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We firstly develop the high-order numerical algorithms for the left and right Riemann-Liouville derivatives. Using these derived
schemes, we can get high-order algorithms for the Riesz fractional derivative. Based on the approximate algorithm, we construct
the numerical scheme for the space Riesz fractional diffusion equation, where a fourth-order scheme is proposed for the spacial
Riesz derivative, and where a compact difference scheme is applied to approximating the first-order time derivative. It is shown that
the difference scheme is unconditionally stable and convergent. Finally, numerical examples are provided which are in line with the
theoretical analysis.

1. Introduction

In recent decades, fractional differential equations are under-
going rapid development due to their wide application in
physics, engineering, economics, and some other research
realms [1–3]. Several methods have been introduced for some
special fractional differential equations to seek their analyt-
ical solutions, such as the integral transformation method
(Laplace’s transform, Fourier’s transform, and Mellin’s trans-
form), Adomian decomposition method, the method of
separating variables, and so on [4–7]. However, the exact
solutions of most fractional differential equations cannot be
obtained. So it becomes important to develop numerical
methods for these equations. It is worth mentioning that
the fractional linear multistep (also high order) methods for
the Riemann-Liouville integrals and derivatives were firstly
proposed in [8]. High-order numerical methods for Caputo
derivatives were firstly constructed in [9]. Other fractional
differential equations include Caputo or (and) Riemann-
Liouville derivatives; there also existed some numerical
approaches [10–13]. So, in this paper, our main aim is to
construct high-order numerical methods for Riesz fractional
derivative and Riesz fractional differential equations.

The Riesz fractional derivative was derived from the
kinetics of chaotic dynamics [14, 15]. For the Riesz fractional
differential equations, there have existed several analyti-
cal and numerical methods. Zhang and Liu [16] studied
the analytical solutions of space Riesz and time Caputo
fractional partial differential equations. Later on, they [17]
used Galerkin finite element approximation and a backward
difference technique in Riesz fractional advection-dispersion
equation. By using the Laplace and Fourier transform, Chen
et al. [18] obtained the analytical solution for the space
Riesz fractional reaction dispersion equation, and they also
constructed an explicit finite difference scheme for it. Shen et
al. [19] presented the explicit and implicit difference schemes
for the Riesz fractional advection-dispersion equation and
the space Riesz time Caputo fractional advection-dispersion
equation. Recently, they [20] proposed a novel numerical
method for the space Riesz fractional advection-dispersion
equation based on fractional central difference operator.
Özdemir et al. [21] were concerned with the numerical solu-
tions of a two-dimensional problem. Yang et al. [22] obtained
some numerical solutions for the space Riesz fractional diffu-
sion and advection-dispersion equations on a finite domain
by using three numerical methods. Çelik and Duman [23]
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numerically approximated the fractional diffusion equation
with the space Riesz fractional derivative on a finite domain
according to the fractional central difference operator. Very
recently, Wang et al. [24] consider the coupled nonlinear
Schrödinger equations by using similar methods as in [23].
In the above mentioned numerical methods, the accuracy of
the numerical methods for the Riesz fractional derivative is
not more than 2; this motivates us to investigative high-order
numerical schemes for it.

In the present paper, we study the following space Riesz
fractional diffusion equation:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝐾

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼
+ 𝑓 (𝑥, 𝑡) ,

𝑎 < 𝑥 < 𝑏, 0 < 𝑡 ≤ 𝑇,

(1)

with the corresponding initial and boundary value condi-
tions:

𝑢 (𝑥, 0) = 𝜓 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏,

RL𝐷
𝛼−2

𝑎,𝑥
𝑢 (𝑥, 𝑡)|

𝑥=𝑎
= 𝜙 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇,

RL𝐷
𝛼−2

𝑥,𝑏
𝑢 (𝑥, 𝑡)|

𝑥=𝑏
= 𝜑 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇,

(2)

where 𝐾 > 0 is a diffusion coefficient and 𝑓(𝑥, 𝑡), 𝜙(𝑡), 𝜑(𝑡),
and 𝜓(𝑥) are sufficiently smooth functions. 𝜕𝛼/𝜕|𝑥|𝛼 is the
Riesz fractional derivative with order 𝛼 (1 < 𝛼 < 2) defined
as follows [22]:

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼
= −Ψ
𝛼
(RL𝐷
𝛼

𝑎,𝑥
+RL 𝐷

𝛼

𝑥,𝑏
) 𝑢 (𝑥, 𝑡) , (3)

where Ψ
𝛼
= (1/2) sec(𝜋𝛼/2) and RL𝐷

𝛼

𝑎,𝑥
and RL𝐷

𝛼

𝑥,𝑏
are the

left- and right-side Riemann-Liouville fractional derivatives
represented in the following form:

RL𝐷
𝛼

𝑎,𝑥
𝑢 (𝑥, 𝑡) =

1

Γ (2 − 𝛼)

𝜕
2

𝜕𝑥2
∫

𝑥

𝑎

𝑢 (𝜉, 𝑡)

(𝑥 − 𝜉)
𝛼−1
𝑑𝜉,

𝑥 ∈ [𝑎, 𝑏] ,

RL𝐷
𝛼

𝑥,𝑏
𝑢 (𝑥, 𝑡) =

1

Γ (2 − 𝛼)

𝜕
2

𝜕𝑥2
∫

𝑏

𝑥

𝑢 (𝜉, 𝑡)

(𝜉 − 𝑥)
𝛼−1
𝑑𝜉,

𝑥 ∈ [𝑎, 𝑏] ;

(4)

RL𝐷
𝛼−2

𝑎,𝑥
and RL𝐷

𝛼−2

𝑥,𝑏
are left- and right-side Riemann-Liouville

fractional integral operators and defined by (1 < 𝛼 < 2):

RL𝐷
𝛼−2

𝑎,𝑥
𝑢 (𝑥, 𝑡) =

1

Γ (2 − 𝛼)
∫

𝑥

𝑎

(𝑥 − 𝜉)
1−𝛼

𝑢 (𝜉, 𝑡) 𝑑𝜉,

RL𝐷
𝛼−2

𝑥,𝑏
𝑢 (𝑥, 𝑡) =

1

Γ (2 − 𝛼)
∫

𝑏

𝑥

(𝜉 − 𝑥)
1−𝛼

𝑢 (𝜉, 𝑡) 𝑑𝜉,

(5)

in which Γ(⋅) indicates Euler’s Gamma function.
The structure of the paper is outlined as follows. In

Section 2, we list existing numerical approximation of the
Riesz fractional derivative just for reference. Then, we focus

on constructing one second-order scheme and two fourth-
order numerical schemes. In Section 3, we only present one
fourth-order numerical algorithm for the space Riesz frac-
tional diffusion equation on a finite domain. In Sections 4 and
5, we discuss the stability and convergence of the difference
scheme, respectively. In Section 6, some numerical examples
are shownwhich support the theoretical results derived in the
above sections. Finally, the last section concludes this paper.

2. The Numerical Approximation of
the Riesz Derivative

Firstly, we take themesh points 𝑥
𝑚
= 𝑎+𝑚ℎ,𝑚 = 0, 1, . . . ,𝑀,

and 𝑡
𝑛
= 𝑛𝜏, 𝑛 = 0, 1, . . . , 𝑁, where ℎ = (𝑏 − 𝑎)/𝑀 and

𝜏 = 𝑇/𝑁; that is, ℎ and 𝜏 are the uniform spatial stepsize and
temporal stepsize.

As we all know, for every 𝛼 (1 < 𝛼 < 2) the left and right
Riemann-Liouville derivatives exist and coincide with the
left and right Grünwald-Letnikov derivatives under suitable
conditions, respectively, where the left and right Grünwald-
Letnikov derivative definitions with order 𝛼 are given below
[6]:

GL𝐷
𝛼

𝑎,𝑥
𝑢 (𝑥
𝑚
, 𝑡) =

1

ℎ𝛼

𝑚

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘
, 𝑡) + O (ℎ) ,

GL𝐷
𝛼

𝑥,𝑏
𝑢 (𝑥
𝑚
, 𝑡) =

1

ℎ𝛼

𝑀−𝑚

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘
, 𝑡) + O (ℎ) ,

(6)

in which 𝜛(𝛼)
𝑘
= (−1)

𝑘

(
𝛼

𝑘
) = ((−1)

𝑘

Γ(1 + 𝛼))/(Γ(1 + 𝑘)Γ(1 +

𝛼 − 𝑘)).
So, the Riesz derivative with order 𝛼 ∈ (1, 2) can be

discretized in the following ways.

(I) By the Standard Grünwald-Letnikov Formula. Based on
the above assumption and (3), we can obtain the first-order
approximation formula

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡)

𝜕|𝑥|
𝛼

= −
Ψ
𝛼

ℎ𝛼
(

𝑚

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘
, 𝑡)

+

𝑀−𝑚

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘
, 𝑡)) + O (ℎ) .

(7)

(II) By the Shifted Grünwald-Letnikov Formula. In [25],
Meerschaert and Tadjeran show that the above standard
Grünwald-Letnikov formula is often unstable for time depen-
dent problems. Hence, they proposed the following shifted
Grünwald-Letnikov formulas for the left and right Riemann-
Liouville derivatives in order to overcome the instability:

RL𝐷
𝛼

𝑎,𝑥
𝑢 (𝑥
𝑚
, 𝑡) =

𝑚+1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+1

, 𝑡) + O (ℎ) ,

RL𝐷
𝛼

𝑥,𝑏
𝑢 (𝑥
𝑚
, 𝑡) =

𝑀−𝑚+1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−1

, 𝑡) + O (ℎ) .

(8)
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Therefore, the modified first-order approximation
scheme is constructed as follows:

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡)

𝜕|𝑥|
𝛼

= −
Ψ
𝛼

ℎ𝛼
(

𝑚+1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+1

, 𝑡)

+

𝑀−𝑚+1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−1

, 𝑡)) + O (ℎ) .

(9)

(III) By the L2 Approximation Method. Note that the left and
right Riemann-Liouville derivatives can be rewritten as (1 <
𝛼 < 2):

RL𝐷
𝛼

𝑎,𝑥
𝑢 (𝑥, 𝑡) =

1

∑

𝑘=0

𝑥
𝑘−𝛼

Γ (𝑘 + 1 − 𝛼)

𝜕
𝑘

𝑢 (𝑎, 𝑡)

𝜕𝑥𝑘

+
1

Γ (2 − 𝛼)
∫

𝑥

𝑎

𝜕
2

𝑢 (𝜉, 𝑡)

𝜕𝜉2
(𝑥 − 𝜉)

1−𝛼

𝑑𝜉,

RL𝐷
𝛼

𝑥,𝑏
𝑢 (𝑥, 𝑡) =

1

∑

𝑘=0

(𝑏 − 𝑥)
𝑘−𝛼

Γ (𝑘 + 1 − 𝛼)

𝜕
𝑘

𝑢 (𝑏, 𝑡)

𝜕𝑥𝑘

+
1

Γ (2 − 𝛼)
∫

𝑏

𝑥

𝜕
2

𝑢 (𝜉, 𝑡)

𝜕𝜉2
(𝜉 − 𝑥)

1−𝛼

𝑑𝜉.

(10)

Hence, we can obtain a first-order scheme for the left and
right Riemann-Liouville fractional derivatives [22]:

RL𝐷
𝛼

𝑎,𝑥
𝑢 (𝑥
𝑚
, 𝑡)

=
1

Γ (3 − 𝛼) ℎ𝛼
{
(1 − 𝛼) (2 − 𝛼) 𝑢 (𝑥

0
, 𝑡)

𝑚𝛼

+
(2 − 𝛼) [𝑢 (𝑥

1
, 𝑡) − 𝑢 (𝑥

0
, 𝑡)]

𝑚𝛼−1

+

𝑚−1

∑

𝑘=0

𝑑
(𝛼)

𝑘
[𝑢 (𝑥
𝑚−𝑘+1

, 𝑡)

− 2𝑢 (𝑥
𝑚−𝑘
, 𝑡)

+𝑢 (𝑥
𝑚−𝑘−1

, 𝑡)] }

+ O (ℎ) ,

(11)

RL𝐷
𝛼

𝑥,𝑏
𝑢 (𝑥
𝑚
, 𝑡)

=
1

Γ (3 − 𝛼) ℎ𝛼
{
(1 − 𝛼) (2 − 𝛼) 𝑢 (𝑥

𝑀
, 𝑡)

(𝑀 − 𝑚)
𝛼

+
(2 − 𝛼) [𝑢 (𝑥

𝑀
, 𝑡) − 𝑢 (𝑥

𝑀−1
, 𝑡)]

(𝑀 − 𝑚)
𝛼−1

+

𝑀−𝑚−1

∑

𝑘=0

𝑑
(𝛼)

𝑘
[𝑢 (𝑥
𝑚+𝑘−1

, 𝑡)

− 2𝑢 (𝑥
𝑚+𝑘
, 𝑡)

+ 𝑢 (𝑥
𝑚+𝑘+1

, 𝑡)] }

+ O (ℎ) ,

(12)

where 𝑑(𝛼)
𝑘
= (𝑘 + 1)

2−𝛼

− 𝑘
2−𝛼, 𝑘 = 0, 1, . . . , 𝑚 − 1, or 𝑘 =

0, 1, . . . ,𝑀 − 𝑚 − 1.
Therefore, applying the above two formulas and (3) gives

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡)

𝜕|𝑥|
𝛼

= −
Ψ
𝛼

Γ (3 − 𝛼) ℎ𝛼

× {
(1 − 𝛼) (2 − 𝛼) 𝑢 (𝑥

0
, 𝑡)

𝑚𝛼

+
(2 − 𝛼) [𝑢 (𝑥

1
, 𝑡) − 𝑢 (𝑥

0
, 𝑡)]

𝑚𝛼−1

+

𝑚−1

∑

𝑘=0

𝑑
(𝛼)

𝑘
[𝑢 (𝑥
𝑚−𝑘+1

, 𝑡) − 2𝑢 (𝑥
𝑚−𝑘
, 𝑡)

+𝑢 (𝑥
𝑚−𝑘−1

, 𝑡)]

+
(1 − 𝛼) (2 − 𝛼) 𝑢 (𝑥

𝑀
, 𝑡)

(𝑀 − 𝑚)
𝛼

+
(2 − 𝛼) [𝑢 (𝑥

𝑀
, 𝑡) − 𝑢 (𝑥

𝑀−1
, 𝑡)]

(𝑀 − 𝑚)
𝛼−1

+

𝑀−𝑚−1

∑

𝑘=0

𝑑
(𝛼)

𝑘
[𝑢 (𝑥
𝑚+𝑘−1

, 𝑡) − 2𝑢 (𝑥
𝑚+𝑘
, 𝑡)

+𝑢 (𝑥
𝑚+𝑘+1

, 𝑡)] } + O (ℎ) ,

(13)

in which 𝑑(𝛼)
𝑘

is defined as above.

(IV) By the Spline Interpolation Method. In [26], Sousa pro-
posed a second-order scheme by linear spline interpolation
method for the left and right Riemann-Liouville derivatives,

RL𝐷
𝛼

𝑎,𝑥
𝑢 (𝑥
𝑚
, 𝑡)

=
1

Γ (4 − 𝛼) ℎ𝛼

𝑚+1

∑

𝑘=0

𝑧
(𝛼)

𝑚,𝑘
𝑢 (𝑥
𝑘
, 𝑡) + O (ℎ

2

) ,

(14)

where

𝑧
(𝛼)

𝑚,𝑘
=

{{{{

{{{{

{

𝑐
𝑚−1,𝑘

− 2𝑐
𝑚,𝑘
+ 𝑐
𝑚+1,𝑘

, 𝑘 ≤ 𝑚 − 1,

−2𝑐
𝑚,𝑘
+ 𝑐
𝑚+1,𝑘

, 𝑘 = 𝑚,

𝑐
𝑚+1,𝑘

, 𝑘 = 𝑚 + 1,

0, 𝑘 > 𝑚 + 1,

(15)

in which

𝑐
𝑗,𝑘
=

{{{{

{{{{

{

(𝑗 − 1)
3−𝛼

− 𝑗
2−𝛼

(𝑗 − 3 + 𝛼) , 𝑘 = 0,

(𝑗 − 𝑘 + 1)
3−𝛼

− 2(𝑗 − 𝑘)
3−𝛼

+(𝑗 − 𝑘 − 1)
3−𝛼

, 1 ≤ 𝑘 ≤ 𝑗 − 1,

1, 𝑘 = 𝑗,

RL𝐷
𝛼

𝑥,𝑏
𝑢 (𝑥
𝑚
, 𝑡) =

1

Γ (4 − 𝛼) ℎ𝛼

𝑀

∑

𝑘=𝑚−1

𝑧̃
(𝛼)

𝑚,𝑘
𝑢 (𝑥
𝑘
, 𝑡) + O (ℎ

2

) ,

(16)
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where

𝑧̃
(𝛼)

𝑚,𝑘
=

{{{{

{{{{

{

0, 𝑘 < 𝑚 − 1,

𝑐
𝑚−1,𝑚−1

, 𝑘 = 𝑚 − 1,

−2𝑐
𝑚,𝑚
+ 𝑐
𝑚−1,𝑚

, 𝑘 = 𝑚,

𝑐
𝑚−1,𝑘

− 2𝑐
𝑚,𝑘
+ 𝑐
𝑚+1,𝑘

, 𝑚 + 1 ≤ 𝑘 ≤ 𝑀,

(17)

in which

𝑐
𝑗,𝑘
=

{{{{{{{

{{{{{{{

{

1, 𝑘 = 𝑗,

(𝑘 − 𝑗 + 1)
3−𝛼

− 2(𝑘 − 𝑗)
3−𝛼

+(𝑘 − 𝑗 − 1)
3−𝛼

, 𝑗 + 1 ≤ 𝑘 ≤ 𝑀 − 1,

(3 − 𝛼 −𝑀 + 𝑗) (𝑀 − 𝑗)
2−𝛼

+(𝑀 − 𝑗 − 1)
3−𝛼

, 𝑘 = 𝑀,

(18)

with 𝑗 = 𝑚 − 1,𝑚,𝑚 + 1.
Combining (14), (16), and (3) gives

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡)

𝜕|𝑥|
𝛼

=
−Ψ
𝛼

Γ (4 − 𝛼) ℎ𝛼

𝑀

∑

𝑘=0

𝑧
(𝛼)

𝑚,𝑘
𝑢 (𝑥
𝑘
, 𝑡) + O (ℎ

2

) , (19)

where

𝑧
(𝛼)

𝑚,𝑘
=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝑧
(𝛼)

𝑚,𝑘
, 𝑘 < 𝑚 − 1,

𝑧
(𝛼)

𝑚,𝑚−1
+ 𝑧̃
(𝛼)

𝑚,𝑚−1
, 𝑘 = 𝑚 − 1,

𝑧
(𝛼)

𝑚,𝑚
+ 𝑧̃
(𝛼)

𝑚,𝑚
, 𝑘 = 𝑚,

𝑧
(𝛼)

𝑚,𝑚+1
+ 𝑧̃
(𝛼)

𝑚,𝑚+1
, 𝑘 = 𝑚 + 1,

𝑧̃
(𝛼)

𝑚,𝑘
, 𝑘 > 𝑚 + 1.

(20)

(V) By the Fractional Centered Difference Method. In [27],
Ortigueira introduced a symmetrical fractional centered
difference operator as follows:

Δ
𝛼

ℎ
𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=−∞

(−1)
𝑘

Γ (𝛼 + 1)

Γ ((𝛼/2) − 𝑘 + 1) Γ ((𝛼/2) + 𝑘 + 1)

× 𝑢 (𝑥 − 𝑘ℎ, 𝑡) .

(21)

Later on, Çelik and Duman [23] proved that the above
symmetrical fractional centered difference operator for the
Riesz fractional derivative has the following relation:

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡)

𝜕|𝑥|
𝛼

= −
1

ℎ𝛼
Δ
𝛼

ℎ
𝑢 (𝑥
𝑚
, 𝑡) + O (ℎ

2

) . (22)

(VI) By the Weighted and Shifted Grünwald-Lentikov Formu-
las. In [28], Tian et al. proposed the second-order and third

order numerical schemes for the left and right Riemann-
Liouville derivatives:

RL𝐷
𝛼

𝑎,𝑥
𝑢 (𝑥
𝑚
, 𝑡) =

]
1

ℎ𝛼

𝑚+ℓ
1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

1

, 𝑡)

+
]
2

ℎ𝛼

𝑚+ℓ
2

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

2

, 𝑡) + O (ℎ
2

) ,

(23)

RL𝐷
𝛼

𝑥,𝑏
𝑢 (𝑥
𝑚
, 𝑡) =

]
1

ℎ𝛼

𝑀−𝑚+ℓ
1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

1

, 𝑡)

+
]
2

ℎ𝛼

𝑀−𝑚+ℓ
2

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

2

, 𝑡)+O (ℎ
2

) ,

(24)

where ℓ
1
and ℓ
2
are two arbitrary integers and ℓ

1
−ℓ
2
̸= 0, ]
1
=

(𝛼 − 2ℓ
2
)/2(ℓ
1
− ℓ
2
), and ]

2
= (2ℓ
1
− 𝛼)/2(ℓ

1
− ℓ
2
).

And

RL𝐷
𝛼

𝑎,𝑥
𝑢 (𝑥
𝑚
, 𝑡) =

𝜅
1

ℎ𝛼

𝑚+ℓ
1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

1

, 𝑡)

+
𝜅
2

ℎ𝛼

𝑚+ℓ
2

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

2

, 𝑡)

+
𝜅
3

ℎ𝛼

𝑚+ℓ
3

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

3

, 𝑡)

+ O (ℎ
3

) ,

RL𝐷
𝛼

𝑥,𝑏
𝑢 (𝑥
𝑚
, 𝑡) =

𝜅
1

ℎ𝛼

𝑀−𝑚+ℓ
1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

1

, 𝑡)

+
𝜅
2

ℎ𝛼

𝑀−𝑚+ℓ
2

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

2

, 𝑡)

+
𝜅
3

ℎ𝛼

𝑀−𝑚+ℓ
3

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

3

, 𝑡)

+ O (ℎ
3

) ,

(25)

in which ℓ
1
, ℓ
2
, and ℓ

3
are three arbitrary integers and (ℓ

1
−

ℓ
2
)(ℓ
2
− ℓ
3
)(ℓ
1
− ℓ
3
) ̸= 0, 𝜅

1
= (12ℓ

2
ℓ
3
− (6ℓ
2
+ 6ℓ
3
+ 1)𝛼 +

3𝛼
2

)/12(ℓ
2
ℓ
3
− ℓ
1
ℓ
2
− ℓ
1
ℓ
3
+ ℓ
2

1
), 𝜅
2
= (12ℓ

1
ℓ
3
− (6ℓ
1
+ 6ℓ
3
+

1)𝛼 + 3𝛼
2

)/12(ℓ
1
ℓ
3
− ℓ
1
ℓ
2
− ℓ
2
ℓ
3
+ ℓ
2

2
), and 𝜅

3
= (12ℓ

1
ℓ
2
−

(6ℓ
1
+ 6ℓ
2
+ 1)𝛼 + 3𝛼

2

)/12(ℓ
1
ℓ
2
− ℓ
1
ℓ
3
− ℓ
2
ℓ
3
+ ℓ
2

3
).
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Naturally, we can obtain the following second-order
and third order numerical formulas for the Riesz fractional
derivative:

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡)

𝜕|𝑥|
𝛼

= −
Ψ
𝛼

ℎ𝛼
(]
1

𝑚+ℓ
1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

1

, 𝑡)

+ ]
2

𝑚+ℓ
2

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

2

, 𝑡)

+ ]
1

𝑀−𝑚+ℓ
1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

1

, 𝑡)

+]
2

𝑀−𝑚+ℓ
2

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

2

, 𝑡))

+ 𝑂 (ℎ
2

) ,

(26)

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡)

𝜕|𝑥|
𝛼

= −
Ψ
𝛼

ℎ𝛼
(𝜅
1

𝑚+ℓ
1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

1

, 𝑡)

+ 𝜅
2

𝑚+ℓ
2

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

2

, 𝑡)

+ 𝜅
3

𝑚+ℓ
3

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+ℓ

3

, 𝑡)

+ 𝜅
1

𝑀−𝑚+ℓ
1

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

1

, 𝑡)

+ 𝜅
2

𝑀−𝑚+ℓ
2

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

2

, 𝑡)

+𝜅
3

𝑀−𝑚+ℓ
3

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥
𝑚+𝑘−ℓ

3

, 𝑡))

+ 𝑂 (ℎ
3

) ,

(27)

respectively.
Here, we construct another second-order scheme and

two fourth-order numerical schemes for the Riesz fractional
derivative. In order to construct the new computational
schemes, we introduce the following theorem.

Lemma 1 (see [29]). Let 𝛼 > 0, 𝑢(𝑥, 𝑡) ∈ 𝐶∞
0
(R) with respect

to 𝑥. The Fourier transforms of the left and right Riemann-
Liouville fractional derivatives with respect to 𝑥 are

F
𝑥
(
𝑅𝐿
𝐷
𝛼

−∞,𝑥
𝑢 (𝑥, 𝑡)) = (𝑖𝜔)

𝛼

𝑢̂ (𝜔, 𝑡) ,

F
𝑥
(
𝑅𝐿
𝐷
𝛼

𝑥,∞
𝑢 (𝑥, 𝑡)) = (−𝑖𝜔)

𝛼

𝑢̂ (𝜔, 𝑡) ,

(28)

where 𝑢̂(𝜔, 𝑡) denotes the Fourier transform of the function
𝑢(𝑥, 𝑡) with respect to 𝑥; that is,

𝑢̂ (𝜔, 𝑡) = ∫
R

exp (−𝑖𝜔𝑥) 𝑢 (𝑥, 𝑡) 𝑑𝑥. (29)

In [30], Tuan and Gorenflo introduced the following left
fractional central difference operator:

𝐶
Δ
𝛼

−ℎ
𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥 − (𝑘 −

𝛼

2
) ℎ, 𝑡) . (30)

Similarly, we define the following right fractional central
difference operator:

𝐶
Δ
𝛼

+ℎ
𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=0

𝜛
(𝛼)

𝑘
𝑢 (𝑥 + (𝑘 −

𝛼

2
) ℎ, 𝑡) . (31)

Analogous to the integer-order finite difference formula,
we define the following fractional average operator:

𝜇
𝛼

±ℎ
𝑢 (𝑥 − 𝑠ℎ, 𝑡)

=
𝑢 (𝑥 ± (𝑠 − (𝛼/2)) ℎ, 𝑡) + 𝑢 (𝑥 ± (𝑠 + (𝛼/2)) ℎ, 𝑡)

2
.

(32)

Then we can get the following fractional left and right
average central difference operators based on (30), (31), and
(32), respectively:

ACΔ
𝛼

−ℎ
𝑢 (𝑥, 𝑡) = 𝜇

𝛼

−ℎ
(
𝐶
Δ
𝛼

−ℎ
𝑢 (𝑥, 𝑡))

=

∞

∑

𝑗=0

(−1)
𝑗

× (
𝛼

𝑗
)𝜇
𝛼

−ℎ
(𝑢 (𝑥 − (𝑗 −

𝛼

2
) ℎ, 𝑡))

=
1

2

∞

∑

𝑗=0

(−1)
𝑗

× (
𝛼

𝑗
) (𝑢 (𝑥 − 𝑗ℎ, 𝑡)

+𝑢 (𝑥 − (𝑗 − 𝛼) ℎ, 𝑡)) ,

(33)

ACΔ
𝛼

+ℎ
𝑢 (𝑥, 𝑡) = 𝜇

𝛼

+ℎ
(
𝐶
Δ
𝛼

+ℎ
𝑢 (𝑥, 𝑡))

=

∞

∑

𝑗=0

(−1)
𝑗

× (
𝛼

𝑗
)𝜇
𝛼

+ℎ
(𝑢 (𝑥 + (𝑗 −

𝛼

2
) ℎ, 𝑡))

=
1

2

∞

∑

𝑗=0

(−1)
𝑗

× (
𝛼

𝑗
) (𝑢 (𝑥+𝑗ℎ, 𝑡)

+𝑢 (𝑥−(𝑗−𝛼) ℎ, 𝑡)) .

(34)
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Here, we always assume that 𝜇𝛼
±ℎ

can commute with the
infinite summation.

For the fractional left and right average central difference
operators defined in (33) and (34), one has the following
result.

Theorem 2. Let 𝑢(𝑥, 𝑡) and the Fourier transform of
𝑅𝐿
𝐷
𝛼+2

−∞,𝑥
𝑢(𝑥, 𝑡) and

𝑅𝐿
𝐷
𝛼+2

𝑥,+∞
𝑢(𝑥, 𝑡) with respect to 𝑥 both be

in 𝐿
1
(R); then

𝑅𝐿
𝐷
𝛼

−∞,𝑥
𝑢 (𝑥, 𝑡) =

𝐴𝐶
Δ
𝛼

−ℎ
𝑢 (𝑥, 𝑡)

ℎ𝛼
+ O (ℎ

2

) ,

𝑅𝐿
𝐷
𝛼

𝑥,+∞
𝑢 (𝑥, 𝑡) =

𝐴𝐶
Δ
𝛼

+ℎ
𝑢 (𝑥, 𝑡)

ℎ𝛼
+ O (ℎ

2

)

(35)

uniformly holds for 𝑥 ∈ R.

Proof. Here, we only prove (35). As 𝑢(𝑥, 𝑡) with respect to 𝑥
belongs to 𝐿

1
(R), then the Fourier transform of the fractional

average central difference operator (33) exists and has the
following form:

F
𝑥
{

ACΔ
𝛼

−ℎ
𝑢 (𝑥, 𝑡)

ℎ𝛼
; 𝜔}

=
1

2ℎ𝛼

∞

∑

𝑗=0

(−1)
𝑗

× (
𝛼

𝑗
) (exp (−𝑖𝜔𝑗ℎ)

+ exp (−𝑖𝜔 (𝑗 − 𝛼) ℎ)) 𝑢̂ (𝜔, 𝑡)

=
1

ℎ𝛼
(

∞

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
) exp (−𝑖𝑗𝜔ℎ))

× (
1 + exp (𝑖𝜔𝛼ℎ)

2
) 𝑢̂ (𝜔, 𝑡)

= (𝑖𝜔)
𝛼

(
1 − exp (−𝑖𝜔ℎ)

𝑖𝜔ℎ
)

𝛼

(
1 + exp (𝑖𝜔𝛼ℎ)

2
) 𝑢̂ (𝜔, 𝑡) .

(36)

Note that the function ((1 − exp(−𝑖𝜔ℎ))/𝑖𝜔ℎ)𝛼((1 +
exp(𝑖𝜔𝛼ℎ))/2) has the following Taylor expansion:

(
1 − exp (−𝑖𝜔ℎ)

𝑖𝜔ℎ
)

𝛼

(
1 + exp (𝑖𝜔𝛼ℎ)

2
)

= 1 +
𝛼 (3𝛼 + 1)

24
(𝑖𝜔ℎ)
2

+ O(|𝑖𝜔ℎ|)
4

.

(37)

If we denote

𝜙 (𝜔, ℎ) = F
𝑥
{

ACΔ
𝛼

−ℎ
𝑢 (𝑥, 𝑡)

ℎ𝛼
; 𝜔}

−F
𝑥
(RL𝐷
𝛼

−∞,𝑥
𝑢 (𝑥, 𝑡)) ,

(38)

then from (36), (37), and Lemma 1, we have

󵄨󵄨󵄨󵄨󵄨
𝜙 (𝜔, ℎ)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
1
ℎ
2
󵄨󵄨󵄨󵄨󵄨
(𝑖𝜔)
𝛼+2

𝑢̂ (𝜔, 𝑡)
󵄨󵄨󵄨󵄨󵄨
. (39)

In light of the conditionF(RL𝐷
𝛼+2

−∞,𝑥
𝑢(𝑥, 𝑡)) ∈ 𝐿

1
(R), that

is,

∫
R

󵄨󵄨󵄨󵄨󵄨
F (RL𝐷

𝛼+2

−∞,𝑥
𝑢 (𝑥, 𝑡))

󵄨󵄨󵄨󵄨󵄨
𝑑𝜔 < 𝐶

2
, (40)

we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ACΔ
𝛼

−ℎ
𝑢 (𝑥, 𝑡)

ℎ𝛼
−RL 𝐷

𝛼

−∞,𝑥
𝑢 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝜙 (𝜔, ℎ)

󵄨󵄨󵄨󵄨

=
1

2𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R

exp (𝑖𝜔ℎ) 𝜙 (𝜔, ℎ) 𝑑𝜔
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2𝜋
∫
R

󵄨󵄨󵄨󵄨󵄨
𝜙 (𝜔, ℎ)

󵄨󵄨󵄨󵄨󵄨
𝑑𝜔

≤
𝐶
1

2𝜋
(∫

R

󵄨󵄨󵄨󵄨󵄨
(𝑖𝜔)
𝛼+2

𝑢̂ (𝜔, 𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜔) ℎ

2

=
𝐶
1

2𝜋
(∫

R

󵄨󵄨󵄨󵄨󵄨
F (RL𝐷

𝛼+2

−∞,𝑥
𝑢 (𝑥, 𝑡))

󵄨󵄨󵄨󵄨󵄨
𝑑𝜔) ℎ

2

≤ 𝐶ℎ
2

= O (ℎ
2

) ,

(41)

where 𝐶 = 𝐶
1
𝐶
2
/2𝜋. This finishes the proof.

Next, we construct fourth-order difference scheme for the
left and right Riemann-Liouville derivatives based on (33)
and (34) by the following theorem.

Theorem 3. Let 𝑢(𝑥, 𝑡) and the Fourier transform of
𝑅𝐿
𝐷
𝛼+4

−∞,𝑥
𝑢(𝑥, 𝑡) and

𝑅𝐿
𝐷
𝛼+4

𝑥,+∞
𝑢(𝑥, 𝑡) with respect to 𝑥 both be

in 𝐿
1
(R); then

𝑅𝐿
𝐷
𝛼

−∞,𝑥
𝑢 (𝑥, 𝑡) =

1

ℎ𝛼
𝐴𝐶
Δ
𝛼

−ℎ
𝑢 (𝑥, 𝑡)

1 + (𝛼 (3𝛼 + 1) /24) 𝛿2
𝑥

+ O (ℎ
4

) ,

𝑅𝐿
𝐷
𝛼

𝑥,+∞
𝑢 (𝑥, 𝑡) =

1

ℎ𝛼
𝐴𝐶
Δ
𝛼

+ℎ
𝑢 (𝑥, 𝑡)

1 + (𝛼 (3𝛼 + 1) /24) 𝛿2
𝑥

+ O (ℎ
4

)

(42)

uniformly holds for 𝑥 ∈ R, where 𝛿2
𝑥
denotes second-order

central difference operator with respect to 𝑥 and is defined by
𝛿
2

𝑥
𝑢(𝑥
𝑗
, 𝑡) = 𝑢(𝑥

𝑗+1
, 𝑡) − 2𝑢(𝑥

𝑗
, 𝑡) + 𝑢(𝑥

𝑗−1
, 𝑡).

Proof. It is similar to Theorem 2.
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Combining (3) andTheorems 2 and 3, we can get the fol-
lowing high-order difference schemes for theRiesz derivative:

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼
= −

Ψ
𝛼

2ℎ𝛼
[

[

∞

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

× (𝑢 (𝑥 − 𝑗ℎ, 𝑡)

+𝑢 (𝑥 − (𝑗 − 𝛼) ℎ, 𝑡))

+

∞

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

× (𝑢 (𝑥 + 𝑗ℎ, 𝑡)

+𝑢 (𝑥 + (𝑗 − 𝛼) ℎ, 𝑡)) ]

]

+ O (ℎ
2

) ,

(43)

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼
= −

Ψ
𝛼

2ℎ𝛼
[

[

∞

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

×
𝑢 (𝑥−𝑗ℎ, 𝑡)+𝑢 (𝑥 − (𝑗−𝛼) ℎ, 𝑡)

1+(𝛼 (3𝛼+1) /24) 𝛿2
𝑥

+

∞

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

×
𝑢 (𝑥+𝑗ℎ, 𝑡)+𝑢 (𝑥+(𝑗−𝛼) ℎ, 𝑡)

1+(𝛼 (3𝛼+1) /24) 𝛿2
𝑥

]

+ O (ℎ
4

) .

(44)
Moreover, let

𝑢̃ (𝑥, 𝑡) = {
𝑢 (𝑥, 𝑡) , 𝑥 ∈ [𝑎, 𝑏] ,

0, 𝑥 ∉ [𝑎, 𝑏] ;
(45)

then formulas (43) and (44) change into
𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼

= −
Ψ
𝛼

2ℎ𝛼
[

[

[(𝑥−𝛼)/ℎ]

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

× (𝑢 (𝑥 − 𝑗ℎ, 𝑡)

+𝑢 (𝑥 − (𝑗 − 𝛼) ℎ, 𝑡))

+

[(𝑏−𝑥)/ℎ]

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

× (𝑢 (𝑥 + 𝑗ℎ, 𝑡)

+𝑢 (𝑥 + (𝑗 − 𝛼) ℎ, 𝑡)) ]

]

+ O (ℎ
2

) ,

(46)

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼

= −
Ψ
𝛼

2ℎ𝛼
[

[

[(𝑥−𝛼)/ℎ]

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

×
𝑢 (𝑥−𝑗ℎ, 𝑡)+𝑢 (𝑥−(𝑗−𝛼) ℎ, 𝑡)

1+(𝛼 (3𝛼+1) /24) 𝛿2
𝑥

+

[(𝑏−𝑥)/ℎ]

∑

𝑗=0

(−1)
𝑗

(
𝛼

𝑗
)

×
𝑢 (𝑥+𝑗ℎ, 𝑡)+ 𝑢 (𝑥+(𝑗−𝛼) ℎ, 𝑡)

1 + (𝛼 (3𝛼 + 1) /24) 𝛿2
𝑥

]

]

+ O (ℎ
4

) .

(47)

Finally, we derive another fourth-order numerical
method for the Riesz fractional derivative which is presented
in the following theorem.

Theorem 4. Let 𝑢(𝑥, 𝑡) lie in 𝐶7(R) whose partial derivatives
up to order seven with respect to 𝑥 belong to 𝐿

1
(R). Set

L
𝜃
𝑢 (𝑥, 𝑡) =

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑢 (𝑥 − (𝑘 + 𝜃) ℎ, 𝑡) , 𝜃 = −1, 0, 1,

(48)

in which

𝑔
(𝛼)

𝑘
=

(−1)
𝑘

Γ (𝛼 + 1)

Γ ((𝛼/2) − 𝑘 + 1) Γ ((𝛼/2) + 𝑘 + 1)
; (49)

then one has
𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼

=
1

ℎ𝛼
[
𝛼

24
L
−1
𝑢 (𝑥, 𝑡) − (1 +

𝛼

12
)L
0
𝑢 (𝑥, 𝑡)

+
𝛼

24
L
1
𝑢 (𝑥, 𝑡)] + 𝑂 (ℎ

4

) .

(50)
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Proof. Here, we use the Fourier transform method to prove
it [23]. From [27], we know that the generating function with
coefficients 𝑔(𝛼)

𝑘
satisfies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 sin(𝑥

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

=

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
exp (𝑖𝑘𝑥) . (51)

From (3) and Lemma 1, we get the Fourier transform of
the Riesz fractional derivative as follows:

F
𝑥
{
𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼
; 𝜔} = −Ψ

𝛼
[(𝑖𝜔)
𝛼

+ (−𝑖𝜔)
𝛼

] 𝑢̂ (𝜔, 𝑡)

= −|𝜔|
𝛼

𝑢̂ (𝜔, 𝑡) .

(52)

Applying the Fourier transform to the difference operator

1

ℎ𝛼
[
𝛼

24
L
−1
𝑢 (𝑥, 𝑡) − (1 +

𝛼

12
)L
0
𝑢 (𝑥, 𝑡) +

𝛼

24
L
1
𝑢 (𝑥, 𝑡)]

(53)

with respect to 𝑥 and using (51) give

F
𝑥
{
1

ℎ𝛼
[
𝛼

24
L
−1
𝑢 (𝑥, 𝑡) − (1 +

𝛼

12
)L
0
𝑢 (𝑥, 𝑡)

+
𝛼

24
L
1
𝑢 (𝑥, 𝑡)] ; 𝜔}

=
1

ℎ𝛼
[
𝛼

24

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
exp (−𝑖 (𝑘 − 1) 𝜔ℎ) 𝑢̂ (𝜔, 𝑡)

− (1 +
𝛼

12
)

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
exp (−𝑖𝑘𝜔ℎ) 𝑢̂ (𝜔, 𝑡)

+
𝛼

24

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
exp (−𝑖 (𝑘 + 1) 𝜔ℎ) 𝑢̂ (𝜔, 𝑡)]

= −
1

ℎ𝛼
[1 +

𝛼

12
(1 − cos (𝜔ℎ))]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 sin(𝜔ℎ

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

𝑢̂ (𝜔, 𝑡) .

(54)

Set

|𝜔|
𝛼

𝑢̂ (𝜔, 𝑡)

= Ĉ (ℎ, 𝜔) −F
𝑥
{
1

ℎ𝛼
[
𝛼

24
L
−1
𝑢 (𝑥, 𝑡)

− (1 +
𝛼

12
)L
0
𝑢 (𝑥, 𝑡)

+
𝛼

24
L
1
𝑢 (𝑥, 𝑡)] ; 𝜔} ;

(55)

then

Ĉ (ℎ, 𝜔) = |𝜔|
𝛼

{1 − [1 +
𝛼

12
(1 − cos (𝜔ℎ))]

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 sin (𝜔ℎ/2)
𝜔ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

} 𝑢̂ (𝜔, 𝑡)

= |𝜔|
𝛼

{1 − [1 +
𝛼

24
(𝜔ℎ)
2

−
𝛼

288
(𝜔ℎ)
4

+ 𝑂(𝜔ℎ)
6

]

⋅ [1 −
𝛼

24
(𝜔ℎ)
2

+ 𝛼(
1

1920
+
𝛼 − 1

1152
) (𝜔ℎ)

4

+𝑂(𝜔ℎ)
6

]} 𝑢̂ (𝜔, 𝑡)

= −|𝜔|
𝛼

{𝛼(
𝛼

1152
+
11

2880
) (𝜔ℎ)

4

−𝑂(𝜔ℎ)
6

} 𝑢̂ (𝜔, 𝑡) .

(56)

Since 𝑢(𝑥, 𝑡) ∈ 𝐶7(R) and its partial derivatives up to
order seven with respect to 𝑥 belong to 𝐿

1
(R), there exists

a positive constant 𝐶
1
such that

|𝑢̂ (𝜔, 𝑡)| ≤ 𝐶
1
(1 + |𝜔|)

−7

. (57)

So, using (56) and (57) leads to

󵄨󵄨󵄨󵄨󵄨
Ĉ (ℎ, 𝜔)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
2
ℎ
4

|𝜔|
4+𝛼

|𝑢̂ (𝜔, 𝑡)|

≤ 𝐶
2
ℎ
4

(1 + |𝜔|)
4+𝛼

|𝑢̂ (𝜔, 𝑡)|

≤ 𝐶
3
ℎ
4

(1 + |𝜔|)
𝛼−3

,

(58)

where 𝐶
3
= 𝐶
1
𝐶
2
.

At this moment, taking the inverse Fourier transforma-
tion in both sides of (55) and noting (52) give

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼
=
1

ℎ𝛼
[
𝛼

24
L
−1
𝑢 (𝑥, 𝑡) − (1 +

𝛼

12
)L
0
𝑢 (𝑥, 𝑡)

+
𝛼

24
L
1
𝑢 (𝑥, 𝑡)] −C (ℎ, 𝜔) .

(59)

In view of (58), we have

|C (ℎ, 𝑥)| =
1

2𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R

Ĉ (ℎ, 𝜔) exp (𝑖𝜔𝑥) 𝑑𝜔
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2𝜋
∫
R

󵄨󵄨󵄨󵄨󵄨
Ĉ (ℎ, 𝜔)

󵄨󵄨󵄨󵄨󵄨
𝑑𝜔

≤
𝐶
3

2𝜋
(∫

R

(1 + |𝜔|)
𝛼−3

𝑑𝜔) ℎ
4

= 𝐶ℎ
4

,

(60)
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where 𝐶 = 𝐶
3
/(2 − 𝛼)𝜋; that is to say,

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼
=
1

ℎ𝛼
[
𝛼

24
L
−1
𝑢 (𝑥, 𝑡) − (1 +

𝛼

12
)L
0
𝑢 (𝑥, 𝑡)

+
𝛼

24
L
1
𝑢 (𝑥, 𝑡)] + 𝑂 (ℎ

4

) .

(61)

This finishes the proof.

Furthermore, (61) can be rewritten as

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼
=
𝛼

24ℎ𝛼

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑢 (𝑥 − (𝑘 + 1) ℎ, 𝑡)

− (1 +
𝛼

12
)
1

ℎ𝛼

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑢 (𝑥 − 𝑘ℎ, 𝑡)

+
𝛼

24ℎ𝛼

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑢 (𝑥 − (𝑘 − 1) ℎ, 𝑡) + 𝑂 (ℎ

4

) .

(62)

Combining (45), one can get

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡)

𝜕|𝑥|
𝛼

=
𝛼

24ℎ𝛼

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢 (𝑥
𝑚−(𝑘+1)

, 𝑡)

+
𝛼

24ℎ𝛼

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢 (𝑥
𝑚−(𝑘−1)

, 𝑡)

− (1 +
𝛼

12
)
1

ℎ𝛼

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘
, 𝑡)

+ O (ℎ
4

) .

(63)

3. The Numerical Method for the Space Riesz
Fractional Diffusion Equation

In this section, we only develop the fourth-order numerical
method for the Riesz fractional diffusion equation (1). The
second-order methods derived in the preceding section for
(1) are easy so they are omitted here.

By Taylor expansion, one has

𝑢 (𝑥
𝑚
, 𝑡
𝑛−1
) = 𝑢 (𝑥

𝑚
, 𝑡
𝑛
) − 𝜏

𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕𝑡

+
𝜏
2

2

𝜕
2

𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕𝑡2
+ O (𝜏

3

) ,

(64)

𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛−1
)

𝜕𝑡
=
𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕𝑡

− 𝜏
𝜕
2

𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕𝑡2
+ O (𝜏

2

) .

(65)

Furthermore, from (65), one gets

𝜕
2

𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕𝑡2
=
1

𝜏
(
𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕𝑡
−
𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛−1
)

𝜕𝑡
) + O (𝜏) .

(66)

Substituting (66) into (64) yields

𝜏

2
(
𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕𝑡
+
𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛−1
)

𝜕𝑡
)

= 𝑢 (𝑥
𝑚
, 𝑡
𝑛
) − 𝑢 (𝑥

𝑚
, 𝑡
𝑛−1
) + O (𝜏

3

) .

(67)

From (1) and (67), we have

2𝑢 (𝑥
𝑚
, 𝑡
𝑛
) − 𝜏𝐾

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕|𝑥|
𝛼

= 2𝑢 (𝑥
𝑚
, 𝑡
𝑛−1
) + 𝜏𝐾

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡
𝑛−1
)

𝜕|𝑥|
𝛼

+ 𝜏𝑓 (𝑥
𝑚
, 𝑡
𝑛
)

+ 𝜏𝑓 (𝑥
𝑚
, 𝑡
𝑛−1
) + O (𝜏

3

) .

(68)

Let 𝑢𝑛
𝑚
be the approximation solution of 𝑢(𝑥

𝑚
, 𝑡
𝑛
). Substi-

tuting (63) into (68) and removing the high-order terms, one
has the following finite difference scheme for (1):

𝑢
𝑛

𝑚
− 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢
𝑛

𝑚−𝑘−1

− 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢
𝑛

𝑚−𝑘+1

+ 𝜇
2

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢
𝑛

𝑚−𝑘

= 𝑢
𝑛−1

𝑚
+ 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢
𝑛−1

𝑚−𝑘−1

+ 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢
𝑛−1

𝑚−𝑘+1

− 𝜇
2

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢
𝑛−1

𝑚−𝑘
+
𝜏

2
𝑓
𝑛

𝑚
+
𝜏

2
𝑓
𝑛−1

𝑚
,

(69)

where 𝜇
1
= 𝛼𝜏𝐾/48ℎ

𝛼 and 𝜇
2
= (𝜏𝐾/2ℎ

𝛼

)(1 + (𝛼/12)).
Denoting

𝑈
𝑛

= (𝑢
𝑛

1
, 𝑢
𝑛

2
, . . . , 𝑢

𝑛

𝑀−1
)
𝑇

, 𝐹
𝑛

= (𝑓
𝑛

1
, 𝑓
𝑛

2
, . . . , 𝑓

𝑛

𝑀−1
)
𝑇

,

(70)

then system (69) can be written in the following matrix form:

(𝐼 + 𝐻)𝑈
𝑛

= (𝐼 − 𝐻)𝑈
𝑛−1

+
𝜏

2
𝐹
𝑛

+
𝜏

2
𝐹
𝑛−1

, (71)
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where 𝐼 is a (𝑀 − 1) × (𝑀 − 1) identity matrix, 𝐻 = 𝜇
2
𝐺 −

𝜇
1
𝐺
+

− 𝜇
1
𝐺
−,

𝐺=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑔
(𝛼)

0
𝑔
(𝛼)

−1
𝑔
(𝛼)

−2
⋅ ⋅ ⋅ 𝑔

(𝛼)

4−𝑀
𝑔
(𝛼)

3−𝑀
𝑔
(𝛼)

2−𝑀

𝑔
(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1
𝑔
(𝛼)

−2
⋅ ⋅ ⋅ 𝑔

(𝛼)

4−𝑀
𝑔
(𝛼)

3−𝑀

𝑔
(𝛼)

2
𝑔
(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1
𝑔
(𝛼)

−2
⋅ ⋅ ⋅ 𝑔

(𝛼)

4−𝑀

... d d d d d
...

𝑔
(𝛼)

𝑀−4
⋅ ⋅ ⋅ 𝑔

(𝛼)

2
𝑔
(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1
𝑔
(𝛼)

−2

𝑔
(𝛼)

𝑀−3
𝑔
(𝛼)

𝑀−4
⋅ ⋅ ⋅ 𝑔

(𝛼)

2
𝑔
(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1

𝑔
(𝛼)

𝑀−2
𝑔
(𝛼)

𝑀−3
𝑔
(𝛼)

𝑀−4
⋅ ⋅ ⋅ 𝑔

(𝛼)

2
𝑔
(𝛼)

1
𝑔
(𝛼)

0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

𝐺
+

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 𝑔
(𝛼)

0
𝑔
(𝛼)

−1
⋅ ⋅ ⋅ 𝑔

(𝛼)

5−𝑀
𝑔
(𝛼)

4−𝑀
𝑔
(𝛼)

3−𝑀

0 𝑔
(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1
⋅ ⋅ ⋅ 𝑔

(𝛼)

5−𝑀
𝑔
(𝛼)

4−𝑀

0 𝑔
(𝛼)

2
𝑔
(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1
⋅ ⋅ ⋅ 𝑔

(𝛼)

5−𝑀

... d d d d d
...

0 ⋅ ⋅ ⋅ 𝑔
(𝛼)

3
𝑔
(𝛼)

2
𝑔
(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1

0 𝑔
(𝛼)

𝑀−3
⋅ ⋅ ⋅ 𝑔

(𝛼)

3
𝑔
(𝛼)

2
𝑔
(𝛼)

1
𝑔
(𝛼)

0

0 𝑔
(𝛼)

𝑀−2
𝑔
(𝛼)

𝑀−3
⋅ ⋅ ⋅ 𝑔

(𝛼)

3
𝑔
(𝛼)

2
𝑔
(𝛼)

1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

𝐺
−

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑔
(𝛼)

−1
𝑔
(𝛼)

−2
𝑔
(𝛼)

−3
⋅ ⋅ ⋅ 𝑔

(𝛼)

3−𝑀
𝑔
(𝛼)

2−𝑀
0

𝑔
(𝛼)

0
𝑔
(𝛼)

−1
𝑔
(𝛼)

−2
𝑔
(𝛼)

−3
⋅ ⋅ ⋅ 𝑔

(𝛼)

3−𝑀
0

𝑔
(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1
𝑔
(𝛼)

−2
𝑔
(𝛼)

−3
⋅ ⋅ ⋅ 0

... d d d d d
...

𝑔
(𝛼)

𝑀−5
⋅ ⋅ ⋅ 𝑔

(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1
𝑔
(𝛼)

−2
0

𝑔
(𝛼)

𝑀−4
𝑔
(𝛼)

𝑀−5
⋅ ⋅ ⋅ 𝑔

(𝛼)

1
𝑔
(𝛼)

0
𝑔
(𝛼)

−1
0

𝑔
(𝛼)

𝑀−3
𝑔
(𝛼)

𝑀−4
𝑔
(𝛼)

𝑀−5
⋅ ⋅ ⋅ 𝑔

(𝛼)

1
𝑔
(𝛼)

0
0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

(72)

𝑔
(𝛼)

𝑘
=

(−1)
𝑘

Γ (𝛼 + 1)

Γ ((𝛼/2) − 𝑘 + 1) Γ ((𝛼/2) + 𝑘 + 1)
,

𝑘 = 2 −𝑀, 3 −𝑀, . . . ,𝑀 − 3,𝑀 − 2.

(73)

4. Stability Analysis

Now we perform the detailed stability analysis for the differ-
ence scheme (71). Firstly, we introduce some lemmas and a
definition for the following discussion.

Lemma 5 (see [31]). LetA be an𝑀−1 order positive definite
matrix. Then for any parameter 𝜎 ≥ 0, the following two
inequalities:

󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝜎A)

−1
󵄩󵄩󵄩󵄩󵄩∞
≤ 1,

󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝜎A)

−1

(𝐼 − 𝜎A)
󵄩󵄩󵄩󵄩󵄩∞
≤ 1,

(74)

hold.

Definition 6 (see [32]). Let Toeplitz matrix Q
𝑀

have the
following form:

Q
𝑀
=(

󰜚
0

󰜚
−1

⋅ ⋅ ⋅ 󰜚
2−𝑀

󰜚
1−𝑀

󰜚
1

󰜚
0
󰜚
−1

⋅ ⋅ ⋅ 󰜚
2−𝑀

... 󰜚
1

󰜚
0

d
...

󰜚
𝑀−2

⋅ ⋅ ⋅ d d 󰜚
−1

󰜚
𝑀−1

󰜚
𝑀−2

⋅ ⋅ ⋅ 󰜚
1

󰜚
0

). (75)

If the diagonals {󰜚
𝑘
}
𝑀−1

𝑘=−𝑀+1
are the Fourier coefficients of

function 𝑈(𝑥, 𝑡), that is,

󰜚
𝑘
=
1

2𝜋
∫

𝜋

−𝜋

𝑈 (𝑥, 𝑡) 𝑒
−𝑖𝑘𝑥

𝑑𝑥, (76)

then the function 𝑈(𝑥, 𝑡) is called the generating function of
Q
𝑀
.

Lemma 7 (see [33]). For the above Toeplitz matrix Q
𝑀
,

let 𝑈(𝑥, 𝑡) be a 2𝜋-periodic continuous real-valued function
defined on [−𝜋, 𝜋]. Denote 𝜆min(Q𝑀) and 𝜆max(Q𝑀) as the
smallest and largest eigenvalues of Q

𝑀
, respectively. Then one

has

𝐹min ≤ 𝜆min (Q𝑀) ≤ 𝜆max (Q𝑀) ≤ 𝐹max, (77)

where 𝐹min and 𝐹max are the minimum and maximum values
of𝑈(𝑥, 𝑡). Moreover, if 𝐹min < 𝐹max, then all eigenvalues ofQ𝑀
satisfy

𝐹min < 𝜆 (Q𝑀) < 𝐹max, (78)

for all𝑀 > 0. And furthermore if 𝐹min ≥ 0, thenQ𝑀 is positive
definite.

Theorem 8. The matrix𝐻 is positive definite.

Proof. From Definition 6, we know that the generating func-
tions of the matrices 𝐺, 𝐺+, and 𝐺− are

𝐹
𝐺
(𝑥) =

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑒
𝑖𝑘𝑥

,

𝐹
𝐺
+ (𝑥) =

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑒
𝑖(𝑘+1)𝑥

,

𝐹
𝐺
− (𝑥) =

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑒
𝑖(𝑘−1)𝑥

,

(79)

respectively.
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Therefore the generating function of the matrix𝐻 is

𝐹
𝐻
(𝑥) = 𝜇

2
𝐹
𝐺
(𝑥) − 𝜇

1
𝐹
𝐺
+ (𝑥) − 𝜇

1
𝐹
𝐺
− (𝑥) ; (80)

that is,

𝐹
𝐻
(𝑥) = 𝜇

2

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑒
𝑖𝑘𝑥

− 𝜇
1

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑒
𝑖(𝑘+1)𝑥

− 𝜇
1

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑒
𝑖(𝑘−1)𝑥

= (𝜇
2
− 2𝜇
1
cos𝑥)

∞

∑

𝑘=−∞

𝑔
(𝛼)

𝑘
𝑒
𝑖𝑘𝑥

=
𝐾𝜏

12ℎ𝛼
[6 + 𝛼sin2 (𝑥

2
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 sin(𝑥

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼

≥ 0.

(81)

It immediately follows that𝐻 is a positive definite matrix
in view of Lemma 7.

Theorem 9. The difference scheme (71) is unconditionally
stable.

Proof. Let 𝑈𝑛 and 𝑈̃𝑛 be the exact and numerical solutions
of difference equation (71). Since the matrix (𝐼 + 𝐻)−1 is
invertible, then we can obtain the following error equation:

E
𝑛

= 𝑄E
𝑛−1

, (82)

where E𝑛 = 𝑈̃𝑛 − 𝑈𝑛 and 𝑄 = (𝐼 + 𝐻)−1(𝐼 − 𝐻).
By (82), we have

E
𝑛

= 𝑄
𝑛−1

E
0

. (83)

Using (83) and Lemma 5, one has

󵄩󵄩󵄩󵄩E
𝑛󵄩󵄩󵄩󵄩∞ ≤

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑛−1
󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩󵄩
E
0
󵄩󵄩󵄩󵄩󵄩∞

≤ ‖𝑄‖
𝑛−1

∞

󵄩󵄩󵄩󵄩󵄩
E
0
󵄩󵄩󵄩󵄩󵄩∞
≤
󵄩󵄩󵄩󵄩󵄩
E
0
󵄩󵄩󵄩󵄩󵄩∞
,

(84)

whichmeans difference scheme (71) is unconditionally stable,
and so is the difference scheme (69).

5. Convergence Analysis

In this section, we give the local truncation error analysis of
difference scheme (69).

Theorem 10. The local truncation error of numerical scheme
(69) for approximating the space Riesz fractional diffusion
equation (1) at the point (𝑥

𝑚
, 𝑡
𝑛
) is O(𝜏2 + ℎ4).

Proof. We define the local truncation error at the point
(𝑥
𝑚
, 𝑡
𝑛
) as

R
𝑛

𝑚
=
2 [𝑢 (𝑥

𝑚
, 𝑡
𝑛
) − 𝑢 (𝑥

𝑚
, 𝑡
𝑛−1
)]

𝜏

+
2

𝜏
[𝜇
2

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘
, 𝑡
𝑛
)

− 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘−1

, 𝑡
𝑛
)

−𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+1

, 𝑡
𝑛
)]

+
2

𝜏
[𝜇
2

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘
, 𝑡
𝑛−1
)

− 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘−1

, 𝑡
𝑛−1
)

−𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
(𝛼)

𝑘
𝑢 (𝑥
𝑚−𝑘+1

, 𝑡
𝑛−1
)]

− 𝑓 (𝑥
𝑚
, 𝑡
𝑛
) − 𝑓 (𝑥

𝑚
, 𝑡
𝑛−1
) .

(85)

Utilizing the Taylor expansion, we have

2 [𝑢 (𝑥
𝑚
, 𝑡
𝑛
) − 𝑢 (𝑥

𝑚
, 𝑡
𝑛−1
)]

𝜏

=
𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕𝑡
+
𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛−1
)

𝜕𝑡
+ O (𝜏

2

) .

(86)

Based on (63) and (86), we obtain

R
𝑛

𝑚
= [
𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕𝑡
− 𝐾

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕|𝑥|
𝛼

− 𝑓 (𝑥
𝑚
, 𝑡
𝑛
)]

+ [
𝜕𝑢 (𝑥
𝑚
, 𝑡
𝑛−1
)

𝜕𝑡
− 𝐾

𝜕
𝛼

𝑢 (𝑥
𝑚
, 𝑡
𝑛
)

𝜕|𝑥|
𝛼

−𝑓 (𝑥
𝑚
, 𝑡
𝑛
) ] + O (𝜏

2

+ ℎ
4

) .

(87)

Substituting (1) into (87), we get the following local
truncation error:

R
𝑛

𝑚
= O (𝜏

2

+ ℎ
4

) . (88)

Next, we study the convergence of difference scheme (69).

Theorem 11. The order of the convergence of difference scheme
(69) is O(𝜏2 + ℎ4); that is to say, there exists a positive constant
𝐶 such that

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑥
𝑚
, 𝑡
𝑘
) − 𝑢
𝑘

𝑚

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶 (𝜏

2

+ ℎ
4

) . (89)
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Proof. Let 𝑒𝑛
𝑚
= 𝑢(𝑥

𝑚
, 𝑡
𝑘
) − 𝑢
𝑘

𝑚
. Then it follows from (69) and

(85) that

𝑒
𝑛

𝑚
− 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
𝑘
𝑒
𝑛

𝑚−𝑘−1

− 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
𝑘
𝑒
𝑛

𝑚−𝑘+1

+ 𝜇
2

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
𝑘
𝑒
𝑛

𝑚−𝑘

= 𝑒
𝑛−1

𝑚
+ 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
𝑘
𝑒
𝑛−1

𝑚−𝑘−1

+ 𝜇
1

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
𝑘
𝑒
𝑛−1

𝑚−𝑘+1

− 𝜇
2

𝑚−1

∑

𝑘=−𝑀+𝑚+1

𝑔
𝑘
𝑒
𝑛−1

𝑚−𝑘
+
𝜏

2
R
𝑛

𝑚
.

(90)

Denote

𝐸
𝑛

= (𝑒
𝑛

1
, 𝑒
𝑛

2
, . . . , 𝑒

𝑛

𝑀−1
)
𝑇

, 𝑅
𝑛

= (R
𝑛

1
,R
𝑛

2
, . . . ,R

𝑛

𝑀−1
)
𝑇

;

(91)

then (90) can be written in a matrix form

(𝐼 + 𝐻)𝐸
𝑛

= (𝐼 − 𝐻)𝐸
𝑛−1

+
𝜏

2
𝑅
𝑛

. (92)

Furthermore, we can obtain

𝐸
𝑛

= 𝑄𝐸
𝑛−1

+ 𝑆

= 𝑄 (𝑄𝐸
𝑛−2

+ 𝑆) + 𝑆

= ⋅ ⋅ ⋅

= (𝑄
𝑛−1

+ 𝑄
𝑛−2

+ ⋅ ⋅ ⋅ + 𝐼) 𝑆,

(93)

where 𝑆 = (𝜏/2)(𝐼 + 𝐻)−1𝑅𝑛.
According to Lemma 5 andTheorem 10, we get

‖𝑆‖
∞
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜏

2
(𝐼 + 𝐻)

−1

𝑅
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

≤
𝜏

2

󵄩󵄩󵄩󵄩󵄩
(𝐼 + 𝐻)

−1
󵄩󵄩󵄩󵄩󵄩∞

󵄩󵄩󵄩󵄩𝑅
𝑛󵄩󵄩󵄩󵄩∞

≤ 𝜏𝐶
1
(𝜏
2

+ ℎ
4

) .

(94)

Combining (93) and (94) gives
󵄩󵄩󵄩󵄩𝐸
𝑛󵄩󵄩󵄩󵄩∞ =

󵄩󵄩󵄩󵄩󵄩
(𝑄
𝑛−1

+ 𝑄
𝑛−2

+ ⋅ ⋅ ⋅ + 𝐼) 𝑆
󵄩󵄩󵄩󵄩󵄩∞

≤
󵄩󵄩󵄩󵄩󵄩
(𝑄
𝑛−1

+ 𝑄
𝑛−2

+ ⋅ ⋅ ⋅ + 𝐼)
󵄩󵄩󵄩󵄩󵄩∞
‖𝑆‖
∞

≤ (
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑛−1
󵄩󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩󵄩
𝑄
𝑛−2
󵄩󵄩󵄩󵄩󵄩∞
+ ⋅ ⋅ ⋅ + ‖𝐼‖

∞
) ‖𝑆‖
∞

≤ (‖𝑄‖
𝑛−1

∞
+ ‖𝑄‖

𝑛−2

∞
+ ⋅ ⋅ ⋅ + ‖𝐼‖

∞
) ‖𝑆‖
∞

≤ 𝑛𝜏𝐶
1
(𝜏
2

+ ℎ
4

) .

(95)

Noting that 𝑛𝜏 ≤ 𝑁𝜏 = 𝑇, we easily get

󵄩󵄩󵄩󵄩𝐸
𝑛󵄩󵄩󵄩󵄩∞ ≤ 𝑇𝐶1 (𝜏

2

+ ℎ
4

) = 𝐶 (𝜏
2

+ ℎ
4

) , (96)

where 𝐶 = 𝑇𝐶
1
. This completes the proof.

6. Numerical Examples

In the present section, some numerical examples are pre-
sented to demonstrate the theoretical analysis.

Example 1. Consider the function 𝑢(𝑥) = 𝑥2(1 − 𝑥)2, 𝑥 ∈
[0, 1].

The Riesz fractional derivative of the function 𝑢(𝑥) is

𝜕
𝛼

𝑢 (𝑥)

𝜕|𝑥|
𝛼
= −sec(𝜋

2
𝛼){

1

Γ (3 − 𝛼)
[𝑥
2−𝛼

+ (1 − 𝑥)
2−𝛼

]

−
6

Γ (4 − 𝛼)
[𝑥
3−𝛼

+ (1 − 𝑥)
3−𝛼

]

+
12

Γ (5 − 𝛼)
[𝑥
4−𝛼

+ (1 − 𝑥)
4−𝛼

]} .

(97)

Table 1 lists the absolute errors and convergence orders
at 𝑥 = 0.5 by numerical scheme (46) for function 𝑢(𝑥) with
different 𝛼.

Example 2. Consider the function 𝑢(𝑥) = 𝑥6(1 − 𝑥)6, 𝑥 ∈
[0, 1].

The Riesz fractional derivative of the function 𝑢(𝑥) is

𝜕
𝛼

𝑢 (𝑥)

𝜕|𝑥|
𝛼
=
1

2
𝑒
𝑡sec(𝜋

2
𝛼){

Γ (7)

Γ (7 − 𝛼)
[𝑥
6−𝛼

+ (1 − 𝑥)
6−𝛼

]

−
6Γ (8)

Γ (8 − 𝛼)
[𝑥
7−𝛼

+ (1 − 𝑥)
7−𝛼

]

+
15Γ (9)

Γ (9 − 𝛼)
[𝑥
8−𝛼

+ (1 − 𝑥)
8−𝛼

]

−
20Γ (10)

Γ (10 − 𝛼)
[𝑥
9−𝛼

+ (1 − 𝑥)
9−𝛼

]

+
15Γ (8)

Γ (11 − 𝛼)
[𝑥
10−𝛼

+ (1 − 𝑥)
10−𝛼

]

−
6Γ (12)

Γ (12 − 𝛼)
[𝑥
11−𝛼

+ (1 − 𝑥)
11−𝛼

]

+
Γ (13)

Γ (13−𝛼)
[𝑥
12−𝛼

+(1 − 𝑥)
12−𝛼

]} .

(98)

Table 2 lists the absolute errors and convergence orders
at 𝑥 = 0.5 by numerical scheme (47) for function 𝑢(𝑥) with
different 𝛼. These computational results confirm the second-
order and fourth-order of the numerical formulas (46) and
(47), respectively.
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Table 1: The absolute errors and convergence orders of Example 1
by numerical scheme (46).

𝛼 ℎ The absolute error The convergence order

0.2

1

10
3.630966𝑒 − 003 —

1

20
9.120270𝑒 − 004 1.9932

1

40
2.285315𝑒 − 004 1.9967

1

80
5.719787𝑒 − 005 1.9984

0.4

1

10
5.124542𝑒 − 003 —

1

20
1.289681𝑒 − 003 1.9904

1

40
3.234889𝑒 − 004 1.9952

1

80
8.100606𝑒 − 005 1.9976

0.6

1

10
4.629914𝑒 − 003 —

1

20
1.164707𝑒 − 003 1.9910

1

40
2.920982𝑒 − 004 1.9954

1

80
7.314118𝑒 − 005 1.9977

0.8

1

10
2.652282𝑒 − 003 —

1

20
6.653815𝑒 − 004 1.9950

1

40
1.666617𝑒 − 004 1.9973

1

80
4.170691𝑒 − 005 1.9986

1.2

1

10
2.371107𝑒 − 003 —

1

20
5.878877𝑒 − 004 2.0119

1

40
1.464631𝑒 − 004 2.0050

1

80
3.655831𝑒 − 005 2.0023

1.4

1

10
3.614913𝑒 − 003 —

1

20
8.891952𝑒 − 004 2.0234

1

40
2.207491𝑒 − 004 2.0101

1

80
5.500869𝑒 − 005 2.0047

Table 1: Continued.

𝛼 ℎ The absolute error The convergence order

1.6

1

10
3.311900𝑒 − 003 —

1

20
8.088550𝑒 − 004 2.0337

1

40
2.001866𝑒 − 004 2.0145

1

80
4.981273𝑒 − 005 2.0068

1.8

1

10
1.748268𝑒 − 003 —

1

20
4.265789𝑒 − 004 2.0350

1

40
1.055454𝑒 − 004 2.0149

1

80
2.625954𝑒 − 005 2.0069

Example 3. We consider the equation

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
= 𝐾

𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕|𝑥|
𝛼
+ 𝑓 (𝑥, 𝑡) ,

0 < 𝑥 < 1, 0 < 𝑡 ≤ 1,

(99)

where

𝑓 (𝑥, 𝑡) = (2𝛼 + 1) 𝑡
2𝛼

𝑥
4

(1 − 𝑥)
4

+ 𝑡
2𝛼+1sec(𝜋

2
𝛼)

× {
12

Γ (5 − 𝛼)
[𝑥
4−𝛼

+ (1 − 𝑥)
4−𝛼

]

−
240

Γ (6 − 𝛼)
[𝑥
5−𝛼

+ (1 − 𝑥)
5−𝛼

]

+
2160

Γ (7 − 𝛼)
[𝑥
6−𝛼

+ (1 − 𝑥)
6−𝛼

]

−
10080

Γ (8 − 𝛼)
[𝑥
7−𝛼

+ (1 − 𝑥)
7−𝛼

]

+
20160

Γ (9 − 𝛼)
[𝑥
8−𝛼

+ (1 − 𝑥)
8−𝛼

]} ,

(100)

together with the initial condition 𝑢(𝑥, 0) = 0 and homoge-
neous boundary value conditions.

The analytical solution of (99) is 𝑢(𝑥, 𝑡) = 𝑡2𝛼+1𝑥4(1−𝑥)4.
Table 3 lists the maximum error and time and space

convergence orders for different 𝛼. Numerical results show
that the convergence order of the difference scheme (69) is
𝑂(𝜏
2

+ ℎ
4

), which are in line with our theoretical analysis.
Figures 1 and 2 show the comparison of the analytical and

numerical solutions with 𝛼 = 1.1 at 𝑡 = 0.2 and 𝛼 = 1.9 at 𝑡 =
0.8, respectively. It can be seen that the numerical solutions
are in excellent agreement with the analytical solutions.
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Table 2: The absolute errors and convergence orders of Example 2
by numerical scheme (47).

𝛼 ℎ The absolute error The convergence order

0.2

1

20
1.571776𝑒 − 008 —

1

40
9.923695𝑒 − 010 3.9854

1

80
6.218021𝑒 − 011 3.9963

1

160
3.888658𝑒 − 012 3.9991

0.4

1

20
6.255711𝑒 − 008 —

1

40
3.955450𝑒 − 009 3.9833

1

80
2.479333𝑒 − 010 3.9958

1

160
1.550707𝑒 − 011 3.9990

0.6

1

20
1.660570𝑒 − 007 —

1

40
1.051535𝑒 − 008 3.9811

1

80
6.593628𝑒 − 010 3.9953

1

160
4.124394𝑒 − 011 3.9988

0.8

1

20
3.501076𝑒 − 007 —

1

40
2.219986𝑒 − 008 3.9792

1

80
1.392502𝑒 − 009 3.9948

1

160
8.711096𝑒 − 011 3.9987

1.2

1

20
7.029869𝑒 − 007 —

1

40
4.446255𝑒 − 008 3.9828

1

80
2.787163𝑒 − 009 3.9957

1

160
1.743236𝑒 − 010 3.9990

1.4

1

20
4.372243𝑒 − 008 —

1

40
3.985260𝑒 − 009 3.4556

1

80
2.690303𝑒 − 010 3.8888

1

160
1.712778𝑒 − 011 3.9734

Table 2: Continued.

𝛼 ℎ The absolute error The convergence order

1.6

1

20
3.751536𝑒 − 006 —

1

40
2.440706𝑒 − 007 3.9421

1

80
1.540687𝑒 − 008 3.9857

1

160
9.653215𝑒 − 010 3.9964

1.8

1

20
1.592788𝑒 − 005 —

1

40
1.034107𝑒 − 006 3.9451

1

80
6.524548𝑒 − 008 3.9864

1

160
4.087469𝑒 − 009 3.9966

Numerical solution
Analytical solution

u
(x
,
t
=
0
.2
)

×10
−5

x

2.5

2

1.5

1

0.5

0

0 0.2 0.4 0.6 0.8 1

Figure 1: Comparison between the analytical solution and the
numerical solution at 𝑡 = 0.2 with 𝛼 = 1.1 in Example 3 (𝜏 =
1/50, ℎ = 1/50).

Figures 3, 4, 5, and 6 display the numerical and analytical
solutions surface with𝛼 = 1.2 and𝛼 = 1.8. By Figures 3–6, we
find that the corresponding two groups of figures are almost
the same, respectively.

7. Conclusions

In this paper, we construct one second-order method and
two fourth-order methods for the Riesz fractional derivative.
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Table 3: The maximum errors and temporal and spatial convergence orders of Example 3 by difference scheme (66).

𝛼 Themaximum errors Temporal convergence orders Spatial convergence orders

1.2

ℎ =
1

4
, 𝜏 =

1

2
3.070974𝑒 − 004 — —

ℎ =
1

8
, 𝜏 =

1

8
2.038855𝑒 − 005 1.9564 3.9129

ℎ =
1

16
, 𝜏 =

1

32
1.318397𝑒 − 006 1.9755 3.9509

ℎ =
1

32
, 𝜏 =

1

128
8.371766𝑒 − 008 1.9886 3.9771

ℎ =
1

64
, 𝜏 =

1

512
5.279883𝑒 − 009 1.9935 3.9870

ℎ =
1

128
, 𝜏 =

1

2048
3.486707𝑒 − 010 1.9603 3.9206

1.4

ℎ =
1

4
, 𝜏 =

1

2
3.715656𝑒 − 004 — —

ℎ =
1

8
, 𝜏 =

1

8
2.465865𝑒 − 005 1.9567 3.9135

ℎ =
1

16
, 𝜏 =

1

32
1.603083𝑒 − 006 1.9716 3.9432

ℎ =
1

32
, 𝜏 =

1

128
1.022389𝑒 − 007 1.9854 3.9708

ℎ =
1

64
, 𝜏 =

1

512
6.472320𝑒 − 009 1.9908 3.9815

ℎ =
1

128
, 𝜏 =

1

2048
4.083361𝑒 − 010 1.9932 3.9865

1.6

ℎ =
1

4
, 𝜏 =

1

2
4.193160𝑒 − 004 — —

ℎ =
1

8
, 𝜏 =

1

8
2.775395𝑒 − 005 1.9586 3.9173

ℎ =
1

16
, 𝜏 =

1

32
1.810618𝑒 − 006 1.9691 3.9381

ℎ =
1

32
, 𝜏 =

1

128
1.158839𝑒 − 007 1.9829 3.9657

ℎ =
1

64
, 𝜏 =

1

512
7.363046𝑒 − 009 1.9881 3.9762

ℎ =
1

128
, 𝜏 =

1

2048
4.662698𝑒 − 010 1.9905 3.9811

1.8

ℎ =
1

4
, 𝜏 =

1

2
4.417615𝑒 − 004 — —

ℎ =
1

8
, 𝜏 =

1

8
2.895409𝑒 − 005 1.9657 3.9314

ℎ =
1

16
, 𝜏 =

1

32
1.884230𝑒 − 006 1.9709 3.9417

ℎ =
1

32
, 𝜏 =

1

128
1.204909𝑒 − 007 1.9835 3.9670

ℎ =
1

64
, 𝜏 =

1

512
7.658088𝑒 − 009 1.9879 3.9758

ℎ =
1

128
, 𝜏 =

1

2048
4.855499𝑒 − 010 1.9896 3.9793

Later on, a fourth-order numerical formula is used for the
Riesz space fractional diffusion equation. The stability and
convergence of this numerical method are analyzed by the
matrix method in detail. Finally, some numerical results are
given to demonstrate the effectiveness of numerical method.
From the above results, it is possible to claim that the
methods and techniques discussed in this paper are useful

for solving some other fractional differential equations with
Riesz derivatives.
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Numerical solution
Analytical solution

x

0 0.2 0.4 0.6 0.8 1

u
(x
,
t
=
0
.8
)

×10
−3

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Figure 2: Comparison between the analytical solution and the
numerical solution at 𝑡 = 0.8 with 𝛼 = 1.9 in Example 3 (𝜏 = 1/100,
ℎ = 1/80).
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Figure 3: The numerical solution surface when 𝛼 = 1.2 in
Example 3 (𝜏 = 1/500, ℎ = 1/100).

×10
−3

t
x

𝛼 = 1.2

4

3

2

1

0
1

0.5

0 0
0.2

0.4
0.6

0.8
1

u
(x
,
t)

Figure 4:Theanalytical solution surfacewhen𝛼 = 1.2 in Example 3.
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Figure 5: The numerical solution surface when 𝛼 = 1.8 in
Example 3 (𝜏 = 1/50, ℎ = 1/80).
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Figure 6:Theanalytical solution surfacewhen𝛼 = 1.8 in Example 3.
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