝑥) ≤ −𝑐0𝑉 (𝑧) + 𝜇 (|𝑥|) + 𝑑0,

(3)

where 𝛼
1
, 𝛼
2
, and 𝜇 are of class 𝐾

∞
-functions and 𝑐

0
and 𝑑

0

are known positive constants.

Assumption 5 (see [50]). For 1 ≤ 𝑖 ≤ 𝑛, the signs of 𝑔
𝑖
(𝑥
𝑖
) are

known, and there exists unknown positive constant 𝑏 such
that

0 < 𝑏 ≤
𝑔𝑖 (𝑥𝑖)

 < ∞, ∀𝑥
𝑖
∈ 𝑅
𝑖
. (4)

Remark 6. Equation (4) implies that 𝑔
𝑖
(𝑥
𝑖
) are either strictly

positive or negative. Without loss of generality, it is supposed
that 0 < 𝑏 ≤ 𝑔

𝑖
(𝑥
𝑖
). In addition, since 𝑏 is not required in the

designed controller, its true value is not required to be known.

Lemma 7 (see [59]). If 𝑉 is an exp-ISpS Lyapunov function
for a control system, that is, (3) hold, then, for any constants 𝑐
in (0, 𝑐

0
), any initial condition 𝑥

0
= 𝑥
0
(0), and any function

𝜇(𝑥
1
) ≥ 𝜇(|𝑥

1
|), there exists a finite time 𝑇

0
= 𝑇
0
(𝑐, 𝑟
0
, 𝑧
0
), a

nonnegative function 𝐷(𝑡) defined for all 𝑡 ≥ 0, and a signal
described by

̇𝑟 = −𝑐𝑟 + 𝜇 (𝑥
1 (𝑡)) + 𝑑0, 𝑟 (0) = 𝑟0, (5)

such that 𝐷(𝑡) = 0 for all 𝑡 ≥ 𝑇
0
,

𝑉 (𝑧 (𝑡)) ≤ 𝑟 (𝑡) + 𝐷 (𝑡) . (6)
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For all 𝑡 ≥ 0, the solutions are defined. Without loss of gen-
erality, this paper takes 𝜇(⋅) as 𝜇(𝑠) = 𝑠2𝜇

0
(𝑠2), where 𝜇(⋅)

is a nonnegative smooth function. Therefore, the dynamical 𝑟
defined by (5) becomes

̇𝑟 = −𝑐𝑟 + 𝑥
2

1
𝜇
0
(

𝑥
2

1


) + 𝑑
0
, 𝑟 (0) = 𝑟0, (7)

where 𝜇
0
is a nonnegative smooth function.

Throughout this paper, RBF neural networks are applied
to model the unknown continuous nonlinear functions. In
[60], it has been indicated that, with enough node number 𝑙,
the RBF neural networks 𝜙∗𝑇𝜉(𝑋) can model the continuous
function 𝑓(𝑋) within a compact set Ω

𝑋
⊂ 𝑅𝑞 to arbitrary

accuracy 𝜀 > 0 as

𝑓 (𝑋) = 𝜙
∗𝑇
𝜉 (𝑋) + 𝛿 (𝑋) , ∀𝑋 ∈ Ω

𝑋
∈ 𝑅
𝑞
, (8)

in which 𝜙∗ denotes the ideal weight vector and is specified
as

𝜙
∗
:= arg min

𝜙∈𝑅
𝑁

{ sup
𝑋∈Ω𝑋


𝑓 (𝑋) − 𝜙

𝑇
𝜉 (𝑋)


} (9)

𝛿(𝑋) depicts the approximation error satisfying |𝛿(𝑋)| ≤ 𝜀,
𝜙∗ = [𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑙
]
𝑇
∈ 𝑅𝑙 is the weight vector, and 𝜉(𝑋) =

[𝜉
1
(𝑋), 𝜉

2
(𝑋), . . . , 𝜉

𝑙
(𝑋)]
𝑇 is the basis function vector with 𝑙

being the number of the neural networks nodes and 𝑙 > 1.
The basis function 𝜉

𝑖
(𝑋) is taken as the Gaussian function in

the below form:

𝜉
𝑖 (𝑋) = exp[−

(𝑋 − 𝜇
𝑖
)
𝑇
(𝑋 − 𝜇

𝑖
)

𝜂2
𝑖

] , (𝑖 = 1, 2, . . . , 𝑙) ,

(10)

where 𝜇
𝑖
= [𝜇
𝑖1
, 𝜇
𝑖2
, . . . , 𝜇

𝑖𝑞
]
𝑇 and 𝜂

𝑖
are the center of the

receptive field and thewidth of theGaussian function, respec-
tively.

3. Adaptive Neural Control Design

In this section, the adaptive backstepping control design
for system (1) is proposed. As usual, in the backstepping
approach, the following coordinate transformation is made:

𝑧
𝑖
= 𝑥
𝑖
− 𝛼
𝑖−1
, 𝑖 = 1, 2, . . . , 𝑛, (11)

where 𝛼
0
= 0, 𝛼

𝑖
is the virtual control signal and will be

constructed at Step 𝑖, and the actual controller 𝑢 will be
designed at Step 𝑛. Now, we begin the controller design pro-
cedure.

Step 1. Consider the following subsystem:

�̇� = 𝑞 (𝑧, 𝑥) ,

�̇�
1
= 𝑔
1
(𝑥
1
) 𝑥
2
+ 𝑓
1
(𝑥
1
) + Δ
1 (𝑥, 𝑧, 𝑡) .

(12)

Based on 𝑧
1
= 𝑥
1
, then choose Lyapunov functions as

𝑉
1
=
1

2
𝑧
2

1
+

1

𝜆
0

𝑟 +
𝑏

2𝛾
1

𝜃
2

1
, (13)

where 𝜇(𝑥
1
) = 𝑥2
1
𝜇
0
(𝑥2
1
), 𝜆
0
and 𝛾
1
are positive design para-

meters, and 𝜃
1
= 𝜃
1
− 𝜃
1
is the parameter error with 𝜃

1
being

the estimation of 𝜃
1
which is defined later.

By taking (12) into account, we have

�̇�
1
= 𝑧
1
(𝑔
1
(𝑥
1
) 𝑥
2
+ 𝑓
1
(𝑥
1
) + Δ
1
) +

1

𝜆
0

̇𝑟 −
𝑏

𝛾
1

𝜃
1

̇̂
𝜃
1

≤ 𝑧
1
(𝑔
1
(𝑥
1
) 𝑥
2
+ 𝑓
1
(𝑥
1
)) +

𝑧1

Δ 1

 +
1

𝜆
0

̇𝑟 −
𝑏

𝛾
1

𝜃
1

̇̂
𝜃
1
.

(14)

By Assumption 2, it follows that

�̇�
1
≤ 𝑧
1
(𝑔
1
(𝑥
1
) 𝑥
2
+ 𝑓
1
(𝑥
1
)) +

𝑧1
 𝜙11 (

𝑥1
)

+
𝑧1
 𝜙12 (|𝑧|) +

1

𝜆
0

(𝑥
2

1
𝜇
0
(𝑥
2

1
) + 𝑑
0
) −

𝑐

𝜆
0

𝑟 −
𝑏

𝛾
1

𝜃
1

̇̂
𝜃
1
.

(15)

Then, we will deal with the third and fourth terms in (15),
respectively. By using 0 ≤ |𝑥| − 𝑥 tanh(𝑥/𝜖) ≤ 0.2785𝜖 = 𝜖,
for ∀𝜖 > 0, we have
𝑧1
 𝜙11 (

𝑥1
)

=
𝑧1𝜙11 (

𝑥1
)
 − 𝑧1𝜙11 (

𝑥1
) tanh(

𝑧
1
𝜙
11
(
𝑥1

)

𝜖
11

)

+ 𝑧
1
𝜙
11
(
𝑥1

) tanh(
𝑧
1
𝜙
11
(
𝑥1

)

𝜖
11

)

≤ 𝜖


11
+ 𝑧
1
𝜙
11
(
𝑥1

) tanh(
𝑧
1
𝜙
11
(
𝑥1

)

𝜖
11

)

≤ 𝑧
1
𝜙
11
(𝑥
1
) + 𝜖


11
,

(16)

where 𝜖
11

= 0.2785𝜖
11

and 𝜙
11
(𝑥
1
) =

𝜙
11
(|𝑥
1
|) tanh(𝑧

1
𝜙
11
(|𝑥
1
|)/𝜖
11
) is a smooth function.

By using the same derivations as [58], one has
𝑧1
 𝜙12 (|𝑧|) ≤

𝑧1
 𝜙12 (𝑟) +

1

4
𝑧
2

1
+ 𝑑
1 (𝑡)

≤ 𝑧
1
𝜙
12
(𝑟) tanh(

𝑧
1
𝜙
12
(𝑟)

𝜖
12

) + 𝜖


12

+
1

4
𝑧
2

1
+ 𝑑
1 (𝑡)

≤ 𝑧
1
𝜙
12
(𝑥
1
, 𝑟) + 𝜖



12
+
1

4
𝑧
2

1
+ 𝑑
1 (𝑡) ,

(17)

where 𝜖
12
= 0.2785𝜖

12
, 𝜙
12
(𝑟) = 𝜙

12
∘ 𝛼−1
1
(2𝑟), 𝑑

1
(𝑡) = (𝜙

12
∘

𝛼−1
1
(2𝐷(𝑡)))

2, and 𝜙
12
(𝑥
1
, 𝑟) = 𝜙

12
(𝑟) tanh(𝑧

1
𝜙
12
(𝑟)/𝜖
12
).

Subsequently, substituting (16) and (17) into (15) gives

�̇�
1
≤ 𝑧
1
(𝑔
1
(𝑥
1
) 𝑧
2
+ 𝑔
1
(𝑥
1
) 𝛼
1
+ 𝑓
1
(𝑍
1
)) −

𝑧2
1

2

+
𝑑
0

𝜆
0

−
𝑐

𝜆
0

𝑟 −
𝑏

𝛾
1

𝜃
1

̇̂
𝜃
1
+ 𝜖


11
+ 𝜖


12
+ 𝑑
1 (𝑡) ,

(18)
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where the function 𝑓
1
(𝑍
1
) is defined as

𝑓
1
(𝑍
1
) = 𝑓
1
(𝑥
1
) + 𝜙
11
(𝑥
1
) + 𝜙
12 (𝑟) +

3

4
𝑧
1

+
1

𝜆
0

(𝑥
1
𝜇
0
(𝑥
2

1
)) ,

(19)

where 𝑍
1
= [𝑥
1
, 𝑟]
𝑇
∈ Ω
𝑍1
⊂ 𝑅2.

Since the smooth function 𝑓
1
(𝑍
1
) is unknown, it cannot

be implemented in practice. By employing RBF neural net-
work in 𝜙𝑇

1
𝜉(𝑍
1
) to approximate 𝑓

1
(𝑍
1
), we have

𝑓
1
(𝑍
1
) = 𝜙
𝑇

1
𝜉
1
(𝑍
1
) + 𝛿
1
(𝑍
1
) ,

𝛿1 (𝑍1)
 ≤ 𝜖13, (20)

where 𝛿
1
(𝑍
1
) denotes an approximation error and 𝜖

13
> 0 is

a given positive constant.
Next, the following result can be obtained by substituting

(20) into (18):

�̇�
1
≤ 𝑔
1
(𝑥
1
) 𝑧
1
𝑧
2
+ 𝑔
1
(𝑥
1
) 𝑧
1
𝛼
1
+ 𝑧
1
𝜙
𝑇

1
𝜉
1
(𝑍
1
) + 𝑧
1
𝛿
1
(𝑍
1
)

−
𝑧2
1

2
+
𝑑
0

𝜆
0

−
𝑐

𝜆
0

𝑟 −
𝑏

𝛾
1

𝜃
1

̇̂
𝜃
1
+ 𝜖


11
+ 𝜖


12
+ 𝑑
1 (𝑡) .

(21)

By using

𝑧
1
𝜙
𝑇

1
𝜉
1
(𝑍
1
) ≤

𝑏𝜃
1

2𝜂2
1

𝜉
𝑇

1
(𝑍
1
) 𝜉
1
(𝑍
1
) 𝑧
2

1
+
𝜂2
1

2
,

𝑧
1
𝛿
1
(𝑍
1
) ≤

𝑧2
1

2
+
𝜖
2

13

2
,

(22)

one has

�̇�
1
≤ 𝑔
1
(𝑥
1
) 𝑧
1
𝑧
2
+ 𝑔
1
(𝑥
1
) 𝑧
1
𝛼
1
+
𝑏𝜃
1

2𝜂2
1

𝜉
𝑇

1
(𝑍
1
) 𝜉
1
(𝑍
1
) 𝑧
2

1

+
𝜂2
1

2
+
𝜖
2

13

2
+
𝑑
0

𝜆
0

−
𝑐

𝜆
0

𝑟 −
𝑏

𝛾
1

𝜃
1

̇̂
𝜃
1
+ 𝜖


11
+ 𝜖


12
+ 𝑑
1 (𝑡)

(23)

with 𝜃
1
= 𝑏−1‖𝜙

1
‖
2 being an unknown parameter.

Construct the virtual control signal 𝛼
1
as

𝛼
1
= −𝑘
1
𝑧
1
−

𝜃
1

2𝜂2
1

𝑧
1
𝜉
𝑇

1
(𝑍
1
) 𝜉
1
(𝑍
1
) , (24)

where 𝑘
1
and 𝜂
1
are positive design constants.

By taking Assumption 5 into account, one has

𝑔
1
(𝑥
1
) 𝑧
1
𝛼
1
≤ −𝑘
1
𝑏𝑧
2

1
−

𝜃
1

2𝜂2
1

𝑏𝑧
2

1
𝜉
𝑇

1
(𝑍
1
) 𝜉
1
(𝑍
1
) . (25)

Further, by substituting (25) into (23), we obtain

�̇�
1
≤ −𝑏𝑘

1
𝑧
2

1
−

𝑐

𝜆
0

𝑟 +
𝑏𝜃
1

𝛾
1

(
𝛾
1

2𝜂2
1

𝜉
𝑇

1
(𝑍
1
) 𝜉
1
(𝑍
1
) 𝑧
2

1
−

̇̂
𝜃
1
)

+ 𝑔
1
(𝑥
1
) 𝑧
1
𝑧
2
+
𝜂2
1

2
+
𝜖
2

13

2
+
𝑑
0

𝜆
0

+ 𝜖


11
+ 𝜖


12
+ 𝑑
1 (𝑡) .

(26)

Next, we choose the adaptive law in the following form:

̇̂
𝜃
1
=

𝛾
1

2𝜂2
1

𝜉
𝑇

1
(𝑍
1
) 𝜉
1
(𝑍
1
) 𝑧
2

1
− 𝜎
1
𝜃
1
, (27)

where 𝜂
1
and 𝜎

1
are design parameters.

By using (27), we can rewrite (26) as

�̇�
1
≤ −𝑏𝑘

1
𝑧
2

1
−

𝑐

𝜆
0

𝑟 + 𝑔
1
(𝑥
1
) 𝑧
1
𝑧
2
+
𝑏𝜎
1
𝜃
1
𝜃
1

𝛾
1

+
𝜂
2

1

2
+
𝜖2
13

2
+
𝑑
0

𝜆
0

+ 𝜖


11
+ 𝜖


12
+ 𝑑
1 (𝑡) .

(28)

Noting

𝑏𝜎
1
𝜃
1
𝜃
1

𝛾
1

= −
𝑏𝜎
1
𝜃2
1

𝛾
1

+
𝑏𝜎
1
𝜃
1
𝜃
1

𝛾
1

≤ −
𝑏𝜎
1
𝜃2
1

2𝛾
1

+
𝑏𝜎
1
𝜃2
1

2𝛾
1

, (29)

then the following inequality holds:

�̇�
1
≤ −𝑏𝑘

1
𝑧
2

1
−

𝑐

𝜆
0

𝑟 −
𝑏𝜎
1
𝜃2
1

2𝛾
1

+
𝑑
0

𝜆
0

+ 𝐷
1
+ 𝑔
1
(𝑥
1
) 𝑧
1
𝑧
2
,

(30)

where𝐷
1
= 𝜂2
1
/2 + 𝑏𝜎

1
𝜃2
1
/2𝛾
1
+ 𝜖2
13
/2 + 𝜖

11
+ 𝜖
12
+ 𝑑
1
(𝑡).

Step 2. Based on 𝑧
2
= 𝑥
2
− 𝛼
1
, then the time derivative of 𝑧

2

is given by

�̇�
2
= �̇�
2
− �̇�
1

= 𝑔
2
(𝑥
2
) 𝑥
3
+ 𝑓
2
(𝑥
2
) + Δ
2

−
𝜕𝛼
1

𝜕𝑥
1

(𝑔
1
(𝑥
1
) 𝑥
2
+ 𝑓
1
(𝑥
1
) + Δ
1
) −

𝜕𝛼
1

𝜕𝜃
1

̇̂
𝜃
1
−
𝜕𝛼
1

𝜕𝑟
̇𝑟

= 𝑔
2
(𝑥
2
) 𝑥
3
+ (𝑓
2
(𝑥
2
) −

𝜕𝛼
1

𝜕𝑥
1

𝑓
1
(𝑥
1
)) + Δ

2

−
𝜕𝛼
1

𝜕𝑥
1

𝑔
1
(𝑥
1
) 𝑥
2
−
𝜕𝛼
1

𝜕𝜃
1

̇̂
𝜃
1
−
𝜕𝛼
1

𝜕𝑟
̇𝑟,

(31)

where Δ
2
= Δ
2
− (𝜕𝛼
1
/𝜕𝑥
1
)Δ
1
.

Construct the Lyapunov function

𝑉
2
= 𝑉
1
+
1

2
𝑧
2

2
+

𝑏

2𝛾
2

𝜃
2

2
. (32)
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The derivative of 𝑉
2
is

�̇�
2
≤ −𝑏𝑘

1
𝑧
2

1
−
𝑏𝜎
1
𝜃2
1

2𝛾
1

−
𝑐

𝜆
0

𝑟

+ 𝑧
2
[𝑔
2
(𝑥
2
) 𝑥
3
+ 𝑔
1
(𝑥
1
) 𝑧
1
+ 𝑓
2
(𝑥
2
) −

𝜕𝛼
1

𝜕𝑥
1

𝑓
1
(𝑥
1
)

−
𝜕𝛼
1

𝜕𝑥
1

𝑔
1
(𝑥
1
) 𝑥
2
−
𝜕𝛼
1

𝜕𝜃
1

̇̂
𝜃
1
−
𝜕𝛼
1

𝜕𝑟
̇𝑟]

+

𝑧
2
Δ
2


+ 𝐷
1
+
𝑑
0

𝜆
0

−
𝑏

𝛾
2

𝜃
2

̇̂
𝜃
2
.

(33)

By Assumption 2, we have


𝑧
2
Δ
2


=
𝑧2



Δ
2
−
𝜕𝛼
1

𝜕𝑥
1

Δ
1



≤
𝑧2
 (
Δ 2

 +


𝜕𝛼
1

𝜕𝑥
1



Δ 1
)

≤
𝑧2
 (𝜙21 +



𝜕𝛼
1

𝜕𝑥
1


𝜙
11
)

+
𝑧2
 (𝜙22 (|𝑧|) +



𝜕𝛼
1

𝜕𝑥
1


𝜙
12 (|𝑧|)) .

(34)

Similar to the estimation methods in (35), the following
results can be obtained:

𝑧2
 (𝜙21 +



𝜕𝛼
1

𝜕𝑥
1


𝜙
11
) ≤ 𝑧
2
𝜙
21
(𝑥
2
, 𝜃
1
, 𝑟) + 𝜖



21
,

𝑧2
 (𝜙22 (|𝑧|) +



𝜕𝛼
1

𝜕𝑥
1


𝜙
12 (|𝑧|))

≤
𝑧2
 (𝜙22 ∘ 𝛼

−1

1
(2𝑟) +



𝜕𝛼
1

𝜕𝑥
1


𝜙
12
∘ 𝛼
−1

1
(2𝑟))

+
𝑧2
 𝜙22 ∘ 𝛼

−1

1
(2𝐷 (𝑡))

+
𝑧2




𝜕𝛼
1

𝜕𝑥
1


𝜙
12
∘ 𝛼
−1

1
(2𝐷 (𝑡))

≤
𝑧2
 𝜙22 (𝑥1, 𝜃1, 𝑟) +

𝑧2
2

4
(1 + (

𝜕𝛼
1

𝜕𝑥
1

)

2

) + 𝑑
2 (𝑡)

≤ 𝑧
2
𝜙
22
(𝑥
1
, 𝜃
1
, 𝑟) + 𝜖



22
+
𝑧2
2

4
(1 + (

𝜕𝛼
1

𝜕𝑥
1

)

2

) + 𝑑
2 (𝑡) ,

(35)

where 𝜙
21
(𝑥
2
, 𝜃
1
, 𝑟) = (𝜙

21
+ |𝜕𝛼

1
/𝜕𝑥
1
|𝜙
11
) tanh(𝑧

2
(𝜙
21
+

|𝜕𝛼
1
/𝜕𝑥
1
|𝜙
11
)/𝜖
21
), 𝜖
21

= 0.2785𝜖
21
, 𝜙
22
(𝑥
1
, 𝜃
1
, 𝑟) = 𝜙

22
∘

𝛼−1
1
(2𝑟) + |𝜕𝛼

1
/𝜕𝑥
1
|𝜙
12
∘ 𝛼−1
1
(2𝑟), 𝜙

22
(𝑥
1
, 𝜃
1
, 𝑟) = 𝜙

22
(𝑥
1
,

𝜃
1
, 𝑟) tanh(𝑧

2
𝜙
22
(𝑥
1
, 𝜃
1
, 𝑟)/𝜖
22
), and 𝑑

2
(𝑡) = ∑

2

𝑗=1
(𝜙
𝑗2
∘

𝛼−1
1
(2𝐷(𝑡)))

2.

Substituting (35) into (33) gives

�̇�
2
≤ −𝑏𝑘

1
𝑧
2

1
−
𝑏𝜎
1
𝜃2
1

2𝛾
1

−
𝑐

𝜆
0

𝑟

+ 𝑧
2
[𝑔
2
(𝑥
2
) 𝑥
3
+ 𝑔
1
(𝑥
1
) 𝑧
1
+ 𝑓
2
(𝑥
2
)

−
𝜕𝛼
1

𝜕𝑥
1

𝑓
1
(𝑥
1
) −

𝜕𝛼
1

𝜕𝑥
1

𝑔
1
(𝑥
1
) 𝑥
2
−
𝜕𝛼
1

𝜕𝜃
1

̇̂
𝜃
1

−
𝜕𝛼
1

𝜕𝑟
̇𝑟 + 𝜙
21
(𝑥
2
, 𝜃
1
, 𝑟) + 𝜙

22
(𝑥
1
, 𝜃
1
, 𝑟)

+
𝑧
2

4
(1 + (

𝜕𝛼
1

𝜕𝑥
1

)

2

)] + 𝜖


21
+ 𝜖


22
+ 𝑑
2 (𝑡)

+ 𝐷
1
+
𝑑
0

𝜆
0

−
𝑏

𝛾
2

𝜃
2

̇̂
𝜃
2

≤ −𝑏𝑘
1
𝑧
2

1
−
𝑏𝜎
1
𝜃2
1

2𝛾
1

−
𝑐

𝜆
0

𝑟

+ 𝑧
2
[𝑔
2
(𝑥
2
) 𝑧
3
+ 𝑔
2
(𝑥
2
) 𝛼
2
+ 𝑓
2
(𝑍
2
)] −

𝑧2
2

2
+ 𝜖


21

+ 𝜖


22
+ 𝑑
2 (𝑡) + 𝐷1 +

𝑑
0

𝜆
0

−
𝑏

𝛾
2

𝜃
2

̇̂
𝜃
2
,

(36)

where 𝑧
3
= 𝑥
3
− 𝛼
2
and the function 𝑓

2
(𝑍
2
) is specified as

𝑓
2
(𝑍
2
) = 𝑔
1
(𝑥
1
) 𝑧
1
+ 𝑓
2
(𝑥
2
) −

𝜕𝛼
1

𝜕𝑥
1

𝑓
1
(𝑥
1
) + 𝜙
21
(𝑥
1
, 𝜃
1
, 𝑟)

+ 𝜙
22
(𝑥
2
, 𝜃
1
, 𝑟) +

𝑧
2

4
[1 + (

𝜕𝛼
1

𝜕𝑥
1

)

2

] +
𝑧
2

2

−
𝜕𝛼
1

𝜕𝑥
1

𝑔
1
(𝑥
1
) 𝑥
2
−
𝜕𝛼
1

𝜕𝜃
1

̇̂
𝜃
1
−
𝜕𝛼
1

𝜕𝑟
̇𝑟

(37)

with 𝑍
2
= [𝑥
2
, 𝜃
1
, 𝑟]
𝑇
∈ Ω
𝑍2

∈ 𝑅4 and Ω
𝑍2

being some
known compact set in 𝑅4.

To compensate for the unknown nonlinear function
𝑓
2
(𝑍
2
), a neural network 𝜙𝑇

2
𝜉
2
(𝑍
2
) is utilized tomodel𝑓

2
(𝑍
2
)

such that, for any given positive constant 𝜖
23
,

𝑓
2
(𝑍
2
) = 𝜙
𝑇

2
𝜉
2
(𝑍
2
) + 𝛿
2
(𝑍
2
) ,

𝛿2 (𝑍2)
 ≤ 𝜖23, (38)

where 𝜖
23
denotes approximation error.

Then, substituting (38) into (36), one has

�̇�
2
≤ −𝑏𝑘

1
𝑧
2

1
−
𝑏𝜎
1
𝜃2
1

2𝛾
1

−
𝑐

𝜆
0

𝑟 + 𝑔
2
(𝑥
2
) 𝑧
2
𝑧
3
+ 𝑔
2
(𝑥
2
) 𝑧
2
𝛼
2
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+ 𝑧
2
𝜙
𝑇

2
𝜉
2
(𝑍
2
) + 𝑧
2
𝛿
2
(𝑍
2
) −

𝑧2
2

2
+ 𝜖


21
+ 𝜖


22
+ 𝑑
2 (𝑡)

+ 𝐷
1
+
𝑑
0

𝜆
0

−
𝑏

𝛾
2

𝜃
2

̇̂
𝜃
2
.

(39)

By using

𝑧
2
𝜙
𝑇

2
𝜉
2
(𝑍
2
) ≤

𝑏𝜃
2

2𝜂2
2

𝜉
𝑇

2
(𝑍
2
) 𝜉
2
(𝑍
2
) 𝑧
2

2
+
𝜂2
2

2
,

𝑧
2
𝛿
2
(𝑍
2
) ≤

𝑧2
2

2
+
𝜖
2

23

2
,

(40)

it can be easily verified that

�̇�
2
≤ −𝑏𝑘

1
𝑧
2

1
−
𝑏𝜎
1
𝜃2
1

2𝛾
1

−
𝑐

𝜆
0

𝑟 + 𝑔
2
(𝑥
2
) 𝑧
2
𝛼
2

+
𝑏𝜃
2

2𝜂2
2

𝜉
𝑇

2
(𝑍
2
) 𝜉
2
(𝑍
2
) 𝑧
2

2
+ 𝑔
2
(𝑥
2
) 𝑧
2
𝑧
3

+
𝜂2
2

2
+ 𝜖


21
+ 𝜖


22
+
𝜖
2

23

2
+ 𝑑
2 (𝑡) + 𝐷1 +

𝑑
0

𝜆
0

−
𝑏

𝛾
2

𝜃
2

̇̂
𝜃
2

(41)

with 𝜃
2
= 𝑏−1‖𝜙

2
‖
2 being an unknown constant.

Furthermore, the virtual control 𝛼
2
is constructed as

𝛼
2
= −𝑘
2
𝑧
2
−

𝜃
2

2𝜂2
2

𝑧
2
𝜉
𝑇

2
(𝑍
2
) 𝜉
2
(𝑍
2
) , (42)

where 𝑘
2
> 0 and 𝜂

2
are the design constants.

Then, the following result can be easily obtained:

𝑔
2
(𝑥
2
) 𝑧
2
𝛼
2
≤ −𝑘
2
𝑏𝑧
2

2
−

𝜃
2

2𝜂2
2

𝑏𝑧
2

2
𝜉
𝑇

2
(𝑍
2
) 𝜉
2
(𝑍
2
) . (43)

By applying (43), (41) can be rewritten as

�̇�
2
≤ −

2

∑
𝑖=1

𝑘
𝑖
𝑏𝑧
2

𝑖
−
𝑏𝜎
1
𝜃2
1

2𝛾
1

−
𝑐

𝜆
0

𝑟

+
𝑏𝜃
2

𝛾
2

(
𝛾
2

2𝜂2
2

𝜉
𝑇

2
(𝑍
2
) 𝜉
2
(𝑍
2
) 𝑧
2

2
−

̇̂
𝜃
2
) + 𝑔

2
(𝑥
2
) 𝑧
2
𝑧
3

+
𝜂2
2

2
+ 𝜖


21
+ 𝜖


22
+
𝜖2
23

2
+ 𝑑
2 (𝑡) +

𝑑
0

𝜆
0

+ 𝐷
1
.

(44)

Define the adaptive law as

̇̂
𝜃
2
=

𝛾
2

2𝜂2
2

𝜉
𝑇

2
(𝑍
2
) 𝜉
2
(𝑍
2
) 𝑧
2

2
− 𝜎
2
𝜃
2
, (45)

where 𝜂
2
, 𝛾
2
, and 𝜎

2
are design parameters.

Combining (44) with (45) produces

�̇�
2
≤ −

2

∑
𝑖=1

𝑘
𝑖
𝑏𝑧
2

𝑖
−
𝑏𝜎
1
𝜃2
1

2𝛾
1

−
𝑐

𝜆
0

𝑟 +
𝑏𝜎
2
𝜃
2
𝜃
2

𝛾
2

+ 𝑔
2
(𝑥
2
) 𝑧
2
𝑧
3

+
𝜂2
2

2
+ 𝜖


21
+ 𝜖


22
+
𝜖2
23

2
+ 𝑑
2 (𝑡) + 𝐷1 +

𝑑
0

𝜆
0

≤ −

2

∑
𝑖=1

(𝑘
𝑖
𝑏𝑧
2

𝑖
+
𝑏𝜎
𝑖
𝜃2
𝑖

2𝛾
𝑖

) −
𝑐

𝜆
0

𝑟 +
𝑑
0

𝜆
0

+

2

∑
𝑖=1

𝐷
𝑖
+ 𝑔
2
(𝑥
2
) 𝑧
2
𝑧
3
,

(46)

where𝐷
𝑖
= 𝜂2
𝑖
/2 + 𝑏𝜎

𝑖
𝜃2
𝑖
/2𝛾
𝑖
+ 𝜖2
𝑖3
/2 + 𝜖
𝑖1
+ 𝜖
𝑖2
+ 𝑑
𝑖
(𝑡), 𝑖 = 1, 2,

and the result 𝑏𝜎
2
𝜃
2
𝜃
2
/𝛾
2
≤ −𝑏𝜎

2
𝜃2
2
/2𝛾
2
+𝑏𝜎
2
𝜃2
2
/2𝛾
2
has been

used in the above equation.

Step i (3 ≤ 𝑖 ≤ 𝑛−1). According to 𝑧
𝑖
= 𝑥
𝑖
−𝛼
𝑖−1

, the dynamics
of 𝑧
𝑖
is

�̇�
𝑖
= 𝑔
𝑖
(𝑥
𝑖
) 𝑥
𝑖+1

+ 𝑓
𝑖
(𝑥
𝑖
) + Δ
𝑖

−

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

(𝑔
𝑗
(𝑥
𝑗
) 𝑥
𝑗+1

+ 𝑓
𝑗
(𝑥
𝑗
) + Δ

𝑗
)

−

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝜃
𝑗

̇̂
𝜃
𝑗
−
𝜕𝛼
𝑖−1

𝜕𝑟
̇𝑟

= 𝑔
𝑖
(𝑥
𝑖
) 𝑥
𝑖+1

+ 𝑓
𝑖
(𝑥
𝑖
) −

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

(𝑔
𝑗
(𝑥
𝑗
) 𝑥
𝑗+1

+ 𝑓
𝑗
(𝑥
𝑗
))

+ Δ
𝑖
−

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝜃
𝑗

̇̂
𝜃
𝑗
−
𝜕𝛼
𝑖−1

𝜕𝑟
̇𝑟,

(47)

where Δ
𝑖
= Δ
𝑖
− ∑
𝑖−1

𝑗=1
(𝜕𝛼
𝑖−1
/𝜕𝑥
𝑗
)Δ
𝑗
.

Consider the Lyapunov function 𝑉
𝑖
as

𝑉
𝑖
= 𝑉
𝑖−1

+
1

2
𝑧
2

𝑖
+

𝑏

2𝛾
𝑖

𝜃
2

𝑖
. (48)

By using the derivations similar to those used in the former
steps, we can obtain

�̇�
𝑖
≤ −

𝑖−1

∑
𝑗=1

(𝑘
𝑗
𝑏𝑧
2

𝑗
+
𝑏𝜎
𝑗
𝜃2
𝑗

2𝛾
𝑗

) −
𝑐

𝜆
0

𝑟

+ 𝑧
𝑖
(𝑔
𝑖
(𝑥
𝑖
) 𝑥
𝑖+1

+ 𝑓
𝑖
(𝑥
𝑖
) −

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

𝑓
𝑗
(𝑥
𝑗
)

−

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

𝑔
𝑗
(𝑥
𝑗
) 𝑥
𝑗+1

−

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝜃
𝑗

̇̂
𝜃
𝑗
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−
𝜕𝛼
𝑖−1

𝜕𝑟
̇𝑟 + 𝑔
𝑖−1

(𝑥
𝑖−1
) 𝑧
𝑖−1
)

+

𝑧
𝑖
Δ
𝑖


+
𝑑
0

𝜆
0

+

𝑖−1

∑
𝑗=1

𝐷
𝑗
−
𝑏

𝛾
𝑖

𝜃
𝑖

̇̂
𝜃
𝑖
.

(49)

Similar to (34), we have


𝑧
𝑖
Δ
𝑖


≤
𝑧𝑖
 (

Δ 𝑖
 +

𝑖−1

∑
𝑗=1



𝜕𝛼
𝑖−1

𝜕𝑥
𝑗




Δ
𝑗


)

≤
𝑧𝑖
 (𝜙𝑖1 +

𝑖−1

∑
𝑗=1



𝜕𝛼
𝑖−1

𝜕𝑥
𝑗



𝜙
𝑗1
)

+
𝑧𝑖
 (𝜙𝑖2 (|𝑧|) +

𝑖−1

∑
𝑗=1



𝜕𝛼
𝑖−1

𝜕𝑥
𝑗



𝜙
𝑗2 (|𝑧|)) .

(50)

Furthermore, the following inequalities can be easily verified
by repeating the same arguments as (35):

𝑧𝑖
 (𝜙𝑖1 +

𝑖−1

∑
𝑗=1



𝜕𝛼
𝑖−1

𝜕𝑥
𝑗



𝜙
𝑗1
) ≤ 𝑧

𝑖
𝜙
𝑖1
(𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟) + 𝜖



𝑖1
, (51)

𝑧𝑖
 (𝜙𝑖2 (|𝑧|) +

𝑖−1

∑
𝑗=1



𝜕𝛼
𝑖−1

𝜕𝑥
𝑗



𝜙
𝑗2 (|𝑧|))

≤ 𝑧
𝑖
𝜙
𝑖2
(𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟) +

𝑧2
𝑖

4
[

[

1 +

𝑖−1

∑
𝑗=1

(
𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

)

2

]

]

+ 𝜖


𝑖2
+ 𝑑
𝑖 (𝑡) ,

(52)

where 𝜙
𝑖1
(𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟) = (𝜙

𝑖1
+∑
𝑖−1

𝑗=1
|𝜕𝛼
𝑖−1
/𝜕𝑥
𝑗
|𝜙
𝑗1
) tanh(𝑧

𝑖
(𝜙
𝑖1

+∑
𝑖−1

𝑗=1
|𝜕𝛼
𝑖−1
/𝜕𝑥
𝑗
|𝜙
𝑗1
)/𝜖
𝑖1
), 𝜖
𝑖1
= 0.2785𝜖

𝑖1
, 𝜙
𝑖2
(𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟) =

𝜙
𝑖2
(𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟) tanh(𝑧

𝑖
𝜙
𝑖2
(𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟)/𝜖
𝑖2
), 𝜙
𝑖2
(𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟) = 𝜙

𝑖2
∘

𝛼−1
1
(2𝑟) + ∑

𝑖−1

𝑗=1
|𝜕
𝑖−1
/𝜕𝑥
𝑗
|𝜙
𝑗2
∘ 𝛼−1
1
(2𝑟), 𝜖

𝑖2
= 0.2785𝜖

𝑖2
, and

𝑑
𝑖
(𝑡) = ∑

𝑖

𝑗=1
(𝜙
𝑗2
∘ 𝛼−1
1
(2𝐷(𝑡)))

2, noting that 𝑑
𝑖
(𝑡) ≥ 0 for all

𝑡 ≥ 0.
Substituting (51) and (52) into (49) results in

�̇�
𝑖
≤ −

𝑖−1

∑
𝑗=1

(𝑘
𝑗
𝑏𝑧
2

𝑗
+
𝑏𝜎
𝑗
𝜃2
𝑗

2𝛾
𝑗

) −
𝑐

𝜆
0

𝑟

+ 𝑧
𝑖
(𝑔
𝑖
(𝑥
𝑖
) 𝑧
𝑖+1

+ 𝑔
𝑖
(𝑥
𝑖
) 𝛼
𝑖
+ 𝑓
𝑖
(𝑍
𝑖
))

−
𝑧2
𝑖

2
+ 𝜖


𝑖1
+ 𝜖


𝑖2
+ 𝑑
𝑖 (𝑡) +

𝑑
0

𝜆
0

+

𝑖−1

∑
𝑗=1

𝐷
𝑗
−
𝑏

𝛾
𝑖

𝜃
𝑖

̇̂
𝜃
𝑖
,

(53)

where the function 𝑓
𝑖
(𝑍
𝑖
) is defined by

𝑓
𝑖
(𝑍
𝑖
) = 𝑓
𝑖
(𝑥
𝑖
) −

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

𝑓
𝑗
(𝑥
𝑗
) −

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

𝑔
𝑗
(𝑥
𝑗
) 𝑥
𝑗+1

−

𝑖−1

∑
𝑗=1

𝜕𝛼
𝑖−1

𝜕𝜃
𝑗

̇̂
𝜃
𝑗
−
𝜕𝛼
𝑖−1

𝜕𝑟
̇𝑟 + 𝑔
𝑖−1

(𝑥
𝑖−1
) 𝑧
𝑖−1

+ 𝜙
𝑖1
(𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟) + 𝜙

𝑖2
(𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟)

+
𝑧
𝑖

4
[

[

1 +

𝑖−1

∑
𝑗=1

(
𝜕𝛼
𝑖−1

𝜕𝑥
𝑗

)

2

]

]

+
𝑧
𝑖

2
,

(54)

where 𝑍
𝑖
= [𝑥
𝑖
, 𝜃
𝑖−1
, 𝑟]
𝑇
∈ Ω
𝑍𝑖
∈ 𝑅2𝑖, 𝑥

𝑖
= [𝑥
1
, . . . , 𝑥

𝑖
]
𝑇, and

Ω
𝑍𝑖
is some known compact set in 𝑅2𝑖.
Currently, a neural network 𝜙𝑇

𝑖
𝜉
𝑖
(𝑍
𝑖
) is utilized to model

𝑓
𝑖
(𝑍
𝑖
) such that, for a given 𝜖

𝑖3
> 0, 𝑓

𝑖
(𝑍
𝑖
) can be expressed

as

𝑓
𝑖
(𝑍
𝑖
) = 𝜙
𝑇

𝑖
𝜉
𝑖
(𝑍
𝑖
) + 𝛿
𝑖
(𝑍
𝑖
) ,

𝛿𝑖 (𝑍𝑖)
 ≤ 𝜖𝑖3. (55)

Further, similar to (40), we can obtain

𝑧
𝑖
𝜙
𝑇

𝑖
𝜉
𝑖
(𝑍
𝑖
) ≤

𝑏𝜃
𝑖

2𝜂2
𝑖

𝜉
𝑇

𝑖
(𝑍
𝑖
) 𝜉
𝑖
(𝑍
𝑖
) 𝑧
2

𝑖
+
𝜂2
𝑖

2
,

𝑧
𝑖
𝛿
𝑖
(𝑍
𝑖
) ≤

𝑧2
𝑖

2
+
𝜖
2

𝑖3

2
,

(56)

where 𝜃
𝑖
= 𝑏−1‖𝜙

𝑖
‖
2 is an unknown constant.

Now, construct the virtual control signal 𝛼
𝑖
as

𝛼
𝑖
= −𝑘
𝑖
𝑧
𝑖
−

𝜃
𝑖

2𝜂2
𝑖

𝑧
𝑖
𝜉
𝑇

𝑖
(𝑍
𝑖
) 𝜉
𝑖
(𝑍
𝑖
) , (57)

with 𝑘
𝑖
> 0 and 𝜂

𝑖
being design constants.

Then, by substituting (55)–(57) into (53), choosing the
adaptive law

̇̂
𝜃
𝑖
=

𝛾
𝑖

2𝜂2
𝑖

𝜉
𝑇

𝑖
(𝑍
𝑖
) 𝜉
𝑖
(𝑍
𝑖
) 𝑧
2

𝑖
− 𝜎
𝑖
𝜃
𝑖 (58)

with 𝜂
𝑖
, 𝛾
𝑖
, and 𝜎

𝑖
being the design parameters, and then

following the same line as the procedures from (43) to (46),
we have

�̇�
𝑖
≤ −

𝑖

∑
𝑗=1

(𝑘
𝑗
𝑏𝑧
2

𝑗
+
𝑏𝜎
𝑗
𝜃2
𝑗

2𝛾
𝑗

) −
𝑐

𝜆
0

𝑟 +
𝑑
0

𝜆
0

+

𝑖

∑
𝑗=1

𝐷
𝑗

+ 𝑔
𝑖
(𝑥
𝑖
) 𝑧
𝑖
𝑧
𝑖+1
,

(59)

where 𝐷
𝑗
= 𝜂2
𝑗
/2 + 𝑏𝜎

𝑗
𝜃2
𝑗
/2𝛾
𝑗
+ 𝜖2
𝑗3
/2 + 𝜖

𝑗1
+ 𝜖
𝑗2
+ 𝑑
𝑗
(𝑡), 𝑗 =

1, 2, . . . , 𝑖.
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Step n. In this step, the actual controller 𝑢 is designed.
According to 𝑧

𝑛
= 𝑥
𝑛
− 𝛼
𝑛−1

, then we have

�̇�
𝑛
= 𝑔
𝑛
(𝑥
𝑛
) 𝑢 + 𝑓

𝑛
(𝑥
𝑛
) −

𝑛−1

∑
𝑗=1

𝜕𝛼
𝑛−1

𝜕𝑥
𝑗

𝑓
𝑗
(𝑥
𝑗
)

−

𝑛−1

∑
𝑗=1

𝜕𝛼
𝑛−1

𝜕𝑥
𝑗

𝑔
𝑗
(𝑥
𝑗
) 𝑥
𝑗+1

+ Δ
𝑛
−

𝑛−1

∑
𝑗=1

𝜕𝛼
𝑛−1

𝜕𝜃
𝑗

̇̂
𝜃
𝑗
−
𝜕𝛼
𝑛−1

𝜕𝑟
̇𝑟,

(60)

where Δ
𝑛
= Δ
𝑛
− ∑
𝑛−1

𝑖=1
(𝜕𝛼
𝑛−1

/𝜕𝑥
𝑖
)Δ
𝑖
. Similarly, choose the

following Lyapunov function as

𝑉
𝑛
= 𝑉
𝑛−1

+
1

2
𝑧
2

𝑛
+

𝑏

2𝛾
𝑛

𝜃
2

𝑛
. (61)

From (53) and (54), we have

�̇�
𝑛
≤ −

𝑛−1

∑
𝑗=1

(𝑘
𝑗
𝑏𝑧
2

𝑗
+
𝑏𝜎
𝑗
𝜃2
𝑗

2𝛾
𝑗

) −
𝑐

𝜆
0

𝑟 +
𝑑
0

𝜆
0

+

𝑛−1

∑
𝑗=1

𝐷
𝑗
+ 𝑔
𝑛−1

(𝑥
𝑛−1

) 𝑧
𝑛−1

𝑧
𝑛

+ 𝑧
𝑛
(𝑔
𝑛
(𝑥
𝑛
) 𝑢 + 𝑓

𝑛
(𝑥
𝑛
) −

𝑛−1

∑
𝑖=1

𝜕𝛼
𝑛−1

𝜕𝑥
𝑖

𝑓
𝑖
(𝑥
𝑖
)

−

𝑛−1

∑
𝑖=1

𝜕𝛼
𝑛−1

𝜕𝑥
𝑖

𝑔
𝑖
(𝑥
𝑖
) 𝑥
𝑖+1

−

𝑛−1

∑
𝑖=1

𝜕𝛼
𝑛−1

𝜕𝜃
𝑖

̇̂
𝜃
𝑖

−
𝜕𝛼
𝑛−1

𝜕𝑟
̇𝑟) −

𝑏

𝛾
𝑛

𝜃
𝑛

̇̂
𝜃
𝑛
+

𝑧
𝑛
Δ
𝑛


.

(62)

Using the same estimation methods as (42)–(44), we have


𝑧
𝑛
Δ
𝑛


≤ 𝑧
𝑛
𝜙
𝑛1
(𝑥
𝑛
, 𝜃
𝑛−1

, 𝑟) + 𝜖


𝑛1
+ 𝑧
𝑛
𝜙
𝑛2
(𝑥
𝑛
, 𝜃
𝑛−1

, 𝑟)

+
𝑧2
𝑛

4
[

[

1 +

𝑛−1

∑
𝑗=1

(
𝜕𝛼
𝑛−1

𝜕𝑥
𝑗

)

2

]

]

+ 𝜖


𝑛2
+ 𝑑
𝑛 (𝑡) ,

(63)

where 𝜙
𝑛1
(𝑥
𝑛
, 𝜃
𝑛−1

, 𝑟), 𝜖
𝑛1
, 𝜙
𝑛2
(𝑥
𝑛
, 𝜃
𝑛−1

, 𝑟), 𝜖
𝑛2
, and 𝑑

𝑛
(𝑡) are

defined in (51) or (52) with 𝑖 = 𝑛. By substituting (63) into
(62), one has

�̇�
𝑛
≤ −

𝑛−1

∑
𝑗=1

(𝑘
𝑗
𝑏𝑧
2

𝑗
+
𝑏𝜎
𝑗
𝜃2
𝑗

2𝛾
𝑗

) −
𝑐

𝜆
0

𝑟 +
𝑑
0

𝜆
0

+

𝑛−1

∑
𝑗=1

𝐷
𝑗
+ 𝜖


𝑛1

+ 𝜖


𝑛2
+ 𝑑
𝑛 (𝑡) + 𝑧𝑛 (𝑔𝑛 (𝑥𝑛) 𝑢 + 𝑓𝑛 (𝑍𝑛))

−
𝑧2
𝑛

2
−
𝑏

𝛾
𝑛

𝜃
𝑛

̇̂
𝜃
𝑛
,

(64)

where the function 𝑓
𝑛
(𝑍
𝑛
) is defined by

𝑓
𝑛
(𝑍
𝑛
) = 𝑔
𝑛−1

(𝑥
𝑛−1

) 𝑧
𝑛−1

+ 𝑓
𝑛
(𝑥
𝑛
) −

𝑛−1

∑
𝑖=1

𝜕𝛼
𝑛−1

𝜕𝑥
𝑖

𝑓
𝑖
(𝑥
𝑖
)

−

𝑛−1

∑
𝑖=1

𝜕𝛼
𝑛−1

𝜕𝑥
𝑖

𝑔
𝑖
(𝑥
𝑖
) 𝑥
𝑖+1

−

𝑛−1

∑
𝑖=1

𝜕𝛼
𝑛−1

𝜕𝜃
𝑖

̇̂
𝜃
𝑖
−
𝜕𝛼
𝑛−1

𝜕𝑟
̇𝑟

+ 𝜙
𝑛1
(𝑥
𝑛
, 𝜃
𝑛−1

, 𝑟) + 𝜙
𝑛2
(𝑥
𝑛
, 𝜃
𝑛−1

, 𝑟)

+
𝑧
𝑛

4
[

[

1 +

𝑛−1

∑
𝑗=1

(
𝜕𝛼
𝑛−1

𝜕𝑥
𝑗

)

2

]

]

+
𝑧
𝑛

2

(65)

with 𝑍
𝑛
= [𝑥

𝑛
, 𝜃
𝑛−1

, 𝑟]
𝑇

∈ Ω
𝑍𝑛

∈ 𝑅2𝑛 and Ω
𝑍𝑛

being
some known compact set in 𝑅2𝑛. Similarly, neural network
𝜙𝑇
𝑛
𝜉
𝑛
(𝑍
𝑛
) is employed to model 𝑓

𝑛
(𝑍
𝑛
) such that 𝑓

𝑛
(𝑍
𝑛
) =

𝜙𝑇
𝑛
𝜉
𝑛
(𝑍
𝑛
) + 𝛿
𝑛
(𝑍
𝑛
), |𝛿
𝑛
(𝑍
𝑛
)| ≤ 𝜖

𝑛3
. Then, following the same

line as used in (40), we have

𝑧
𝑛
𝜙
𝑇

𝑛
𝜉
𝑛
(𝑍
𝑛
) ≤

𝑏𝜃
𝑛

2𝜂2
𝑛

𝜉
𝑇

𝑛
(𝑍
𝑛
) 𝜉
𝑛
(𝑍
𝑛
) 𝑧
2

𝑛
+
𝜂
2

𝑛

2
,

𝑧
𝑛
𝛿
𝑛
(𝑍
𝑛
) ≤

𝑧2
𝑛

2
+
𝜖
2

𝑛3

2
,

(66)

where 𝜃
𝑛
= 𝑏−1‖𝜙

𝑛
‖
2 denotes an unknown constant and 𝜂

𝑛
is

a design constant.
Subsequently, by combining (64) together with (66), the

inequality below holds:

�̇�
𝑛
≤ −

𝑛−1

∑
𝑗=1

(𝑘
𝑗
𝑏𝑧
2

𝑗
+
𝑏𝜎
𝑗
𝜃2
𝑗

2𝛾
𝑗

) −
𝑐

𝜆
0

𝑟 +
𝑑
0

𝜆
0

+

𝑛−1

∑
𝑗=1

𝐷
𝑗

+ 𝜖


𝑛1
+ 𝜖


𝑛2
+ 𝑑
𝑛 (𝑡) + 𝑧𝑛𝑔𝑛 (𝑥𝑛) 𝑢

+
𝑏𝜃
𝑛

2𝜂2
𝑛

𝜉
𝑇

𝑛
(𝑍
𝑛
) 𝜉
𝑛
(𝑍
𝑛
) 𝑧
2

𝑛
+
𝜂2
𝑛

2
+
𝜖
2

𝑛3

2
−
𝑏

𝛾
𝑛

𝜃
𝑛

̇̂
𝜃
𝑛
.

(67)

At the present stage, construct the real controller 𝑢 and
adaptive law ̇̂

𝜃
𝑛
in the following forms:

𝑢 = − 𝑘
𝑛
𝑧
𝑛
−
𝜃
𝑛

2𝜂2
𝑛

𝑧
𝑛
𝜉
𝑇

𝑛
(𝑍
𝑛
) 𝜉
𝑛
(𝑍
𝑛
) , (68)

̇̂
𝜃
𝑛
=

𝛾
𝑛

2𝜂2
𝑛

𝜉
𝑇

𝑛
(𝑍
𝑛
) 𝜉
𝑖
(𝑍
𝑛
) 𝑧
2

𝑛
− 𝜎
𝑛
𝜃
𝑛
, (69)

where 𝑘
𝑛
, 𝜂
𝑛
, 𝛾
𝑛
, and 𝜎

𝑛
are design constants.

Then, repeating the similar procedures as (43)–(46), we
can obtain

�̇�
𝑛
≤ −

𝑛

∑
𝑗=1

(𝑘
𝑗
𝑏𝑧
2

𝑗
+
𝑏𝜎
𝑗
𝜃2
𝑗

2𝛾
𝑗

) −
𝑐

𝜆
0

𝑟 +
𝑑
0

𝜆
0

+

𝑛

∑
𝑗=1

𝐷
𝑗
, (70)

where 𝐷
𝑗
= 𝜂2
𝑗
/2 + 𝑏𝜎

𝑗
𝜃2
𝑗
/2𝛾
𝑗
+ 𝜖2
𝑗3
/2 + 𝜖

𝑗1
+ 𝜖
𝑗2
+ 𝑑
𝑗
(𝑡), 𝑗 =

1, 2, . . . , 𝑛.
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Now, the main result of this research is summarized as
follows.

Theorem 8. Consider the system (1) consisting of Assumptions
2–5, the control input (68), and the adaptive laws (58) and
(69). Assume that the packaged unknown functions 𝑓

𝑖
(𝑍
𝑖
) (𝑖 =

1, 2, . . . , 𝑛) could be modeled by neural networks 𝜙𝑇
𝑖
𝜉
𝑖
(𝑍
𝑖
)with

the bounded approximation errors. Then, for bounded initial
values with 𝜃

𝑖
(0) ≥ 0, all the signals in the closed-loop system

are semiglobally boundedness in mean square.

Proof. To give the stability analysis for the closed-loop sys-
tem, consider the Lyapunov function in the form 𝑉 = 𝑉

𝑛
,

and define

𝑎
0
= min {2𝑘

𝑖
𝑏, 𝑐, 𝜎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛} , 𝑏

0
=
𝑑
0

𝜆
0

+

𝑛

∑
𝑗=1

𝐷
𝑗
.

(71)

Furthermore, we can rewrite (70) as

�̇� ≤ −𝑎
0
𝑉 + 𝑏
0
. (72)

Next, from (72), the following inequality can be easily
verified:

𝑉 (𝑡) ≤ (𝑉 (0) −
𝑏
0

𝑎
0

) 𝑒
−𝑎0𝑡 +

𝑏
0

𝑎
0

, ∀𝑡 > 0, (73)

which means that

𝑉 (𝑡) ≤ 𝑉 (0) +
𝑏
0

𝑎
0

, ∀𝑡 > 0. (74)

Therefore, based on the definition of 𝑉 in (61), 𝑧
𝑗
, 𝜃
𝑗

(𝑗 = 1, 2, . . . , 𝑛), and 𝑟 are bounded. Because the signal
𝑟 is bounded, the trajectory 𝑧(𝑡) is bounded. Since 𝜃

𝑖
are

constants, 𝜃
𝑖
are bounded. Consequently, 𝛼

𝑖
are also bounded

because 𝑧
𝑖
and 𝜃
𝑖
are bounded variables. Hence, we conclude

that the signals 𝑥
𝑖
are bounded.

4. Simulation Example

A simulation example is presented to show the effectiveness
of the proposed control scheme. Consider the second-order
nonlinear system as

�̇� = − 𝑧 + 𝑥
2

1
+ 0.5,

�̇�
1
= 𝑥
2
+ 𝑥
2

1
𝑒
−0.5𝑥1 + 𝑧𝑥

1
sin (𝑥

1
) ,

�̇�
2
= 𝑢 + 𝑥

1
𝑥
2

2
+ 𝑥
1
𝑥
2
𝑧,

(75)

where 𝑓
1
(𝑥
1
) = 𝑥2

1
𝑒−0.5𝑥1 , 𝑓

2
(𝑥
1
, 𝑥
2
) = 𝑥

1
𝑥2
2
, Δ
1

=

𝑧𝑥
1
sin(𝑥
1
), and Δ

2
= 𝑥
1
𝑥
2
𝑧. It can be easily verified that

Assumption 2 is satisfied. In order to check Assumption 4
holds for 𝑧-subsystem in (75), consider 𝑉

𝑧
(𝑧) = 𝑧2, and then

�̇�
𝑧 (𝑧) = 2𝑧 (−𝑧 + 𝑥

2

1
+ 0.5)

≤ −2𝑧
2
+
1

4𝜀
(2𝑧)
2
+ 𝜀𝑥
4

1
+
𝜀

4
+
𝑧
2

𝜀
.

(76)
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Figure 1: State variables 𝑥
1
and 𝑥

2
.

By choosing 𝜀 = 2.5, we have

�̇�
𝑧 (𝑧) ≤ −1.2𝑧

2
+ 2.5𝑥

4

1
+ 0.625. (77)

By Defining 𝛼
1
(|𝑧|) = 0.5𝑧2, 𝛼

2
(|𝑧|) = 2𝑧2, 𝑐

0
= 1.2, 𝑑

0
=

0.625, and 𝜇(|𝑥
1
|) = 2.5𝑥4

1
, Assumption 4 is satisfied. Take

𝑐 = 1 ∈ (0, 𝑐
0
) and define the dynamic signal as follows:

̇𝑟 = −𝑟 + 2.5𝑥
4

1
+ 0.625. (78)

By usingTheorem 8, the virtual control signal, the real control
input, and the adaptive laws are constructed as follows:

𝛼
1
= −𝑘
1
𝑧
1
−

𝜃
1

2𝜂2
1

𝜉
𝑇

1
(𝑍
1
) 𝜉
2
(𝑍
1
) 𝑧
1
,

𝑢 = −𝑘
2
𝑧
2
−

𝜃
2

2𝜂2
2

𝜉
𝑇

2
(𝑍
2
) 𝜉
2
(𝑍
2
) 𝑧
2
,

̇̂
𝜃
𝑖
=

𝛾
𝑖

2𝜂2
𝑖

𝜉
𝑇

𝑖
(𝑍
𝑖
) 𝜉
𝑖
(𝑍
𝑖
) 𝑧
2

𝑖
− 𝜎
𝑖
𝜃
𝑖
, 𝑖 = 1, 2.

(79)

In the simulation, the design constants are chosen as 𝑘
1
=

𝑘
2
= 3, 𝜂

1
= 𝜂
2
= 1, 𝛾

1
= 𝛾
2
= 2, and 𝜎

1
= 𝜎
2
=

1. The simulation is carried out with the initial conditions
[𝑥
1
(0), 𝑥
2
(0), 𝜃
1
(0), 𝜃
2
(0)]
𝑇
= [0.5, 0.3, 0, 0].

The simulation results are shown in Figures 1–3. Figure 1
shows the trajectories of states𝑥

1
and𝑥
2
. Figure 2 displays the

trajectory of control input 𝑢. Figure 3 shows the trajectories
of adaptive parameters 𝜃

1
and 𝜃

2
. From Figures 1–3, we can

see that the proposed control approach can guarantee the
boundedness of the variables 𝑥

1
, 𝑥
2
, 𝑢, 𝜃
1
, and 𝜃

2
.

5. Conclusion

In this research, a backstepping-based adaptive neural control
scheme has been developed for strict-feedback nonlinear sys-
tems with unmodeled dynamics and dynamic disturbances.
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Figure 2: The actual control input 𝑢.
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.

The proposed adaptive neural controller guarantees that all
the signals of the resulting closed-loop system remain semi-
globally uniformly ultimately bounded in the sense of mean
square. Simulation results have been provided to illustrate the
effectiveness of the proposed control scheme. It should be
pointed out that the work in this paper does not consider the
problemof input nonlinearity and time-delay.Then, theymay
occur in practical engineering. So, how to control a nonlinear
system with input nonlinearity and time-delay is our future
research direction.
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