
Research Article
Numerical Solutions of a Class of Nonlinear Volterra
Integral Equations

H. S. Malindzisa and M. Khumalo

Department of Pure and Applied Mathematics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa

Correspondence should be addressed to H. S. Malindzisa; hlukaphi@gmail.com

Received 10 April 2014; Revised 17 June 2014; Accepted 26 June 2014; Published 9 July 2014

Academic Editor: Chun-Gang Zhu

Copyright © 2014 H. S. Malindzisa and M. Khumalo. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We consider numerical solutions of a class of nonlinear (nonstandard) Volterra integral equations. We first prove the existence
and uniqueness of the solution of the Volterra integral equation in the context of the space of continuous functions over a closed
interval. We then use one-point collocation methods with a uniform mesh to construct solutions of the nonlinear (nonstandard)
VIE and quadrature rules. We conclude that the repeated Simpson’s rule gives better solutions when a reasonably large value of the
stepsize is used.

1. Introduction

In this paper we study the nonlinear (nonstandard) Volterra
integral equation of the second kind of the form

𝑢 (𝑡) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠)

𝑗

, 𝑡 ∈ [0, 𝑇] , (1)

where (𝑟 ∈ N, 𝑟 ≥ 2), with 𝑏
𝑗
∈ R, and 𝑔

𝑗
, 𝑘
𝑗
are

continuous functions. Volterra integral equations play an
important part in scientific and engineering problems such
as population dynamics, spread of epidemics, semiconduc-
tor devices, wave propagation, superfluidity, and travelling
wave analysis, Saveljeva [1]. In cases where the kernel is of
convolution type (𝐾(𝑡, 𝑠) = 𝐾(𝑡 − 𝑠)) the solutions to (1)
include elliptic functions and natural generalizations of these
functions which also have wide applications in the fields of
science and engineering [2]. This class of Volterra integral
equations was considered by Sloss and Blyth [2] who proved
the existence and uniqueness of the solution in the Banach
space𝐿2 and applied theCorrington’sWalsh functionmethod
to (1).

Much work has been done in the study of numerical
solutions to Volterra integral equations using collocation
methods [1, 3–7]. Benitez and Bolos [8] pointed out that col-
location methods have proven to be a very suitable technique

for approximating solutions to nonlinear integral equations
because of their stability and accuracy. Other authors such
as [9–12] used quadrature rules like repeated trapezoidal
and repeated Simpson’s rule to solve linear Volterra integral
equations. However, collocation methods and quadrature
rules have not been used to approximate solutions to (1).

2. The Numerical Methods

2.1. The Collocation Method. In our work we focus on one-
point collocation methods (see [13]).

Let 𝑡
𝑛
:= 𝑛ℎ (𝑛 = 0, 1, . . . , 𝑁 − 1) define a uniform

partition for 𝐼 = [0, 𝑇] and set 𝑍
𝑁
:= 𝑡
0
, . . . , 𝑡

𝑁
, 𝐼
0
:=

[𝑡
0
, 𝑡
1
] 𝐼
𝑛
:= (𝑡
𝑛
, 𝑡
𝑛+1
] (1 ≤ 𝑛 ≤ 𝑁 − 1). The solution to (1)

will be approximated by using collocation in the piecewise
constant polynomial space 𝑆−1

0
(𝑍
𝑁
).

For a given real number 𝑐
1
, define the set 𝑋

𝑁
:= 𝑡
𝑛,1

of
collocation points by

𝑡
𝑛,1
= 𝑡
𝑛
+ 𝑐
1
ℎ (0 ≤ 𝑐

1
≤ 1, 𝑛 = 0, . . . , 𝑁 − 1) . (2)

The collocation solution 𝑢
𝑛
∈ 𝑆
−1

0
(𝑍
𝑁
) is defined by the

collocation equation

𝑢
𝑛
(𝑡) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠)

𝑗

, 𝑡 ∈ 𝑋
𝑁
, (3)
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since

𝑢
𝑛
(𝑡) = 𝑢

𝑛
(𝑡
𝑛
+ ]ℎ) = 𝐿

1
(]) 𝑈
𝑛,1
, ] ∈ (0, 1] , (4)

where 𝐿
1
(]) = 1 and is a Lagrange fundamental polynomial.

Thus for 𝑡 = 𝑡
𝑛,1
:= 𝑡
𝑛
+ 𝑐
1
ℎ and 0 < 𝑐

1
≤ 1 the collocation

equation (3) assumes the form

𝑢
𝑛
(𝑡) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡) + ∫

𝑡
𝑛

0

𝑘
𝑗
(𝑡, 𝑠) 𝑢

𝑖
(𝑠)

+ℎ∫

𝑐
1

0

𝑘
𝑗
(𝑡, 𝑡
𝑛
+ 𝑠ℎ) 𝑢

𝑛
(𝑡
𝑛
+ 𝑠ℎ) 𝑑𝑠)

𝑗

.

(5)

Expressing the collocation equation in terms of the stage
values we get

𝑈
𝑛,1
=

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡
𝑛,1
) + 𝐹
𝑗𝑛
(𝑡
𝑛,1
)

+ ℎ(∫

𝑐
1

0

𝑘
𝑗
(𝑡
𝑛,1
, 𝑡
𝑛
+ 𝑠ℎ)𝑑𝑠)𝑈

𝑛,1
)

𝑗

.

(6)

Let 𝑡 ∈ 𝐼
𝑛
and define

𝐹
𝑗𝑛
(𝑡) := ∫

𝑡
𝑛

0

𝑘
𝑗
(𝑡, 𝑠) 𝑢

𝑖
(𝑠) 𝑑𝑠. (7)

Then

𝐹
𝑗𝑛
(𝑡
𝑛,1
) = ℎ

𝑛−1

∑

𝑖=0

(∫

1

0

𝑘
𝑗
(𝑡
𝑛,1
, 𝑡
𝑖
+ 𝑠ℎ) 𝑑𝑠)𝑈

𝑖,1
. (8)

The term 𝐹
𝑗𝑛
(𝑡
𝑛,1
) is called the lag term corresponding to the

collocation solution, [13].

Iterated Collocation. The iterated approximation 𝑢𝐼 corre-
sponding to 𝑢 is defined by

𝑢
𝐼

(𝑡) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠)

𝑗

𝑡 ∈ 𝐼 (9)

(see [4, 5, 14]).
Set 𝑡 = 𝑡

𝑛
∈ 𝑍
𝑁
and use (4); we may write (9) in the form

𝑢
𝐼

(𝑡
𝑛
) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡
𝑛
) + ℎ

𝑛−1

∑

𝑖−0

∫

1

0

𝑘
𝑗
(𝑡
𝑛
, 𝑡
𝑖
+ 𝑠ℎ)𝑑𝑠𝑈

𝑖,1
)

𝑗

.

(10)

2.2. Repeated Trapezoidal Rule. Using the trapezoidal rule we
construct the solution to the integral equation (1) (see [12]).
Let

𝑡
0
= 𝑎, 𝑡

𝑛
= 𝑏

𝑡
𝑖
= 𝑡
0
+ 𝑖ℎ 𝑖 = 0, 1, 2, . . . , 𝑛

𝑢 (𝑡
𝑖
) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡
𝑖
) +

𝑖

∑

𝑙=1

∫

𝑡
𝑖

𝑡
𝑙−1

𝑘
𝑗
(𝑡
𝑖
, 𝑠) 𝑢 (𝑠) 𝑑𝑠)

𝑗

𝑖 = 1, 2, . . . , 𝑛.

(11)

The approximation of the integral in (11) by repeated
trapezoidal rule will give the following system:

𝑢 (𝑡
0
) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
)

𝑗

,

𝑢 (𝑡
1
) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡
1
)

+

ℎ

2

(𝑘
𝑗
(𝑡
1
, 𝑡
0
)𝑢(𝑡
0
) + 𝑘
𝑗
(𝑡
1
, 𝑡
1
)𝑢(𝑡
1
)))

𝑗

,

𝑢 (𝑡
2
) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡
2
) +

ℎ

2

𝑘
𝑗
(𝑡
2
, 𝑡
0
) 𝑢 (𝑡
0
)

+ℎ𝑘
𝑗
(𝑡
2
, 𝑡
1
) 𝑢 (𝑡
1
) +

ℎ

2

𝑘
𝑗
(𝑡
2
, 𝑡
2
) 𝑢 (𝑡
2
))

𝑗

,

𝑢
3
=

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡
3
) +

ℎ

2

𝑘
𝑗
(𝑡
3
, 𝑡
0
) 𝑢 (𝑡
0
)

+ ℎ (𝑘
𝑗
(𝑡
3
, 𝑡
1
) 𝑢 (𝑡
1
)

+𝑘
𝑗
(𝑡
3
, 𝑡
2
) 𝑢 (𝑡
2
))

+

ℎ

2

𝑘
𝑗
(𝑡
3
, 𝑡
3
) 𝑢 (𝑡
3
))

𝑗

,

...

𝑢 (𝑡
𝑛
) =

𝑟

∑

𝑗=1

𝑏
𝑗
(𝑔
𝑗
(𝑡
𝑛
) +

ℎ

2

𝑘
𝑗
(𝑡
𝑛
, 𝑡
0
) 𝑢 (𝑡
0
)

+ ℎ𝑘
𝑗
(𝑡
𝑛
, 𝑡
1
) 𝑢 (𝑡
1
) + ⋅ ⋅ ⋅ + ℎ𝑘

𝑗
(𝑡
𝑛
, 𝑡
𝑛−1
)

× 𝑢(𝑡
𝑛−1
) +

ℎ

2

𝑘
𝑗
(𝑡
𝑛
, 𝑡
𝑛
)𝑢(𝑡
𝑛
))

𝑗

.

(12)

2.3. Repeated Simpson’s Rule. We use repeated Simpson’s rule
to construct the solution to the integral equation (1) (see [9]).

If 𝑛 is even, then Simpson’s rule may be applied to each
subinterval [𝑡

2𝑖
, 𝑡
2𝑖+1
, 𝑡
2𝑖+2
]. For 𝑖 = 0, 1, . . . , (𝑁/2)−1we have

∫

𝑡
2𝑖+2

𝑡
2𝑖

𝑓 (𝑡) 𝑑𝑠 ≃

ℎ

3

[𝑓 (𝑡
2𝑖
) + 4𝑓 (𝑡

2𝑖+1
) + 𝑓 (𝑡

2𝑖+2
)] . (13)

Summing up,

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡 =

ℎ

3

𝑁−1

∑

𝑙=0

[𝑓 (𝑡
2𝑖
) + 4𝑓(

𝑡
2𝑙
+ 𝑡
2𝑙+2

2

) + 𝑓 (𝑡
2𝑙+2
)] .

(14)

We use (14) to solve the nonlinear (nonstandard) VIE. The
approximation of (1) in the even nodes 𝑡

2𝑚
is given by

𝑢
2𝑚
=

𝑟

∑

𝑗=1

𝑏
𝑗
[𝑔
𝑗
(𝑡
2𝑚
) + ∫

𝑡
2𝑚

𝑎

𝑘
𝑗
(𝑡
2𝑚
, 𝑠)𝑢(𝑠)𝑑𝑠]

𝑗

. (15)
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Using

𝑢 (𝑡
2𝑙+1
) ≃

𝑢 (𝑡
2𝑙
) + 𝑢 (𝑡

2𝑙+2
)

2

. (16)

we obtain

𝑢 (𝑡
2𝑚
) =

𝑟

∑

𝑗=1

𝑏
𝑗
[𝑔
𝑗
(𝑡
2𝑚
) +

ℎ

3

𝑚−1

∑

𝑙=0

𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑙
) 𝑢 (𝑡
2𝑙
)

+ 4𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑙+1
)

𝑢 (𝑡
2𝑙
) + 𝑢 (𝑡

2𝑙+2
)

2

+ 𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑙+2
) 𝑢(𝑡
2𝑙+2
)]

𝑗

𝑢 (𝑡
2𝑚
) =

𝑟

∑

𝑗=1

𝑏
𝑗
[𝑔
𝑗
(𝑡
2𝑚
)

+

ℎ

3

𝑚−1

∑

𝑙=0

(𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑙
) + 2𝑘

𝑗
(𝑡
2𝑚
, 𝑡
2𝑙+1
)) 𝑢 (𝑡

2𝑙
)

+ (𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑙+1
) + 2𝑘

𝑗
(𝑡
2𝑚
, 𝑡
𝑙+1
))

× 𝑢 (𝑡
2𝑙+2
)]

𝑗

𝑢 (𝑡
2𝑚
) =

𝑟

∑

𝑗=1

𝑏
𝑗
[𝑔
𝑗
(𝑡
2𝑚
) +

ℎ

3

(𝑘
𝑗
(𝑡
2𝑚
, 𝑡
0
) + 2𝑘

𝑗
(𝑡
2𝑚
, 𝑡
1
))

+

ℎ

3

(𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑚
) + 𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑚−1

)) 𝑢 (𝑡
2𝑚
)

+

2ℎ

3

𝑚−1

∑

𝑙=0

(𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑙−1
) + 𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑙
)

+ 𝑘
𝑗
(𝑡
2𝑚
, 𝑡
2𝑙+1
)) 𝑢(𝑡

2𝑙
)]

𝑗

.

(17)

3. Existence and Uniqueness of the Solution

The following theorem shows that when 𝑟 = 2 and 𝑏
1
= 0

the integral equation (1) has a unique solution in the space
𝐶[0, 𝑑].Theorem 2 gives sufficient conditions for the solution
to (1) to exist. We prove the existence and uniqueness of the
solution using a procedure analogous to the one used in Sloss
and Blyth [2].

Theorem 1. The integral equation

𝑧 (𝑡) = 𝑏(𝑔(𝑡) + ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑧(𝑠)𝑑𝑠)

2

, (18)

with 𝑔 ∈ 𝐶[0, 1], 𝑏 ∈ R, and 𝑘(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]), has
a unique solution 𝑢 and the solution belongs to 𝐼

𝑑
= [0, 𝑑],

0 < 𝑑 ≤ 1, with

0 < 𝑑 <

1

𝐾

[

1

2𝐾 |𝑏|

−




𝑔



∞
] − ‖𝑢‖

∞
, (19)

where

𝐾 = sup [0, 1] × [0, 1] |𝑘 (𝑡, 𝑠)| . (20)

Proof. The existence of the solution is shown in the corollary
of Theorem 2 (in the next section). Here we prove the
uniqueness of the solution. Let 𝑢 and 𝑢 + V be solutions of
(18).

Then,

V (𝑡) = 𝑏 [𝑔 (𝑡) ∫
𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠

+ 2∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 ⋅ ∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠)

+ (∫

𝑡

0

𝑘(𝑡, 𝑠)V(𝑠)𝑑𝑠)
2

] .

(21)

Define 𝑇
𝑛
: 𝐶[0, 1] × 𝐶[0, 1] by

𝑇
𝑛
𝑧 (𝑡) = 𝜒

𝑛
𝑏 [2𝑔 (𝑡) ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑧 (𝑠) 𝑑𝑠

+ 2∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 ⋅ ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑧 (𝑠) 𝑑𝑠

+ (∫

𝑡

0

𝑘(𝑡, 𝑠)𝑧(𝑠)𝑑𝑠)

2

] ,

(22)

where 𝜒
𝑛
is a sequence of characteristic functions of intervals

[0, 𝐴
𝑛
] ⊂ [0, 1].

Let V
1
+ V
2
∈ 𝐶[0, 1]; consider

𝑇
𝑛
V
1
(𝑡) − 𝑇

𝑛
V
2
(𝑡)

= 𝜒
𝑛
(𝑡) 𝑏 [2𝑔 (𝑡) + 2∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑘 (𝑡, 𝑠) (V
1
(𝑠) + V

2
(𝑠)) 𝑑𝑠]

⋅ ∫

𝑡

0

𝑘 (𝑡, 𝑠) (V
1
(𝑠) − V

2
(𝑠)) 𝑑𝑠

def
= 𝑏𝑧 (𝑢, V

1
, V
2
) (𝑡) ∫

𝑡

0

𝑘 (𝑡, 𝑠) (V
1
(𝑠) − V

2
(𝑠)) 𝑑𝑠;

(23)

then,




𝑇
𝑛
V
1
(𝑡) − 𝑇

𝑛
V
2
(𝑡)



∞

≤











𝑏𝑧∫

1

0

𝐾 (𝑡, 𝑠) (V
1
(𝑠) − V

2
(𝑠)) 𝑑𝑠









∞

.

(24)
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Let 𝑑 = max
0≤𝑡≤1

(|V
1
(𝑡)|, |V

2
(𝑡)|) and take 𝑇

𝑛
: [0, 𝑑] →

[0, 1].
Then,

‖𝑧‖
∞
≤ 2




𝑔



∞
+ 2𝐾‖𝑢‖

∞
+ 2𝐾𝑑; (25)

therefore




𝑇
𝑛
V
1
(𝑡) − 𝑇

𝑛
V
2
(𝑡)



∞

≤ |𝑏| (2




𝑔



∞
+ 2𝐾‖𝑢‖

∞
+ 2𝐾𝑑)𝐾





V
1
− V
2




∞
.

(26)

Thus 𝑇
𝑛
is contractive if

2 |𝑏| 𝐾




𝑔



∞
+ 2𝐾
2

‖𝑢‖
∞
|𝑏| < 1. (27)

That is,

0 < 𝑑 <

1

𝐾

[

1

2𝐾 |𝑏|

−




𝑔



∞
] − ‖𝑢‖

∞
. (28)

Clearly,𝑇
𝑛
maps𝐶[0, 𝑑] onto itself if (19) is satisfied. Also,

𝑇
𝑛
(0) = 0.
Suppose V(𝑡) ̸= 0 is a solution of (21), such that V may lie

outside of [0, 𝑑]. Then,

(𝜒
𝑛
V) (𝑡) = 𝜒

𝑛
𝑏 [2𝑔 (𝑡) ∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠

+ 2∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 ⋅ ∫

𝑡

0

𝑘 (𝑡, 𝑠) V (𝑠) 𝑑𝑠

+(∫

𝑡

0

𝑘(𝑡, 𝑠)V(𝑠)𝑑𝑠)
2

]

= 𝑏 [2𝑔 (𝑡) 𝜒
𝑛
(𝑡) ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝜒
𝑛
(𝑠) V (𝑠) 𝑑𝑠

+ 2∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠𝜒
𝑛
(𝑡)

× ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝜒
𝑛
(𝑠) V (𝑠) 𝑑𝑠

+(𝜒
𝑛
(𝑡) ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝜒
𝑛
(𝑠) V (𝑠) 𝑑𝑠)

2

] ,

= 𝑇
𝑛
(𝜒
𝑛
V) (𝑡) ,

(29)

which shows that 𝜒
𝑛
V is a fixed point of 𝑇

𝑛
for all 𝑛. Since

𝜒
𝑛
𝑦 → 0 in 𝐶[0, 1] as 𝐴

𝑛
→ 0, and for V ̸= 0, we can select

𝜒
𝑛
V ∈ [0, 𝑑]. But this is impossible since 0 is the only solution

in [0, 𝑑]. Therefore the solution 𝑢 of (18) is unique in 𝐶[0, 𝑑]
if 𝑑 > 0 exists that satisfies (19).

Theorem 2. There exists a solution 𝑢 of (1), where 𝑢 ∈ 𝐶[0, 𝑑]
provided that

𝑁
𝑏

𝑟

∑

𝑗=1

𝑗






𝑏
𝑗






(






𝑔
𝑗





∞
+ 𝐾
𝑗
𝑑)

𝑗−1

𝐾
𝑗
< 1,

𝑟

∑

𝑗=1






𝑏
𝑗






(






𝑔
𝑗





∞
+ 𝐾
𝑗
𝑑) < 𝑑,

(30)

where𝑁
𝑏
is the number of nonzero 𝑏

𝑗
.

Proof. Let 𝑇V(𝑡) = ∑
𝑟

𝑗=1
𝑏
𝑗
(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)V(𝑠)𝑑𝑠)

𝑗

and
V
1
, V
2
∈ [0, 𝑑] for a suitable 𝑑, and consider

𝑇
V
2
(𝑡) − 𝑇

V
1
(𝑡)

=

𝑟

∑

𝑗=1

𝑏
𝑗
[(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)V

2
(𝑠)𝑑𝑠)

𝑗

− (𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)V

1
(𝑠)𝑑𝑠)

𝑗

]

=

𝑟

∑

𝑗=1

𝑏
𝑗
[(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠) V

2
(𝑠) 𝑑𝑠 − 𝑔

𝑗
(𝑡)

− ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠) V

1
(𝑠) 𝑑𝑠)

⋅

𝑗−1

∑

𝑖=0

(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠) V

2
(𝑠)
𝑗

𝑑𝑠)

⋅(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)V

1
(𝑠)
𝑗

𝑑𝑠)

𝑗−1−𝑖

]

def
=

𝑟

∑

𝑗=1

𝑏
𝑗
𝐹
𝑗
(𝑡, V
1
, V
2
) ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠) (V

2
(𝑠) − V

1
(𝑠)) 𝑑𝑠.

(31)

So






𝑇
V
2
− 𝑇
V
1





∞

≤ 𝑁
𝑏

𝑟

∑

𝑗=1

𝑏
𝑗
sup𝐹
𝑗
(𝑡, V
1
, V
2
) ⋅ 𝐾
𝑗





V
2
− V
1




∞
;






𝐹
𝑗





∞

≤ 𝑗(






𝑔
𝑗





∞
+ 𝐾
𝑗
𝑑)

𝑗−1

(32)

therefore






𝑇
V
2
− 𝑇
V
1





∞

≤ 𝑁
𝑏

𝑟

∑

𝑗=1

𝑗𝑏
𝑗
(






𝑔
𝑗





∞
+ 𝐾
𝑗
𝑑)

𝑗−1

𝐾
𝑗





V
2
− V
1




∞
.

(33)

Consequently 𝑇 is a contraction mapping if

𝑁
𝑏

𝑟

∑

𝑗=1

𝑗






𝑏
𝑗






(






𝑔
𝑗





∞
+ 𝐾
𝑗
𝑑)

𝑗−1

𝐾
𝑗
< 1. (34)

We need to show that 𝑇 : 𝐶[0, 𝑑] → 𝐶[0, 𝑑]. Observe
that












(𝑔
𝑗
(𝑡) + ∫

𝑡

0

𝑘
𝑗
(𝑡, 𝑠)V(𝑠)𝑑𝑠)

𝑗







∞

≤ (






𝑔
𝑗





∞
+ 𝐾
𝑗
‖V‖
∞
)

𝑗

.

(35)
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Therefore






𝑇
V




∞

≤

𝑟

∑

𝑗=1






𝑏
𝑗






(






𝑔
𝑗





∞
+ 𝐾
𝑗
‖V‖
∞
)

𝑗

≤

𝑟

∑

𝑗=1






𝑏
𝑗






(






𝑔
𝑗





∞
+ 𝐾
𝑗
𝑑)

𝑗

;

(36)

thus 𝑇 : 𝐶[0, 𝑑] → 𝐶[0, 𝑑] if
𝑟

∑

𝑗=1






𝑏
𝑗






(






𝑔
𝑗





∞
+ 𝐾
𝑗
𝑑)

𝑗

< 𝑑. (37)

Hence the map 𝑇 is a contraction and maps [0, 𝑑] into itself
provided (30) is satisfied.

Corollary 3. There exists a solution 𝑢 to the integral equation

𝑢 (𝑡) = 𝑏(𝑔 (𝑡) + ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠)

2

, (38)

where 𝑢 ∈ 𝐶[0, 𝑑] with

0 < 𝑑 <

1

𝐾

[

1

2 |𝑏| 𝐾

−




𝑔



∞
] , (39)

if





𝑔



∞
<

1

4𝐾 |𝑏|

. (40)

Proof. From Theorem 2 we get sufficient conditions for the
existence of a solution

2𝐾 |𝑏| (




𝑔



∞
+ 𝐾𝑑) < 1, (41)

|𝑏| (




𝑔



∞
+ 𝐾𝑑)

2

< 𝑑. (42)

Inequality (41) is solved by any 𝑑 < 𝑑, where

𝑑 =

1

𝐾

[

1

2 |𝑏| 𝐾

−




𝑔



∞
] , (43)

and inequality (42) is equivalent to

|𝑏| 𝐾
2

𝑑
2

+ (2𝐾 |𝑏|




𝑔



∞
− 1) 𝑑 + |𝑏|





𝑔





2

∞
< 0. (44)

This is satisfied by 𝑑 ∈ (𝑑
−
, 𝑑
+
), where

𝑑
±
=

1 − 2𝐾 |𝑏|




𝑔



∞
± √1 − 4𝐾 |𝑏|





𝑔



∞

2 |𝑏| 𝐾
2

.
(45)

If the regularity condition

1 − 4𝐾 |𝑏|




𝑔



∞

> 0 (46)

is satisfied, 𝑑
+
and 𝑑

−
are real and positive. Furthermore,

𝑑 =

𝑑
−
+ 𝑑
+

2

, (47)

so that (46) ensures 𝑑 ∈ (𝑑
−
, 𝑑) satisfies both inequalities (41)

and (42) inTheorem 2.

4. Numerical Computations

In our work we consider examples of (1) when 𝑟 = 2. We
use (6) to approximate the solutions considering two special
cases: 𝑐

1
= 1/2 (implicit midpoint method) and 𝑐

1
= 1

(implicit Euler method).We also use the repeated trapezoidal
and repeated Simpson’s rule. Since the methods are implicit
we perform an iterative procedure at each step implementing
a tolerance of 10−4. For each method we used three different
values of ℎ: ℎ = 0.01, ℎ = 0.005, and ℎ = 0.0025.

4.1. Example 1. Consider the nonlinear VIE

𝑢 (𝑡) = 2(1 + ∫

𝑡

0

(𝑡 − 𝑠)𝑢(𝑠)𝑑𝑠)

2

0 ≤ 𝑡 ≤ 1, (48)

which arises from a nonlinear differential equation in [15]
where 𝑏

1
= 0 and 𝑏

2
= 2.

4.1.1. Using Implicit Euler Method. When 𝑐
1
= 1 and 𝑡

𝑛,1
=

𝑡
𝑛
+ ℎ, the collocation solution of (48) is given by

𝑈
𝑛,1
= 2(1 + 𝐹

𝑛
(𝑡
𝑛,1
) + 𝑈
𝑛,1

ℎ
2

2

)

2

, (49)

where

𝐹
𝑛
(𝑡
𝑛,1
) = ℎ

𝑛−1

∑

𝑖=0

(𝑡
𝑛
− 𝑡
𝑖
+

ℎ

2

)𝑈
𝑖,1
. (50)

Figure 1 shows the solution to (48) at ℎ = 0.01, ℎ = 0.005,
and ℎ = 0.0025.

4.1.2. Using Implicit Midpoint Method. When 𝑐
1
= 1/2 and

𝑡
𝑛,1
= 𝑡
𝑛
+ (ℎ/2), the collocation solution of (48) is given by

𝑈
𝑛,1
= 2(1 + 𝐹

𝑛
(𝑡
𝑛,1
) + 𝑈
𝑛,1

ℎ
2

8

)

2

, (51)

where

𝐹
𝑛
(𝑡
𝑛,1
) = ℎ

𝑛−1

∑

𝑖=0

(𝑡
𝑛
− 𝑡
𝑖
) 𝑈
𝑖,1
. (52)

Figure 2 shows the solution to (48) at ℎ = 0.01, ℎ = 0.005,
and ℎ = 0.0025.

4.1.3. Using the Iterated Collocation. For 𝑐
1
= 1/2 the iterated

collocation solution of (48) is given as

𝑢
𝐼

(𝑡
𝑛
) = 2(1 + ℎ

𝑛−1

∑

𝑖=0

∫

1

0

(𝑡
𝑛
− 𝑡
𝑖
− 𝑠ℎ) 𝑑𝑠𝑈

𝑖1
)

2

. (53)

Integrate to obtain

𝑢
𝐼

(𝑡
𝑛
) = 2(1 + ℎ

𝑛−1

∑

𝑖=0

(𝑡
𝑛
− 𝑡
𝑖
−

ℎ

2

)𝑈
𝑖1
)

2

. (54)

The iterated collocation solution of (48) with three
different values of ℎ is shown in Figure 3.
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Figure 1: The collocation solution of (48) when 𝑐
1
= 1.
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Figure 2: The collocation solution of (48) when 𝑐
1
= 1/2.

4.1.4. Using Repeated Trapezoidal Rule. For the VIE (48)
𝑢(0) = 2 and

𝑢 (𝑡
𝑛
) = 2(1 +

ℎ

2

𝑡
𝑛
𝑢(0) + ℎ

𝑛−1

∑

𝑖=1

(𝑡
𝑛
− 𝑡
𝑛−1
)𝑢
𝑛−1
)

2

. (55)

Figure 4 shows the solution to the VIE (48) for the three
values of ℎ used.
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Figure 3: The iterated collocation solution of (48) when 𝑐
1
= 1/2.
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Figure 4: The solution of (48) by the repeated trapezoidal rule.

4.1.5. Using Repeated Simpson’s Rule. When 𝑡 = 0, 𝑢(0) = 2
for (48) and

𝑢 (𝑡
2𝑚
) = 2 [1 +

ℎ

3

((3𝑡
2𝑚
− 2𝑡
1
) 𝑢 (0)

+ (2𝑡
2𝑚
− 2𝑡
2𝑚−1

) 𝑢 (𝑡
2𝑚
))

+

2ℎ

3

𝑚−1

∑

𝑙=0

(3𝑡
2𝑚
− 𝑡
2𝑙+1

− 𝑡
𝑙
− 𝑡
2𝑙−1
)𝑢(𝑡
2𝑙
)]

2

.

(56)

The solution to (48) using repeated Simpson’s rule is
shown in Figure 5.
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Table 1: Absolute errors in the solution of (48) when ℎ = 0.01.

𝑡
Implicit
euler

Implicit
midpoint

Repeated
trapezoidal

Repeated
Simposon

0.1 0.0077 0.0038 0.0074 —
0.2 0.0161 0.0078 0.0154 0.0001
0.3 0.0266 0.0127 0.0252 —
0.4 0.0406 0.0190 0.0377 0.0001
0.5 0.0607 0.0275 0.0548 0.0005
0.6 0.0907 0.0397 0.0180 0.0004
0.7 0.1371 0.0576 0.1146 0.0007
0.8 0.2115 0.0849 0.1689 0.0013
0.9 0.3360 0.1280 0.2549 0.0023
1 0.5530 0.1992 0.3966 0.0044

Table 2: Absolute errors in the solution of (57) when ℎ = 0.01.

𝑡
Implicit
euler

Implicit
midpoint

Repeated
trapezoidal

Repeated
Simposon

0.1 0.0028 0.0014 0.0027 —
0.2 0.0057 0.0028 0.0055 —
0.3 0.0089 0.0043 0.0086 —
0.4 0.0127 0.0061 0.0121 0.0001
0.5 0.0171 0.0081 0.0162 0.0001
0.6 0.0226 0.0105 0.0209 0.0001
0.7 0.0295 0.0135 0.0239 —
0.8 0.0385 0.0172 0.0342 0.0001
0.9 0.0501 0.0219 0.0436 0.0001
1.0 0.0659 0.0279 0.0553 0.0002

Table 1 shows the errors in the solution of the integral
equation (48) for the largest value of ℎ used.

4.2. Example 2. Consider

𝑢 (𝑡) = (1 + ∫

𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠)

+

1

2

(1 + ∫

𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠)

2

0 ≤ 𝑡 ≤ 1,

(57)

where 𝑏
1
= 1 and 𝑏

2
= 1/2. The integral equation (57)

arises from nonlinear differential equations that represent
conservative systems (see [16]). We used the four methods
to approximate the solution to this example and Example 3,
and we present tables for the absolute errors in the solution.
Table 2 shows the errors in the solution of (57)when ℎ = 0.01:

4.3. Example 3. Consider the integral equation

𝑢 (𝑡) = 2 (1 + ∫

𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠)

+ (1 + ∫

𝑡

0

(𝑡 − 𝑠)𝑢(𝑠)𝑑𝑠)

2

0 ≤ 𝑡 ≤ 1,

(58)

Table 3: Absolute errors in the solution of (58) when ℎ = 0.01.

𝑡
Implicit
euler

Implicit
midpoint

Repeated
trapezoidal

Repeated
Simposon

0.1 0.0116 0.0057 0.0110 —
0.2 0.0239 0.0116 0.0229 0.0001
0.3 0.0389 0.0187 0.0369 —
0.4 0.0586 0.0274 0.0543 0.0002
0.5 0.0857 0.0390 0.0774 0.0003
0.6 0.1247 0.0549 0.1089 0.0005
0.7 0.1829 0.0773 0.1537 0.0009
0.8 0.2727 0.1104 0.2196 0.0016
0.9 0.4163 0.1607 0.3196 0.0028
1.0 0.6541 0.2399 0.4771 0.0049
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Figure 5: The solution of (48) by the repeated Simpson’s rule.

where 𝑏
1
= 2 and 𝑏

2
= 1. The nonlinear VIE arises from a

nonlinear differential equation in [17]. Shown in Table 3 are
the errors in the solution of (58) when ℎ = 0.01.

5. Discussion

We approximated the solutions to Examples 1–3 using the
implicit Euler method, implicit midpoint method, and
repeated trapezoidal and repeated Simpson’s rule using vari-
ous values of the stepsize. At ℎ = 0.001 and belowwe obtained
a similar solution from all the methods used; hence we take
that as our “exact” solution.Therefore, for sufficiently small ℎ
we get a good accuracy of the numerical solutions. When the
stepsize is greater than 0.001we obtained different numerical
solutions from each of the four methods. We use the “exact”
solution and absolute error to study the performance of each
method when the stepsize is increased.

Tables 1–3 show the absolute errors in the solutions
when ℎ = 0.01. From these tables we observe that the
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repeated Simpson’s rule performs better followed by the
implicit midpoint method then the repeated trapezoidal rule.
Among the four methods used, the implicit Euler method
gives a larger error as h is increased.We then found an iterated
collocation solution for the implicit midpoint method and
the accuracy of the method improved as shown in Figure 3.
According to our numerical results, we conclude that the
repeated Simpson’s rule performs well since it gives better
solutionswhen a reasonably large value of the stepsize is used.
These observations are consistent for all three examples used.
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