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This paper investigates relatively integral stability in terms of twomeasures for two differential systemswith “maxima” by employing
Lyapunov functions, Razumikhin method, and comparison principle. An example is given to illustrate our result.

1. Introduction

Recently, the interest in differential equations with “max-
ima” has increased exponentially. Such equations adequately
model real world problems whose present state depends sig-
nificantly on its maximum value on a past time interval. For
example, many problems in the control theory correspond
to the maximal deviation of the regulated quantity. Some
qualitative properties of the solutions of ordinary differential
equationswith “maxima” can be found in [1–4] and references
therein.

Integral stability for ordinary differential equations was
introduced by Vrkoc [5]. The concept of integral stability
occurs in connection with the stability under persistent
perturbations when the perturbations are small enough
everywhere except on a small interval. Recent developments
in this field have been focused on various types of differential
equations. In [6, 7], the integral stability and integral 𝜙

0
-

stability properties of ordinary differential equations were
discussed, respectively. Later, Hristova [8] discussed the
integral stability in terms of two measures for impulsive
differential equations with “supremum.” Moreover the same
author in [9] discussed the integral stability in terms of
two measures for impulsive functional differential equations.
However, the integral stability in terms of two measures for
two differential systems has not been obtained until now.

In this paper, we discuss the relatively integral stability
in terms of two measures for two differential systems with

“maxima.” Using Lyapunov functions, Razumikhin method,
and comparison principle, sufficient conditions for uniform-
relatively integral stability in terms of two measures are
obtained.

2. Preliminaries

Firstly, we give the following sets for convenience:

K = {𝑎 (𝑡) ∈ 𝐶 [𝑅+, 𝑅+] | 𝑎 (𝑡) is strictly increasing,

𝑎 (0) = 0} ;

CK = {𝑎 (𝑡) ∈ 𝐶 [𝑅
2

+
, 𝑅
+
] | ∀𝑡 ∈ 𝑅

+
, 𝑎 (𝑡, 𝑢) ∈K} ;

Γ = {ℎ ∈ 𝐶 [𝑅
+
× 𝑅
𝑛
, 𝑅
+
] | (𝑡, 𝑥) ∈ 𝑅

+
× 𝑅
𝑛
,

inf ℎ (𝑡, 𝑥) = 0} .

(1)

Let 𝜌, 𝑡, and 𝑟 > 0 be constants, ℎ
0
∈ Γ. Define the

following sets:

𝑆 (ℎ, 𝜌) = {(𝑡, 𝑥, 𝑦) ∈ 𝑅
+
× 𝑅
𝑛
× 𝑅
𝑛
| ℎ (𝑡, 𝑥 − 𝑦) < 𝜌} ;

𝑆
𝑐
(ℎ, 𝜌) = {(𝑡, 𝑥, 𝑦) ∈ 𝑅

+
× 𝑅
𝑛
× 𝑅
𝑛
| ℎ (𝑡, 𝑥 − 𝑦) ≥ 𝜌} ;

Ω (𝑡, ℎ, 𝜌) = {(𝑥, 𝑦) ∈ 𝑅
𝑛
× 𝑅
𝑛
| ℎ (𝑡, 𝑥) ≤ 𝜌,

ℎ (𝑠, 𝑦) ≤ 𝜌, 𝑠 ∈ [𝑡 − 𝑟, 𝑡]} .

(2)
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We consider the following two differential systems with
“maxima”:

𝑥

= 𝐹
1
(𝑡, 𝑥 (𝑡) , max

𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠)) , 𝑡 ≥ 𝑡
0
,

𝑥 (𝑡 + 𝑡
0
) = 𝜙
1
(𝑡) , 𝑡 ∈ [−𝑟, 0] ,

𝑦

= 𝐹
2
(𝑡, 𝑦 (𝑡) , max

𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠)) , 𝑡 ≥ 𝑡
0
,

𝑦 (𝑡 + 𝑡
0
) = 𝜙
2
(𝑡) , 𝑡 ∈ [−𝑟, 0] ,

(3)

and the perturbed systems

𝑥

= 𝐹
1
(𝑡, 𝑥 (𝑡) , max

𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠))

+ 𝐺
1
(𝑡, 𝑥 (𝑡) , max

𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠)) , 𝑡 ≥ 𝑡
0
,

𝑥 (𝑡 + 𝑡
0
) = 𝜙
1 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

𝑦

= 𝐹
2
(𝑡, 𝑦 (𝑡) , max

𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠))

+ 𝐺
2
(𝑡, 𝑦 (𝑡) , max

𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠)) , 𝑡 ≥ 𝑡
0
,

𝑦 (𝑡 + 𝑡
0
) = 𝜙
2
(𝑡) , 𝑡 ∈ [−𝑟, 0] ,

(4)

where 𝑥, 𝑦 ∈ 𝑅𝑛, 𝐹
1
, 𝐹
2
, 𝐺
1
, 𝐺
2
∈ 𝐶[𝑅

+
× 𝑅𝑛 × 𝑅𝑛, 𝑅𝑛],

𝐹
1
(𝑡, 0, 0) = 𝐹

2
(𝑡, 0, 0) = 𝐺

1
(𝑡, 0, 0) = 𝐺

2
(𝑡, 0, 0) ≡ 0 with

𝑅
+
= [0,∞), 𝑟 > 0 is a given fixed number, 𝑡

0
∈ 𝑅
+
,

and 𝜙
1
, 𝜙
2
∈ 𝐶([−𝑟, 0], 𝑅𝑛); 𝑅𝑛 denote the 𝑛-dimensional

Euclidean space with any convenient norm ‖ ⋅ ‖.
We denote by 𝑥(𝑡; 𝑡

0
, 𝜙
1
), 𝑦(𝑡; 𝑡

0
, 𝜙
2
) the solutions of

systems (3) satisfying the initial conditions 𝑥(𝑡 + 𝑡
0
) = 𝜙
1
(𝑡),

𝑦(𝑡+𝑡
0
) = 𝜙
2
(𝑡). Assume that solutions 𝑥(𝑡; 𝑡

0
, 𝜙
1
), 𝑦(𝑡; 𝑡

0
, 𝜙
2
)

are defined on [𝑡
0
− 𝑟,∞) for any initial functions 𝜙

1
, 𝜙
2
∈

𝐶([−𝑟, 0], 𝑅𝑛).
In further investigations, we need the following compar-

ison scalar ordinary differential equations:

𝑢

= 𝑓 (𝑡, 𝑢) , (5)

𝑢

= 𝑔 (𝑡, 𝑢) , (6)

and its perturbed scalar ordinary differential equation

𝜔

= 𝑔 (𝑡, 𝜔) + 𝑞 (𝑡) , (7)

where 𝑢, 𝜔 ∈ 𝑅, 𝑓, 𝑔 ∈ 𝑅
+
× 𝑅 → 𝑅, and 𝑞 ∈ 𝑅

+
→ 𝑅.

The following definitions will be needed in the sequel.

Definition 1. Letting ℎ
0
, ℎ ∈ Γ, then

(i) ℎ
0
is finer than ℎ if there exits a 𝛿 > 0 and a function

𝑎 ∈ CK such that

ℎ
0
(𝑡, 𝑥) < 𝛿 implies ℎ (𝑡, 𝑥) ≤ 𝑎 (𝑡, ℎ

0
(𝑡, 𝑥)) ; (8)

(ii) ℎ
0
is uniformly finer than ℎ if there exists a 𝛿 > 0 and

a function 𝑎 ∈K such that

ℎ
0
(𝑡, 𝑥) < 𝛿 implies ℎ (𝑡, 𝑥) ≤ 𝑎 (ℎ

0
(𝑡, 𝑥)) . (9)

Definition 2. The function 𝑉(𝑡, 𝑥, 𝑦) belongs to class 𝑉
0
, if

𝑉(𝑡, 𝑥, 𝑦) ∈ 𝐶[Ω × 𝑅𝑛 × 𝑅𝑛, 𝑅
+
], Ω ⊂ 𝑅

+
, and 𝑉(𝑡, 𝑥, 𝑦) is

Lipschitz with respect to 𝑥 and 𝑦.
Letting 𝑉(𝑡, 𝑥, 𝑦) ∈ 𝑉

0
, we define a derivative of the

function 𝑉(𝑡, 𝑥, 𝑦) along the trajectory of systems (3) as
follows:
𝐷
(3)
𝑉 (𝑡, 𝜙

1 (𝑡) , 𝜙2 (𝑡))

= lim sup
𝜖→0

1

𝜖
{𝑉(𝑡 + 𝜖, 𝜙

1
(𝑡)

+ 𝜖𝐹
1
(𝑡, 𝜙
1
(𝑡) , max
𝑠∈[−𝑟,0]

𝜙
1
(𝑡 + 𝑠)) ,

𝜙
2(𝑡) + 𝜖𝐹2 (𝑡, 𝜙2 (𝑡) , max

𝑠∈[−𝑟,0]

𝜙
2 (𝑡 + 𝑠)))

− 𝑉 (𝑡, 𝜙
1
(𝑡) , 𝜙
2
(𝑡)) }

(10)

and a derivative of the function𝑉(𝑡, 𝑥, 𝑦) along the trajectory
of systems (4) as follows:

𝐷
(4)
𝑉 (𝑡, 𝜙

1
(𝑡) , 𝜙
2
(𝑡))

= lim sup
𝜖→0

1

𝜖
{𝑉(𝑡 + 𝜖, 𝜙

1 (𝑡)

+ 𝜖 (𝐹
1
(𝑡, 𝜙
1 (𝑡) , max
𝑠∈[−𝑟,0]

𝜙
1 (𝑡 + 𝑠))

+𝐺
1
(𝑡, 𝜙
1
(𝑡) , max
𝑠∈[𝑡−𝑟,𝑡]

𝜙
1
(𝑡 + 𝑠))) ,

𝜙
2 (𝑡) + 𝜖 (𝐹2 (𝑡, 𝜙2 (𝑡) , max

𝑠∈[−𝑟,0]

𝜙
2 (𝑡 + 𝑠))

+𝐺
2
(𝑡, 𝜙
2
(𝑡) , max
𝑠∈[𝑡−𝑟,𝑡]

𝜙
2
(𝑡+𝑠))))

− 𝑉 (𝑡, 𝜙
1 (𝑡) , 𝜙2 (𝑡)) } .

(11)

Definition 3. Letting 𝑉 ∈ 𝑉
0
and ℎ

0
, ℎ ∈ Γ, then 𝑉 is said to

be
(i) relatively ℎ-positive definite if there exists a 𝛾 > 0 and

a function 𝑎 ∈K such that

ℎ (𝑡, 𝑥 − 𝑦) < 𝛿 implies 𝑎 (ℎ (𝑡, 𝑥 − 𝑦)) ≤ 𝑉 (𝑡, 𝑥, 𝑦) ;
(12)

(ii) relatively ℎ
0
-decrescent if there exists a 𝜆 > 0 and a

function 𝑏 ∈K such that

ℎ
0
(𝑡, 𝑥 − 𝑦) < 𝜆 implies 𝑉 (𝑡, 𝑥, 𝑦) ≤ 𝑏 (ℎ

0
(𝑡, 𝑥 − 𝑦)) ;

(13)
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(iii) weak-relatively ℎ
0
-decrescent if there exists a 𝜆 > 0

and a function 𝑏 ∈ CK such that

ℎ
0
(𝑡, 𝑥 − 𝑦) < 𝜆 implies 𝑉 (𝑡, 𝑥, 𝑦) ≤ 𝑏 (𝑡, ℎ

0
(𝑡, 𝑥 − 𝑦)) .

(14)

One will introduce relatively integral stability in terms of
two measures for differential systems (3).

Definition 4. Lettingℎ
0
, ℎ ∈ Γ, differential systems (3) are said

to be uniform-relatively integrally stable in terms ofmeasures
(ℎ
0
, ℎ), if for 𝛼 > 0 and any 𝑡

0
≥ 0, there exists 𝛽 = 𝛽(𝛼) ∈ K

such that, for any initial functions 𝜙
1
, 𝜙
2
∈ 𝐶([−𝑟, 0], 𝑅𝑛) and

any perturbations𝐺
1
, 𝐺
2
∈ 𝐶(𝑅

+
×𝑅𝑛×𝑅𝑛, 𝑅𝑛), the inequality

ℎ (𝑡, 𝑥
1
− 𝑦
2
) < 𝛽, 𝑡 ≥ 𝑡

0 (15)

holds, provided that

max
𝑠∈[−𝑟,0]

ℎ
0
(𝑡
0
+ 𝑠, 𝜙
1
− 𝜙
2
) < 𝛼, (16)

∫
𝑡0+𝑇

𝑡0

sup
(𝑥−𝑦,𝑥1−𝑦2)∈Ω(𝑠,ℎ,𝛽)

𝐺1 (𝑠, 𝑥, 𝑥1) − 𝐺2 (𝑠, 𝑦, 𝑦2)
 𝑑𝑠 ≤ 𝛼,

𝑇 > 0,

(17)

where 𝑥
1
(𝑡; 𝑡
0
, 𝜙
1
), 𝑦
2
(𝑡; 𝑡
0
, 𝜙
2
) are the solutions of the initial

value problem for perturbed differential systems with “max-
ima” (4).

3. Main Results

In further investigations, we need the following comparison
result.

Lemma 5. Let the following conditions hold:

(H
1
) 𝐹
1
, 𝐹
2
∈ 𝐶([𝑡

0
, 𝑇] × 𝑅𝑛 × 𝑅𝑛, 𝑅𝑛), where 𝑡

0
, 𝑇 ∈ 𝑅

+
,

𝑡
0
< 𝑇;

(H
2
) 𝑉 : [𝑡

0
, 𝑇] × 𝑅𝑛 × 𝑅𝑛 → 𝑅

+
, 𝑉 ∈ 𝑉

0
and

(i) for any number 𝑡 ∈ [𝑡
0
, 𝑇] and any function

𝜓
1
, 𝜓
2
∈ 𝐶([𝑡 − 𝑟, 𝑡], 𝑅𝑛) such that 𝑉(𝑡, 𝜓

1
(𝑡),

𝜓
2
(𝑡)) > 𝑉(𝑡+𝑠, 𝜓

1
(𝑡+𝑠), 𝜓

2
(𝑡+𝑠)) for 𝑠 ∈ [−𝑟, 0)

the inequality

𝐷
(3)
𝑉 (𝑡, 𝜓

1 (𝑡) , 𝜓2 (𝑡)) ≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝜓1 (𝑡) , 𝜓2 (𝑡))) (18)

holds, where 𝑔 ∈ 𝐶([𝑡
0
, 𝑇] × 𝑅

+
, 𝑅
+
), 𝑔(𝑡, 0) ≡ 0;

(H
3
) 𝑥(𝑡; 𝑡

0
, 𝜙
1
), 𝑦(𝑡; 𝑡

0
, 𝜙
2
) are the solutions of the initial

value problem for differential systems with “maxima”
(3);

(H
4
) 𝑢∗(𝑡) = 𝑢∗(𝑡; 𝑡

0
, 𝑢
0
) is themaximal solution of (6)with

initial condition 𝑢∗(𝑡
0
) = 𝑢

0
, which is defined for 𝑡 ∈

[𝑡
0
, 𝑇].

Then the inequality max
𝑠∈[−𝑟,0]

𝑉(𝑡
0
+ 𝑠, 𝜙

1
(𝑠), 𝜙
2
(𝑠)) ≤

𝑢
0

implies the validity of the inequality 𝑉(𝑡, 𝑥(𝑡; 𝑡
0
, 𝜙
1
),

𝑦(𝑡; 𝑡
0
, 𝜙
2
)) ≤ 𝑢∗(𝑡), 𝑡 ∈ [𝑡

0
, 𝑇].

Proof. Let 𝑢
0
∈ 𝑅
+
and 𝜙

1
, 𝜙
2
∈ 𝐶([−𝑟, 0], 𝑅𝑛) be such that

max
𝑠∈[−𝑟,0]

𝑉 (𝑡
0
+ 𝑠, 𝜙
1
(𝑠) , 𝜙
2
(𝑠)) ≤ 𝑢

0
. (19)

Let 𝜐
𝑛
(𝑡) be the maximal solution of the initial value problem

𝑢

= 𝑔 (𝑡, 𝑢) +

1

𝑛
, 𝑢 (𝑡

0
) = 𝑢
0
+
1

𝑛
. (20)

Let 𝑚(𝑡) ∈ 𝐶([𝑡
0
− 𝑟, 𝑇], 𝑅

+
) : 𝑚(𝑡) = 𝑉(𝑡, 𝑥(𝑡; 𝑡

0
, 𝜙
1
),

𝑦(𝑡; 𝑡
0
, 𝜙
2
)).

Because of the fact that 𝑢∗(𝑡; 𝑡
0
, 𝑢
0
) = lim

𝑛→∞
𝜐
𝑛
(𝑡), it is

enough to prove that for any 𝑛 the inequality

𝑚(𝑡) ≤ 𝜐
𝑛
(𝑡) , 𝑡 ∈ [𝑡

0
, 𝑇] (21)

holds. Then the inequality𝑚(𝑡
0
) < 𝜐
𝑛
(𝑡
0
) holds.

Assume that inequality (21) is not true; then there exists
a point 𝜂 ∈ (𝑡

0
, 𝑇] : 𝑚(𝜂) > 𝜐

𝑛
(𝜂). Let 𝑡∗ = sup{𝑡 ∈ [𝑡

0
, 𝑇] :

𝑚(𝑠) < 𝜐
𝑛
(𝑠), 𝑠 ∈ [𝑡

0
, 𝑡)}. According to the assumption 𝑡∗ < 𝑇,

we have

𝑚(𝑡
∗
) = 𝜐
𝑛
(𝑡
∗
) ,

𝑚 (𝑡) < 𝜐
𝑛
(𝑡) , 𝑡 ∈ [𝑡

0
, 𝑡
∗
) ,

𝑚 (𝑡) ≥ 𝜐
𝑛
(𝑡) , 𝑡 ∈ [𝑡

∗
, 𝑡
∗
+ 𝛿) ,

(22)

where 𝛿 > 0 is a small enough number. From inequality (22)
it follows that

𝑚

(𝑡) ≥ 𝜐



𝑛
(𝑡) = 𝑔 (𝑡

∗
, 𝜐
𝑛
(𝑡
∗
)) +

1

𝑛
= 𝑔 (𝑡

∗
, 𝑚 (𝑡
∗
)) +

1

𝑛
.

(23)

From 𝑔(𝑡, 𝑢) + 1/𝑛 > 0 on [𝑡∗ − 𝑟, 𝑡∗] ∩ [𝑡
0
, 𝑇], it follows that

the function 𝜐
𝑛
(𝑡) is nondecreasing on [𝑡∗ − 𝑟, 𝑡∗] ∩ [𝑡

0
, 𝑇].

Therefore𝑚(𝑡∗) > 𝑚(𝑠) for 𝑠 ∈ [𝑡∗ − 𝑟, 𝑡∗).
According to condition (i) of Lemma 5 and definition of

function𝑚(𝑡), we get 𝑚(𝑡∗) ≤ 𝑔(𝑡∗, 𝑚(𝑡∗)) < 𝑔(𝑡∗, 𝑚(𝑡∗)) +
1/𝑛 that contradicts (23).

Therefore inequality (21) holds and the conclusion of
Lemma 5 follows.

In the following results, we will obtain sufficient condi-
tions for uniform-relatively integral stability in terms of two
measures.

Theorem 6. Let the following conditions hold:

(A
1
) ℎ
0
, ℎ ∈ Γ, ℎ

0
is uniformly finer than ℎ;

(A
2
) there exists 𝑉

1
∈ 𝑉
0
, it is relatively ℎ

0
-decrescent and

(i) for any number 𝑡 ≥ 0 and functions 𝜓
1
, 𝜓
2
∈

𝐶([𝑡 − 𝑟, 𝑡], 𝑅𝑛) such that 𝑉
1
(𝑡, 𝜓
1
(𝑡), 𝜓
2
(𝑡)) >

𝑉
1
(𝑡 + 𝑠, 𝜓

1
(𝑡 + 𝑠), 𝜓

2
(𝑡 + 𝑠)) for 𝑠 ∈ [−𝑟, 0) and

(𝑡, 𝜓
1
(𝑡), 𝜓
2
(𝑡)) ∈ 𝑆(ℎ, 𝜌), the inequality

𝐷
(4)
𝑉
1
(𝑡, 𝜓
1
(𝑡) , 𝜓
2
(𝑡)) ≤ 𝑓 (𝑡, 𝑉

1
(𝑡, 𝜓
1
(𝑡) , 𝜓
2
(𝑡))) (24)

holds, where 𝑓 ∈ 𝐶(𝑅
+
× 𝑅, 𝑅), 𝜌 > 0 is a

constant;
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(A
3
) for any number 𝜇 > 0, there exists 𝑉(𝜇)

2
∈ 𝑉
0
such that

(ii) 𝑏(ℎ(𝑡, 𝑥 − 𝑦)) ≤ 𝑉
(𝜇)

2
(𝑡, 𝑥, 𝑦) ≤ 𝑎(ℎ

0
(𝑡, 𝑥 − 𝑦)),

where 𝑎, 𝑏 ∈K and lim
𝑢→∞

𝑏(𝑢) = ∞;
(iii) for any number 𝑡 ≥ 0 and functions 𝜓

1
, 𝜓
2
∈

𝐶([−𝑟, 0], 𝑅𝑛) such that (𝑡, 𝜓
1
(𝑡), 𝜓
2
(𝑡)) ∈

𝑆(ℎ, 𝜌) ∩ 𝑆𝐶(ℎ
0
, 𝜇) and

𝑉
1
(𝑡, 𝜓
1
(𝑡) , 𝜓
2
(𝑡)) + 𝑉

(𝜇)

2
(𝑡, 𝜓
1
(𝑡) , 𝜓
2
(𝑡))

> 𝑉
1
(𝑡 + 𝑠, 𝜓

1 (𝑡 + 𝑠) , 𝜓2 (𝑡 + 𝑠))

+ 𝑉
(𝜇)

2
(𝑡 + 𝑠, 𝜓

1 (𝑡 + 𝑠) , 𝜓2 (𝑡 + 𝑠))

(25)

for 𝑠 ∈ [−𝑟, 0), the inequality

𝐷
(3)
𝑉
1
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡)) + 𝐷(3)𝑉

(𝜇)

2
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡))

≤ 𝑔 (𝑡, 𝑉
1
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡)) + 𝑉

(𝜇)

2
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡)))

(26)

holds, where 𝑔 ∈ 𝐶(𝑅
+
× 𝑅, 𝑅), 𝑔(𝑡, 0) ≡ 0;

(A
4
) the zero solution of differential equation (5) is equi-
stable;

(A
5
) the zero solution of differential equation (6) is uniform-
integrally stable.

Then differential systems with “maxima” (3) are uniform-
relatively integrally stable in terms of measures (ℎ

0
, ℎ).

Proof. Since 𝑉
1
(𝑡, 𝑥, 𝑦) is relatively ℎ

0
-decrescent, there exist

𝜌
1
∈ (0, 𝜌) and 𝜓

3
∈ K such that ℎ

0
(𝑡, 𝑥 − 𝑦) < 𝜌

1
, the

inequality

𝑉
1
(𝑡, 𝑥, 𝑦) ≤ 𝜓

3
(ℎ
0
(𝑡, 𝑥 − 𝑦)) (27)

holds.
Since ℎ

0
is uniformly finer than ℎ, there exist 𝜌

0
∈ (0, 𝜌

1
)

and 𝜓
4
∈K : 𝜓

4
(𝜌
0
) < 𝜌
1
such that ℎ

0
(𝑡, 𝑥 − 𝑦) < 𝜌

0
implies

ℎ (𝑡, 𝑥 − 𝑦) ≤ 𝜓
4
(ℎ
0
(𝑡, 𝑥 − 𝑦)) . (28)

Let 𝛼 > 0 be a number such that 𝛼 < 𝜌
0
. According

to condition (A
3
), there exist 𝑉(𝛼)

2
(𝑡, 𝑥, 𝑦) with Lipschitz

constant 𝑀
2
. Let 𝑀

1
be Lipschitz constant of the function

𝑉
1
(𝑡, 𝑥, 𝑦).
Denote (𝑀

1
+ 𝑀
2
)𝛼 = 𝛼

1
. Without loss of generality, we

assume 𝛼
1
< 𝑏(𝜌).

From condition (A
4
), it follows that there exists a 𝛿

1
=

𝛿
1
(𝑡
0
, 𝛼
1
) > 0 such that the inequality |𝑢

0
| < 𝛿
1
implies that

|𝑢 (𝑡)| <
𝛼
1

2
, 𝑡 ≥ 𝑡

0
, (29)

where 𝑢(𝑡) is a solution of (5) with the initial condition
𝑢(𝑡
0
) = 𝑢
0
.

Since 𝜓
3
∈K, there exists a 𝛿

2
= 𝛿
2
(𝛿
1
) > 0, 𝛿

2
< 𝜌
1
such

that, for |𝑢| < 𝛿
2
, the inequality

𝜓
3
(𝑢) < 𝛿

1 (30)

holds.

From condition (A
5
), it follows that there exist 𝛽

1
=

𝛽
1
(𝛼
1
) ∈ K and 𝑏(𝜌) > 𝛽

1
≥ 𝛼
1
such that, for every solution

𝜔(𝑡) of perturbed equation (7) with the initial condition
𝜔(𝑡
0
) = 𝜔
0
, the inequality

|𝜔 (𝑡)| < 𝛽1, 𝑡 ≥ 𝑡
0
, (31)

holds, provided that |𝜔
0
| < 𝛼

1
and for every 𝑇 > 0 :

∫
𝑡0+𝑇

𝑡0

|𝑞(𝑠)|𝑑𝑠 < 𝛼
1
.

Since 𝑏 ∈ K, lim
𝑠→∞

𝑏(𝑠) = ∞, and 𝜓
4
(𝛼) < 𝜓

4
(𝜌
0
) <

𝜌
1
< 𝜌, we choose 𝛽 = 𝛽(𝛽

1
) > 0, 𝜌 > 𝛽 > 𝛼, 𝛽 > 𝜓

4
(𝛼) such

that

𝑏 (𝛽) ≥ 𝛽
1
. (32)

Since 𝑎, 𝜓
4
∈ K and 𝛽 > 𝜓

4
(𝛼), we can find 𝛿

3
=

𝛿
3
(𝛼
1
, 𝛽) > 0, 𝛼 < 𝛿

3
< min(𝛿

2
, 𝜌
0
) such that the inequalities

𝑎 (𝛿
3
) <

𝛼
1

2
, 𝜓

4
(𝛿
3
) < 𝛽 (33)

hold.
Now let the initial function 𝜙

1
, 𝜙
2
∈ 𝐶([−𝑟, 0], 𝑅𝑛) and

perturbation 𝐺
1
(𝑡, 𝑥, 𝑦), 𝐺

2
(𝑡, 𝑥, 𝑦) of the right-hand side of

differential systems (4) be such that

max
𝑠∈[−𝑟,0]

ℎ
0
(𝑡
0
+ 𝑠, 𝜙
1
(𝑠) − 𝜙

2
(𝑠)) < 𝛼, (34)

and for every 𝑇 > 0

∫
𝑡0+𝑇

𝑡0

sup
(𝑥−𝑦,𝑥1−𝑦2)∈Ω(𝑠,ℎ,𝛽)

𝐺1 (𝑠, 𝑥, 𝑥1) − 𝐺2 (𝑠, 𝑦, 𝑦2)
 𝑑𝑠 < 𝛼.

(35)

We will prove that

ℎ (𝑡, 𝑥
1
(𝑡) − 𝑦

2
(𝑡)) < 𝛽, 𝑡 ≥ 𝑡

0
. (36)

From (28) and the choice of 𝛽, it follows that ℎ
0
(𝑡
0
+

𝑠, 𝜙
1
(𝑠) −𝜙

2
(𝑠)) < 𝛼 < 𝜌

0
implies that ℎ(𝑡

0
+ 𝑠, 𝜙
1
(𝑠) −𝜙

2
(𝑠)) ≤

𝜓
4
(ℎ
0
(𝑡
0
+ 𝑠, 𝜙
1
(𝑠) − 𝜙

2
(𝑠))) < 𝜓

4
(𝛼) < 𝛽; that is,

ℎ (𝑡
0
+ 𝑠, 𝜙
1
(𝑠) − 𝜙

2
(𝑠)) < 𝛽, 𝑠 ∈ [−𝑟, 0] . (37)

Suppose inequality (37) is not true.Therefore, there exists
a point 𝑡∗ > 𝑡

0
such that

ℎ (𝑡
∗
, 𝑥
1
(𝑡
∗
) − 𝑦
2
(𝑡
∗
)) = 𝛽,

ℎ (𝑡, 𝑥
1
(𝑡) − 𝑦

2
(𝑡)) < 𝛽,

𝑡 ∈ [𝑡
0
− 𝑟, 𝑡
∗
) .

(38)

From inequality (38) and 𝛽 < 𝜌, it follows the validity of
the inclusions

(𝑡, 𝑥
1 (𝑡) , 𝑦2 (𝑡)) ∈ 𝑆 (ℎ, 𝜌) ,

(𝑥
1
(𝑡) − 𝑦

2
(𝑡) , max
𝑠∈[𝑡−𝑟,𝑡]

(𝑥
1
(𝑠) − 𝑦

2
(𝑠))) ∈ Ω (𝑡, ℎ, 𝛽) ,

(39)

where 𝑡 ∈ [𝑡
0
, 𝑡∗].
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Assume that ℎ
0
(𝑡∗, 𝑥
1
(𝑡∗) − 𝑦

2
(𝑡∗)) < 𝛿

3
; then from

the choice of 𝛿
3
and inequality (28) it follows ℎ(𝑡∗, 𝑥

1
(𝑡∗) −

𝑦
2
(𝑡∗)) ≤ 𝜓

4
(ℎ
0
(𝑡∗, 𝑥
1
(𝑡∗) − 𝑦

2
(𝑡∗))) ≤ 𝜓

4
(𝛿
3
) < 𝛽, which

contradicts (38). Therefore

ℎ
0
(𝑡
∗
, 𝑥
1
(𝑡
∗
) − 𝑦
2
(𝑡
∗
)) > 𝛿

3
,

ℎ
0
(𝑡
0
+ 𝑠, 𝜙
1
(𝑠) − 𝜙

2
(𝑠)) < 𝛼 < 𝛿

3
, 𝑠 ∈ [−𝑟, 0] ,

(40)

and there exists a point 𝑡∗
0

∈ (𝑡
0
, 𝑡∗) such that 𝛿

3
=

ℎ
0
(𝑡∗
0
, 𝑥
1
(𝑡∗
0
)−𝑦
2
(𝑡∗
0
)) and (𝑡, 𝑥

1
(𝑡), 𝑦
2
(𝑡)) ∈ 𝑆(ℎ, 𝛽)∩𝑆𝑐(ℎ

0
, 𝛿
3
)

for 𝑡 ∈ [𝑡∗
0
, 𝑡∗). Since 𝛽 < 𝜌 and 𝛿

3
> 𝛼, it follows that

(𝑡, 𝑥
1
(𝑡) , 𝑦
2
(𝑡)) ∈ 𝑆 (ℎ, 𝛽) ∩ 𝑆

𝑐
(ℎ
0
, 𝛼) , 𝑡 ∈ [𝑡

∗

0
, 𝑡
∗
] . (41)

Let 𝑟
1
(𝑡) be the maximal solution of differential equation

(5) with the initial condition 𝑟
1
(𝑡
0
) = 𝑢

0
, where 𝑢

0
=

max
𝑠∈[−𝑟,0]

𝑉
1
(𝑡
0
+ 𝑠, 𝜙
1
(𝑡
0
+ 𝑠), 𝜙

2
(𝑡
0
+ 𝑠)). From condition (i)

of Theorem 6 and according to Lemma 5, we obtain

𝑉
1
(𝑡, 𝑥
1
(𝑡) , 𝑦
2
(𝑡)) ≤ 𝑟

1
(𝑡) , 𝑡 ∈ [𝑡

0
, 𝑡
∗
] . (42)

From inequality (30), we obtain

𝑢
0
= 𝑉
1
(𝜉, 𝜙
1
(𝜉) , 𝜙

2
(𝜉))

≤ 𝜓
3
(ℎ
0
(𝜉, 𝜙
1
(𝜉) − 𝜙

2
(𝜉)))

< 𝜓
3 (𝛼) < 𝜓3 (𝛿2) < 𝛿1,

(43)

where 𝜉 ∈ [𝑡
0
− 𝑟, 𝑡
0
].

From inequalities (29), (42), and (43), we have

𝑉
1
(𝑡, 𝑥
1
(𝑡) , 𝑦
2
(𝑡)) ≤ 𝑟

1
(𝑡) <

𝛼
1

2
, 𝑡 ∈ [𝑡

0
, 𝑡
∗
] (44)

or

max
𝑠∈[−𝑟,0]

𝑉
1
(𝑡
∗

0
+ 𝑠, 𝑥
1
(𝑡
∗

0
+ 𝑠) , 𝑦

2
(𝑡
∗

0
+ 𝑠)) <

𝛼
1

2
. (45)

From inequality (33) and condition (ii) of Theorem 6, it
follows that

𝑉
(𝛼)

2
(𝑡
∗

0
+ 𝑠, 𝑥
1
(𝑡
∗

0
+ 𝑠) , 𝑦

2
(𝑡
∗

0
+ 𝑠))

≤ 𝑎 (ℎ
0
(𝑡
∗

0
+ 𝑠, 𝑥
1
(𝑡
∗

0
+ 𝑠) − 𝑦

2
(𝑡
∗

0
+ 𝑠))) <

𝛼
1

2
.

(46)

Consider 𝑉 ∈ 𝑉
0
defined by

𝑉 (𝑡, 𝑥, 𝑦) = 𝑉
1
(𝑡, 𝑥, 𝑦) + 𝑉

(𝛼)

2
(𝑡, 𝑥, 𝑦) . (47)

From inequalities (45) and (46) it follows that

max
𝑠∈[−𝑟,0]

𝑉
1
(𝑡
∗

0
+ 𝑠, 𝑥
1
(𝑡
∗

0
+ 𝑠) , 𝑦

2
(𝑡
∗

0
+ 𝑠)) < 𝛼

1
. (48)

Let 𝑡 ∈ [𝑡∗
0
, 𝑡∗] and 𝜓

1
, 𝜓
2
∈ 𝐶([−𝑟, 0], 𝑅𝑛) be such that

(𝑡, 𝜓
1
(0) , 𝜓

2
(0)) ∈ 𝑆 (ℎ, 𝛽) ∩ 𝑆

𝑐
(ℎ
0
, 𝛼) ,

(𝜓
1
(0) − 𝜓

2
(0) , max
𝑠∈[−𝑟,0]

(𝜓
1
(𝑠) − 𝜓

2
(𝑠))) ∈ Ω (𝑡, ℎ, 𝛽) ,

(49)

and 𝑉(𝑡, 𝜓
1
(0), 𝜓
2
(0)) > 𝑉(𝑡 + 𝑠, 𝜓

1
(𝑠), 𝜓
2
(𝑠)), 𝑠 ∈ [−𝑟, 0).

Using Lipschitz conditions for𝑉
1
,𝑉(𝛼)
2

and condition (iii)
of Theorem 6, we obtain

𝐷
(4)
𝑉 (𝑡, 𝜓

1
(𝑡) , 𝜓
2
(𝑡))

= 𝐷
(4)
𝑉
1
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡))

+ 𝐷
(4)
𝑉
(𝛼)

2
(𝑡, 𝜓
1
(𝑡) , 𝜓
2
(𝑡))

≤ 𝑔 (𝑡, 𝑉 (𝑡, 𝜓
1
(𝑡) , 𝜓
2
(𝑡))) + (𝑀

1
+𝑀
2
)

× sup
(𝑥−𝑦,𝑥1−𝑦2)∈Ω(𝑡,ℎ,𝛽)

𝐺1 (𝑡, 𝑥, 𝑥1) − 𝐺2 (𝑡, 𝑦, 𝑦2)


= 𝑔 (𝑡, 𝑉 (𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡))) + 𝑞 (𝑡) .

(50)

Consider differential equation (7) where the perturbation
on the right-hand side is given by

𝑞 (𝑡) = (𝑀1 +𝑀2)

× sup
(𝑥−𝑦,𝑥1−𝑦2)∈Ω(𝑡,ℎ,𝛽)

𝐺1 (𝑡, 𝑥, 𝑥1) − 𝐺2 (𝑡, 𝑦, 𝑦2)
 ,

𝑡 ∈ [𝑡
∗

0
, 𝑡
∗
] .

(51)

Let 𝑟∗(𝑡) be the maximal solution of (7) with the initial
condition 𝑟∗(𝑡∗

0
) = 𝜔∗
0
, where𝜔∗

0
= max

𝑠∈[−𝑟,0]
𝑉(𝑡∗
0
+𝑠, 𝑥
1
(𝑡∗
0
+

𝑠), 𝑦
2
(𝑡∗
0
+ 𝑠)). According to Lemma 5, the inequality

𝑉 (𝑡, 𝑥
1 (𝑡) , 𝑦2 (𝑡)) ≤ 𝑟

∗
(𝑡) , 𝑡 ∈ Ξ ∩ [𝑡

∗

0
, 𝑡
∗
] (52)

holds, where Ξ ⊆ [𝑡∗
0
,∞) is the interval of existence of 𝑟∗(𝑡).

Choose a point 𝑇∗ > 𝑡∗ such that

∫
𝑡
∗

𝑡
∗

0

𝑞 (𝑠) 𝑑𝑠 +
1

2
(𝑇
∗
− 𝑡
∗
) 𝑞 (𝑡
∗
) < 𝛼
1
. (53)

Now define the continuous function 𝑞∗(𝑡) : [𝑡∗
0
,∞) → 𝑅

by

𝑞
∗
(𝑡) =

{{{{{
{{{{{
{

𝑞 (𝑡) , 𝑡 ∈ [𝑡∗
0
, 𝑡∗] ,

𝑞 (𝑡∗)

𝑡∗ − 𝑇∗
, 𝑡 ∈ [𝑡∗, 𝑇∗] ,

0, 𝑡 ≥ 𝑇∗.

(54)

From the choice of the perturbation𝐺
1
(𝑡, 𝑥, 𝑦),𝐺

2
(𝑡, 𝑥, 𝑦)

it follows that for every 𝑇 > 0 the inequality

∫
𝑡
∗

0
+𝑇

𝑡
∗

0

𝑞
∗
(𝑠) 𝑑𝑠 ≤ (𝑀

1
+𝑀
2
) ,

∫
𝑡0+𝑇

𝑡0

sup
(𝑥−𝑦,𝑥1−𝑦2)∈Ω(𝑠,ℎ,𝛽)

𝐺1 (𝑠, 𝑥, 𝑥1) − 𝐺2 (𝑠, 𝑦, 𝑦2)
 𝑑𝑠 < 𝛼1

(55)

holds.
Let 𝑟
1
(𝑡) be the maximal solution of (7) with the initial

condition 𝑟
1
(𝑡∗
0
) = 𝜔∗

0
, where the perturbation of the right-

hand side is defined above function 𝑞∗(𝑡). Note that 𝑟
1
(𝑡) =

𝑟∗(𝑡, 𝑡∗
0
, 𝜔∗
0
), 𝑡 ∈ [𝑡∗

0
, 𝑡∗).
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From inequality (48) it follows that |𝜔∗
0
| < 𝛼

1
and

therefore inequality (31) holds; that is,

𝑟
1 (𝑡) < 𝛽1, 𝑡 ≥ 𝑡

∗

0
. (56)

From inequalities (52) and (56), the choice of the point 𝑡∗,
and condition (iii), we obtain

𝑏 (𝛽) ≥ 𝛽
1
> 𝑟
1
(𝑡
∗
) = 𝑟
∗
(𝑡
∗
)

≥ 𝑉 (𝑡
∗
, 𝑥
1
(𝑡
∗
) , 𝑦
2
(𝑡
∗
))

≥ 𝑉
(𝛼)

2
(𝑡
∗
, 𝑥
1
(𝑡
∗
) , 𝑦
2
(𝑡
∗
))

≥ 𝑏 (ℎ (𝑡
∗
, 𝑥
1
(𝑡
∗
) − 𝑦
2
(𝑡
∗
)))

= 𝑏 (𝛽) .

(57)

The obtained contradiction proves the validity of inequal-
ity (37) for 𝑡 ≥ 𝑡

0
.

Inequality (37) proves uniform-relatively integral stability
in terms of measures (ℎ

0
, ℎ) of the considered differential

systems with “maxima.”

The following example is an application of Theorem 6.

Example 1. Consider the two differential systems with “max-
ima”

𝑥

= −𝑥 − 𝑥𝑒

𝑡−𝑡0 +
1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠) , 𝑡 ≥ 𝑡
0
,

𝑥 (𝑡 + 𝑡
0
) = 𝜙
1
(𝑡) , 𝑡 ∈ [−𝑟, 0] ,

𝑦

= −𝑦𝑒

𝑡−𝑡0 +
1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠) , 𝑡 ≥ 𝑡
0

𝑦 (𝑡 + 𝑡
0
) = 𝜙
2 (𝑡) , 𝑡 ∈ [−𝑟, 0]

(58)

and the perturbed systems

𝑥

= − 𝑥 − 𝑥𝑒

𝑡−𝑡0 +
1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠)

+
1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝑥 (𝑠) 𝑒
−𝑡
, 𝑡 ≥ 𝑡

0
,

𝑥 (𝑡 + 𝑡
0
) = 𝜙
1
(𝑡) , 𝑡 ∈ [−𝑟, 0] ,

𝑦

= − 𝑦𝑒

𝑡−𝑡0 +
1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠)

+
1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝑦 (𝑠) 𝑒
−𝑡
, 𝑡 ≥ 𝑡

0
,

𝑦 (𝑡 + 𝑡
0
) = 𝜙
2 (𝑡) , 𝑡 ∈ [−𝑟, 0] .

(59)

Let 𝑉
1
(𝑡, 𝑥, 𝑦) = 𝑥2 + 𝑦2, 𝑉(𝜇)

2
(𝑡, 𝑥, 𝑦) = 𝑥2 + 2𝑦2, and

ℎ
0
(𝑡, 𝑥 − 𝑦) = √2(‖𝑥‖ + ‖𝑦‖), ℎ(𝑡, 𝑥 − 𝑦) = √2(𝑥2 + 𝑦2).

Using the inequality√𝑥2 + 𝑦2 ≤ ‖𝑥‖ + ‖𝑦‖, it is easy to check
the validity of the conditions (A

1
) and (ii) of Theorem 6 for

𝑎(𝑢) = 𝑢2, 𝑏(𝑢) = (1/2)𝑢2.

Letting 𝜓
1
, 𝜓
2
∈ 𝐶([𝑡 − 𝑟, 𝑡], 𝑅𝑛) be such that 𝜓2

1
(𝑡) >

𝜓2
1
(𝑡 + 𝑠), 𝜓2

2
(𝑡) > 𝜓2

2
(𝑡 + 𝑠), 𝑠 ∈ [−𝑟, 0), 𝑡 ≥ 𝑡

0
, then

𝑉
1
(𝑡, 𝜓
1
(𝑡), 𝜓
2
(𝑡)) > 𝑉

1
(𝑡 + 𝑠, 𝜓

1
(𝑡 + 𝑠), 𝜓

2
(𝑡 + 𝑠)) and

𝐷
(59)
𝑉
1
(𝑡, 𝜓
1
(𝑡) , 𝜓
2
(𝑡))

= 2𝜓
1 (𝑡) 𝜓1(𝑡)


+ 2𝜓
2 (𝑡) 𝜓2(𝑡)



= 2𝜓
1
(𝑡) {−𝜓

1
(𝑡) − 𝜓

1
(𝑡) 𝑒
𝑡−𝑡0 +

1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
1
(𝑠)

+
1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
1 (𝑠) 𝑒
−𝑡
}

+ 2𝜓
2
(𝑡) {−𝜓

2
(𝑡) 𝑒
𝑡−𝑡0 +

1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
2
(𝑠)

+
1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
2
(𝑠) 𝑒
−𝑡
}

≤ (−2𝑒
𝑡−𝑡0 + 1 + 𝑒

−𝑡
) (𝜓
2

1
(𝑡) + 𝜓

2

2
(𝑡))

≤ 𝑒
−𝑡
(𝜓
2

1
(𝑡) + 𝜓

2

2
(𝑡)) .

(60)

Letting 𝑓(𝑡, 𝑢) = 𝑒−𝑡𝑢, then 𝐷
(57)
𝑉
1
(𝑡, 𝜓
1
(𝑡), 𝜓
2
(𝑡)) ≤

𝑓(𝑡, 𝑉
1
(𝑡, 𝜓
1
(𝑡), 𝜓
2
(𝑡))).

Considering the comparison scalar differential system

𝑢

= 𝑒
−𝑡
𝑢, 𝑢

0
= 𝑢 (𝑡

0
) , (61)

the solution is 𝑢 = 𝑢
0
𝑒𝑒
−𝑡0

𝑒−𝑒
−𝑡

, 𝑡 ≥ 𝑡
0
, and we can prove that

the solution is equistable; that is, the conditions (A
2
) and (A

4
)

of Theorem 6 hold.
For 𝑠 ∈ [−𝑟, 0), 𝑡 ≥ 𝑡

0
, the inequality

𝐷
(58)
𝑉
1
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡)) + 𝐷(58)𝑉

(𝜇)

2
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡))

= 4𝜓
1 (𝑡) 𝜓1(𝑡)


+ 6𝜓
2 (𝑡) 𝜓2(𝑡)



= 4𝜓
1
(𝑡) {−𝜓

1
(𝑡) − 𝜓

1
(𝑡) 𝑒
𝑡−𝑡0 +

1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
1
(𝑠)}

+ 6𝜓
2
(𝑡) {−𝜓

2
(𝑡) 𝑒
𝑡−𝑡0 +

1

2
max
𝑠∈[𝑡−𝑟,𝑡]

𝜓
2
(𝑠)}

≤ (−2𝑒
𝑡−𝑡0 + 1) (2𝜓

2

1
(𝑡) + 3𝜓

2

2
(𝑡))

≤ 0

(62)

holds. From (62), the inequality

𝐷
(58)
𝑉
1
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡)) + 𝐷(58)𝑉

(𝜇)

2
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡))

≤ 𝑔 (𝑡, 𝑉
1
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡)) + 𝑉

(𝜇)

2
(𝑡, 𝜓
1 (𝑡) , 𝜓2 (𝑡)))

(63)

holds, where 𝑢 = 𝑔(𝑡, 𝑢) ≡ 0 and its perturbed differential
equation 𝜔 = 0 + 𝜔

0
𝑒−𝑡. We can prove that the differential

equation 𝑔(𝑡, 𝑢) = 0 is uniform-integrally stable. So the
conditions (A

3
) and (A

5
) of Theorem 6 hold.

According to Theorem 6, differential systems with “max-
ima” (58) are uniform-relatively integrally stable in terms of
two measures (ℎ

0
, ℎ).
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