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The dynamics of the nonlinear Schrödinger equation with Kerr law nonlinearity with two perturbation terms are investigated. By
usingMelnikov method, the threshold values of chaotic motion under periodic perturbation are given. Moreover we also study the
effects of the parameters of system on dynamical behaviors by using numerical simulation. The numerical simulations, including
bifurcation diagram of fixed points, chaos threshold diagram of system in three-dimensional space, maximum Lyapunov exponent,
and phase portraits, are also plotted to illustrate theoretical analysis and to expose the complex dynamical behaviors. In particular,
we observe that the system can leave chaotic region to periodic motion by adjusting controller e, amplitude 𝑑

1
, and frequency

𝜔
2
of external forcing which can be considered a control strategy, and when the frequenciesy 𝜔

2
and 𝜔

1
approach the maximum

frequency of disturbance, the system turmoil intensifies and control intensity increases.

1. Introduction

Fiber-optic signal transmission has a very wide application
in the real life, which makes our lives more convenient and
quicker. This is known to all. The fiber-optic signal plays an
important role in real life. Optical solitary waves have been
the subject of intense current research, which is motivated
by their important applications in the areas of high-capacity
fiber telecommunications and all-optical switches due to
their capability of propagating over a long distance without
attenuation and changing their shapes [1].

As is well known, the fiber-optic signal plays an important
role in real life. It is the optical soliton propagation to
maintain shape, amplitude and velocity constant light pulses
for a long time. The use of optical solitons can achieve ultra-
long-distance, large-capacity optical communications.

Fiber-optic signals make it seem that the signal prop-
agation cannot exist in pure environment. It is always
influenced by external environmental perturbations. It seems
that chaos may be unavoidable with external perturbations
and has been observed in many practical applications such
as engineering, biology, industry, and production. Besides,

many other systems with external perturbations have been
widely investigated by using analytic methods and numerical
simulations [2–5].

However, there is little to be subject to external distur-
bances as a model of optical signals. In fact, the fiber-optic
signal propagation will be affected by lots of interferences
in the process of real propagation. Moreover, the dynamic
characteristics of nonlinear system in two-frequency inter-
ference will be richer and more complicated. We therefore
think it is worthwhile to undertake a detailed discussion for
system (1) in order to point out which range of parameter
corresponds to certain behavior. Consequently, the two-
frequency disturbance has more practical meaning.

One of the famous fiber-optic models is the external
periodic perturbations of the nonlinear Schrödinger equation
with Kerr law nonlinearity [6]
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+ 𝛼|𝑢|
2
𝑢 + 𝑖 [𝛾

1
𝑢
𝑥𝑥𝑥

+ 𝛾
2|𝑢|
2
𝑢
𝑥
+ 𝛾
3
(|𝑢|
2
)
𝑥
𝑢]

= 𝑓 (𝑥, 𝑡) ,

(1)

where 𝛾
1
is the third-order dispersion and 𝛾

2
and 𝛾
3
are the

nonlinear dispersion. Here 𝛾
𝑖
(𝑖 = 1, 2, 3) are real parameters
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and 𝛼 is a positive constant,𝑓(𝑥, 𝑡) = 𝑒
−𝑖Ω𝑡

(𝑑
1
cos𝜔
1
(𝑥−𝑐𝑡)+

𝑑
2
cos𝜔
2
(𝑥 − 𝑐𝑡)), where the new variables 𝑑

𝑖
, 𝑤
𝑖
(𝑖 = 1, 2)

denote the amplitude and the frequency of the parametric
excitation, respectively. Here 𝑑

𝑖
and 𝑤

𝑖
(𝑖 = 1, 2) are real

parameters. For this reason, 𝑑
𝑖
, 𝑤
𝑖
≥ 0 (𝑖 = 1, 2).

Equation (1) describes the propagation of optical soli-
tons in nonlinear optical fibers that exhibits a Kerr law
nonlinearity. Equation (1) has an important application in
various fields such as semiconductor materials, optical fiber
communications, plasma physics, fluid and solid mechan-
ics [6–12], and many other applications, can readily be
described by the model, or analogous ones. Equation (1)
has received more attention [6–10, 13, 14]. For example, by
the first integral method, Taghizadeh et al. obtained the
new exact solutions of the perturbed NLSE with Kerr law
nonlinearity [6]. Wiggins [12] used the (𝐺/𝐺)-expansion
method to construct traveling wave solutions for NLSEs.
Masemola et al. [9] obtained new solutions of nonlinear
partial differential equation by a direct algebraic method.
Miao andZhang [11] constructed exact solutions of perturbed
nonlinear Schrödinger’s equation with Kerr law nonlinearity
by the simplest equation method.

The study of perturbed nonlinear Schrödinger’s equation
with Kerr law nonlinearity is of fundamental and even prac-
tical interest. Eminent characteristics of perturbed nonlinear
Schrödinger’s equation with Kerr law nonlinearity have a
rich content of nonlinear properties which are suitable for a
detailed investigating of various dynamical states.

In this paper, we will study the chaotic behavior and
control of (1) under two-frequency perturbations. We study
the bifurcation and dynamical behaviors depending on the
parameters by using bifurcation and chaos theories in [15–
21] and numerical simulation. By applying Melnikov method
[15, 20, 21], we prove the criterion of existence of chaos under
periodic perturbation. Our interests have the following two
points.

(i) What if there appears a system chaos under the two-
frequency interference? If chaos appears, how does
one design a controller to suppress chaos owing to the
complex nonlinear item of system? Compared with
the Duffing system [4, 5, 12], it is easy to see that there
is no damping in our system. Once perturbed with
external forcing, the system may easily tend to the
chaotic state. Therefore, we will select the controller
which has the same function with the damping and
we consider the following equation:
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= 𝑓 (𝑥, 𝑡) − 𝑒𝑢
𝑥
,

(2)

where 𝑒 denotes the controller’s strength.
(ii) We also study the effects of the parameters of system

on dynamical behaviors by using numerical simula-
tion. The numerical simulations, including bifurca-
tion diagram of fixed points, chaos threshold diagram
of system in three-dimensional space, maximum
Lyapunov exponent, and phase portraits, are also

plotted to illustrate theoretical analysis and to expose
the complex dynamical behaviors. In particular, we
observe that the system can leave chaotic region to
periodic motion by adjusting controller 𝑒, amplitude
𝑑
1
, and frequency 𝜔

2
of external forcing which can be

considered a control strategy.

This paper is organized as follows. In Section 2, we briefly
describe the fixed points and phase portraits for the two types
of unperturbed system of (1). In Section 3, the conditions of
existence of chaos under periodic perturbation resulting from
the homoclinic bifurcations are performed. The numerical
investigations are given in Section 4.The bifurcation analysis
is given in Section 5. Finally, we give remark to conclude this
paper in Section 6.

2. Theoretic Analysis of System

2.1. The NLSE with Kerr Law Nonlinearity Equation. Assume
that (1) has traveling wave solutions in the form [6]

𝑢 (𝑥, 𝑡) = 𝜙 (𝜉) exp (−𝑖Ω𝑡) , 𝜉 = 𝑥 − 𝑐𝑡, (3)

where 𝑐 is the propagation speed of a wave (𝑐 > 0).
Substituting (3) into (1), we get
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𝜉) ,

(4)

where 𝛾
𝑖
(𝑖 = 1, 2, 3), 𝛼, and 𝑘 are positive constants and

prime meaning differentiation with respect to 𝜉.
By virtue of [6], we have

𝛾
1
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− 𝑐𝜙 + 𝐴𝜙

3
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1
cos (𝑤
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𝜉) , (5)

where 𝐴 = (1/3)𝛾
2
+ (2/3)𝛾

3
denote the parametric of linear

and nonlinear terms. Equation (5) is the fiber-optic signal
transmission system in ideal environment. But it seems that
the signal propagation cannot exist in pure environment. It is
always influenced by external environmental perturbations.

Without loss of generality in (5), we set 𝛾
1
= 1. By the

transformations 𝜙 = 𝑥
1
, 𝜙 = 𝑥

2
, (6) can be transformed into

first-order nonautonomous equation:
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2
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3

1
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1
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2
cos (𝑤

2
𝜉) .

(6)

2.2. Fixed Points and Phase Portraits for Unperturbed System.
If 𝑑
1
= 𝑑
2
= 0, (6) is considered an unperturbed system and

can be written as

𝑥


1
= 𝑥
2
,

𝑥


2
= 𝑐𝑥
1
− 𝐴𝑥
3

1
.

(7)

The system (7) is a Hamiltonian systemwithHamiltonian
function
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2
) =

1

2
𝑥
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2
−
1

2
𝑐𝑥
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1
+
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4
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4

1
. (8)
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Figure 1: (a) The two-well potential function of the system; (b) the corresponding phase space portraits.
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Figure 2: Chaotic threshold in (𝑑
1
, 𝑤
1
, 𝑒) space.

And the function

𝑉 (𝑥
1
) = −

1

2
𝑐𝑥
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4
𝐴𝑥
4

1
(9)

is called the potential function. By the analysis of the fixed
points (𝑥

1𝑗
, 𝑥
2𝑗
) and their stabilities for system (7), we can

easily obtain the following results.

Lemma 1. When 𝑐𝐴 > 0, the unperturbed system has three
equilibrium points: two centers (√𝑐/𝐴, 0) and (−√𝑐/𝐴, 0) and
one saddle (0, 0). The saddle is connected to itself by two
symmetric homoclinic orbits as shown in Figure 1(b).

3. Melnikov Theoretic Analysis

In this section, we discuss the chaotic behaviors of (6).
Melnikov theory has proved to be a simple, elegant, and
successful alternative to characterizing the complex dynamics
of multistable oscillators.This section, thus, develops a global
analysis technique, known as Melnikov’s method, to find the
necessary conditions for homoclinic bifurcation to occur. For
a detailed derivation of Melnikov’s method, there are several

𝜔1

20

15

10

1010

5

55

0

00

e

A

Figure 3: Chaotic threshold in (𝜔
1
, 𝐴, 𝑒) space.
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Figure 4: Chaotic threshold in (𝜔
2
, 𝑑
1
, 𝑒) space.

texts of varying rigor and sophistication to which the reader
is referred [12, 22–24].

In this section, we discuss the chaotic behaviors of (6)
in which 𝑑

1
and 𝑑

2
are assumed to be small parameters.

Transformations of 𝑑
1

→ 𝜀𝑑
1
and 𝑑

2
→ 𝜀𝑑

2
are done in

order to apply the 𝜀 first-order perturbation scheme of the
Melnikov theory. Hence, the system of (6) may be written as

𝑥


1
= 𝑥
2
,

𝑥


2
= 𝑐𝑥
1
− 𝐴𝑥
3

1
+ 𝜀𝑑
1
cos (𝜙

1
) + 𝜀𝑑

2
cos (𝜙

2
) ,
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𝜙


1
= 𝜔
1
,

𝜙


2
= 𝜔
2
.

(10)

3.1. Melnikov Criterion for Chaos. The unperturbed system
for system (7) has homoclinic orbits. When the perturbation
is added, the closed homoclinic orbits break and may have
transverse homoclinic or heteroclinic orbits. By the Smale-
Birkhoff Theorem [12, 25], the existence of such orbits
results in chaotic dynamics. We therefore apply the Melnikov
method to system (7) for finding the criteria of the existence
of homoclinic or heteroclinic bifurcation and chaos.

The Melnikov method derives a function to describe the
first order distance between perturbed stable and unper-
turbed manifolds. Suppose that the unperturbed homoclinic
or heteroclinic orbit is written as (𝑥

1
, 𝑥
2
) = (𝑥

1
(𝜉), 𝑥
2
(𝜉)).

Satisfying the conditions for a double-well potential gives
rise to a homoclinic orbit in the phase space for 𝜀 = 0.
The homoclinic trajectory can be found by setting𝐻(𝑎, 𝑏) =

0. Solving for the resulting displacement and differentiating
to determine velocity, the homoclinic trajectory is given as
follows:

(𝑥
1
, 𝑥
2
)

= (√
2𝑐

𝐴
sech (√𝑐𝜉) , −√

2𝑐

𝐴
√𝑐sech (√𝑐𝜉) tanh (√𝑐𝜉)) ,

(11)

and then the Melnikov function for system (7) can be given
by

𝑀(𝜉
0
)

= ∫

∞
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0
)] 𝑑𝜉,

(12)

where 𝜉
0
is the cross-section time of the Poincaré map

and 𝜉
0
can be interpreted as the initial time of the forcing

term.
Because it is difficult to give analytical expression of𝑥

2
(𝜉),

we will compute 𝑥
2
(𝜉) numerically in Section 5. We note that

𝑥
2
(𝜉) is a function of time from +∞ to −∞. We therefore

choose that the initial condition is 𝜉 = 0 and 𝑥
2
(𝜉) would

be an odd function of time for the homoclinic orbit and an
even function for heteroclinic orbit.

For the homoclinic orbits Γ±ho, the Melnikov function can
be simplified as
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where 𝐼hom1 = ∫
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1
𝜉 𝑑𝜉 and 𝐼hom2 =
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𝜉 𝑑𝜉 are functions of the frequencies 𝑤

1

and 𝑤
2
, respectively.

Using the previous results and Melnikov’s theorem [26,
27], the following is stated: if 𝑀

1
(𝜉
0
) = 0 and 𝑀



1
(𝜉
0
) ̸= 0 for

some 𝜉
0
and some set of parameters, then horseshoes exist

and chaos occurs [12, 25]. If𝑀
1
(𝜉
0
) has a simple zero and the

corresponding critical parameter value is

(𝑒)
0
=

𝑑1𝐼hom1 (𝜔1) + 𝑑
2
𝐼hom2 (𝜔2)



𝐵
, (14)

where 𝐵 = ∫
∞

0
𝑥
2

2
(𝜉)𝑑𝜉 is a constant once 𝑥

2
(𝜉) is given,

then in the systemwith fractional order displacement (11) the
deterministic chaos may appear for certain parameter values
which satisfy the relation

𝑒 < (𝑒)
0
. (15)

Remark 2. Using the Melnikov criterion for the appearance
of the intersection between the perturbed and unperturbed
separatrices, therefore, for fixed frequencies 𝜔

1
and 𝜔

2
, the

system always produces Smale commutation of chaos.

3.2. Control of Chaos. Because the fiber-optic transmission
system in the chaotic state is very sensitive to its initial
condition and chaos often causes irregular behavior, chaos is
undesirable. It is not hard to see that system (6) is similar to
Duffing system, except the absence of damping in the former.
Therefore, we will select the controller that has the same
function with the damping.

Equation (2) is equivalent to the following system:

−𝑐𝑥
1
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Equation (16) can be transformed into first-order nonau-
tonomous equation:
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1
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2
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2
, and 𝑒 → 𝜀𝑒.

Now, the Melnikov function for system (17) can be given
by
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and the Melnikov function can be simplified as
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sin𝑤
1
𝜉
0
𝐼hom1 (𝑤1)

− 2𝑑
2
sin𝑤
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𝜉
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𝐼hom2 (𝑤2) .

(19)

Thus, if

𝑒 <

𝑑1𝐼hom 1 (𝜔1) + 𝑑
2
𝐼hom 2 (𝜔2)



𝐵
≡ 𝑅 (𝜔) , (20)

then there is a 𝜉
0
such that 𝑀

1
(𝜉
0
) and (𝜕𝑀

1
/𝜕𝜉
0
)|
𝜉=𝜉0

̸= 0,
𝜉
0
∈ [0, 2𝜋/𝜔

1
], and the following lemma can be obtained.

Lemma 3. The homoclinic bifurcation will occur at

𝑒 = 𝑅 (𝜔) . (21)

Remark 4. For (20) the distance between the stable and
unstable manifolds of the homoclinic point (0, 0) is zero and
the manifolds intersect transversely forming the transverse
homoclinic orbits. The presence of such orbits implies that,
for certain parameters (21) and the countable infinity of
unstable periodic orbits, an uncountable set of bounded non-
periodic orbits and a dense orbit are the main characteristics
of the chaotic motion.

4. Numerical Simulations

In this section, we give numerical simulations to support the
theoretical results obtained in the previous sections and to
find other new dynamics.

The interesting problem is to analyze the parameter
regions for optical fiber signals’ stable propagation of the con-
trolled system. The controlled fiber-optic transmission sys-
tem has several parameters and each of them plays different



Abstract and Applied Analysis 7

−6

−4

−2

0

2

4

6

0 10.5 1.5 2.5 3.52 3 4
d1

x
2

(a)

−8

−6

−4

−2

0

2

4

6

8

0 10.5 1.5 2.5 3.52 3 4
d1

x
2

(b)

−6

−4

−2

0

2

4

6

0 10.5 1.5 2.5 3.52 3 4
d1

x
2

(c)

0 10.5 1.5 2.5 3.52 3 4
d1

x
2

5

4

3

2

1

0

−1

−2

−3

−4

−5

(d)

Figure 9: Bifurcation diagrams of system (17) in (𝑑
1
, 𝑥
2
) plane for case (iii): (a) 𝜔

2
= 0.8, (b) 𝜔

2
= 1.8, (c) 𝜔

2
= 2.5, and (d) 𝜔

2
= 3.

and virtual roles in the system. We will analyze the influence
on optic-fiber signals propagation of controlled system (21)
when the parameter of system changes with the fixed con-
troller.

Let us study the intersections of the invariant manifolds
of the saddle point. It is known that these intersections are
the necessary conditions for the existence of chaos. Since
theMelnikov function theory measures the distance between
the perturbed stable manifold and unstable manifolds, a
homoclinic tangency will occur when a real solution can
be found for some time 𝜉

0
such that the function has a

simple zero.Thismeans that only necessary conditions for the
appearance of strange attractors are obtained from Poincaré-
Melnikov-Arnold analysis, and therefore one always has the
chance of finding sufficient conditions for the elimination of
even transient chaos. Then the general necessary condition
for which the invariant manifolds intersect is given by

𝑒 = 𝑅 (𝜔) . (22)
We give numerical simulations to support the theoretical

results as shown in Figures 2–6.

The chaotic threshold in (𝑑
1
, 𝜔
1
, 𝑒) space with 𝑑

2
= 1,

𝜔
2
= 0.08, 𝐴 = 1, and 𝑐 = 0.5 is shown in Figure 2. The

chaotic threshold in (𝐴, 𝜔
1
, 𝑒) space with 𝑑

2
= 1, 𝜔

2
= 0.08,

𝑑
1
= 1.2, and 𝑐 = 0.5 is shown in Figure 3.The chaotic thresh-

old in (𝜔
2
, 𝑑
1
, 𝑒) space with 𝑑

2
= 1, 𝜔

1
= 0.05, 𝐴 = 1.2, and

𝑐 = 1 is shown in Figure 4.The chaotic threshold in (𝜔
2
, 𝜔
1
, 𝑒)

space with 𝑑
2
= 1, 𝑑

1
= 1.2, 𝐴 = 0.5, and 𝑐 = 0.8 is shown in

Figure 5. The chaotic threshold in (𝑑
2
, 𝑑
1
, 𝑒) space with 𝐴 =

0.5, 𝜔
2
= 1, 𝜔

1
= 1.2, and 𝑐 = 0.8 is shown in Figure 6.

When the value of 𝑒 is below the surface, the system may be
chaotic state. In order to show what happens to the solutions
and attractors as one crosses these bifurcation surfaces, we
chose the parameter values from the regions 𝑒 < (𝑒)

0
, and

then the system (17) can exhibit chaos.

Remark 5. This implies that if 𝜀 > 0 is sufficiently small,
the reduced equation (17) has transverse homoclinic orbits
resulting in possible chaotic dynamic.With 𝑐 and𝐴 constant,
we study chaotic threshold as a function of only the frequency
parameter 𝜔. A typical plot of 𝑒 is shown in Figure 2. The
qualitative form of this function remains the same as 𝑐 and
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Figure 10: Bifurcation diagrams of system (17) in (𝑑
2
, 𝑥
2
) plane for case (iii): (a) 𝜔

2
= 0.7, (b) 𝜔

2
= 1.5, (c) 𝜔

2
= 3.2, and (d) 𝜔

2
= 4.

𝐴 are the values for which the potential is two-well. Another
point is that, when the ratio 𝑒 tends to zero, thismeans that the
external amplitude 𝑑

1
tends to infinity and then theMelnikov

theory is not valid for these values.

5. Bifurcation Analysis

In this section, we give numerical simulations to support the
theoretical results of control of chaos.

5.1. Perturbation and Controlled System Analysis. We will
discuss the behaviors of the fiber-optic signal transmission
under perturbation and we draw the bifurcation diagram
of (6) in (𝑑

1
, 𝑥
2
) plane and the corresponding maximal

Lyapunov exponents in Figure 7. System (6) is integrated
using the Runge-Kutta technique of order four to conduct
numerical simulation. Numerical calculations have been
made for the selected parameter values 𝐴 = 0.2, 𝑐 = 0.0001,
𝑑
2
= 1.5, 𝜔

1
= 1.2, and 𝜔

2
= 1 with the initial conditions

𝑥
1
= 1 and𝑥

2
= 0. Since the equation is nonlinear, its solution

therefore admits the possibility of periodic and chaotic orbits.
In Figure 7, we can observe that the value of Lyapunov

exponents is positive (a positive top Lyapunov exponent for

a bounded attractor is usually a sign of chaos), so the system
easily converts to chaos even if there is small perturbation.
It indicates that the system is outside perturbed, as the
optical fiber transmission signal is very vulnerable to the
phenomenon of chaos. So an appropriate controller is needed
to satisfy the practical applications of fiber-optic propagation.
Such maps can be used to suppress chaotic dynamics of the
system.

Next the corresponding numerical simulations are per-
formed for the case of periodic perturbation of system (16);
we select 𝑑 = 1. In Figure 8(a) after a large band of chaotic
regime for 𝑒 ∈ (0, 0.045) one can find a sequence of backward
period-doubling bifurcations as a route to periodic motion
after a periodic regime; another bifurcation takes place at a
critical value 𝑒 = 0.062 where another large band of chaotic
regime with small periodic window occurs. At 𝑒 ∈ (0.046,

0.061) and 𝑒 > 0.063, the system displays periodic behavior
after backward period-doubling bifurcations. Such maps can
be used to suppress chaotic dynamics of the system.

From Figure 8(b) one can see that for smaller values
of controller 𝑒, the top Lyapunov exponent is positive.
As 𝑒 increases, the top Lyapunov exponent changes from
positive value to negative value, signifying the suppressing of
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Figure 11: Bifurcation diagrams of system (17) in (𝜔
2
, 𝑥
2
) plane for case (iii): (a) 𝑒 = 0.1; (b) 𝑒 = 0.25. The maximum Lyapunov exponents:

(c) corresponding to (a), (d) corresponding to (b).

homoclinic chaos motion. Beyond the threshold for onset
of chaotic motion, there are some “periodic windows;” this
can be the feature of the transient chaos. However, the larger
control parameters are responsive for the decreasing signal
amplitude. It is easy to see that the signal cannot propagate
normally and might leak from the media, which is called
escape.

Remark 6. According to the above analysis, the increasing
of the controller’s coefficient 𝑒 makes the system stable, but
escape occurs when 𝑒 crosses a certain value.

5.2. Parameters Analysis. Nowwe wish to find other interest-
ing bifurcation structures and dynamics of system (17). The
bifurcation parameters are considered in the following five
cases:

(i) varying 𝑑
1
in range 0 < 𝑑

1
< 4 and fixing 𝐴 = 0.2,

𝑐 = 0.0001, 𝑒 = 0.1, 𝜔
1
= 1.2, and 𝑑

2
= 1.5 for several

values of 𝜔
2
,

(ii) varying 𝑑
2
in range 0 < 𝑑

2
< 4 and fixing 𝐴 = 0.2,

𝑐 = 0.0001, 𝑒 = 0.1, 𝜔
1
= 1.2, and 𝑑

1
= 1 for several

values of 𝜔
2
,

(iii) varying 𝜔
2
in range 0 < 𝜔

2
< 4 and fixing 𝐴 = 0.2,

𝑐 = 0.0001, 𝜔
1
= 1, 𝑑

1
= 0.5, and 𝑑

2
= 0.5 for several

values of 𝑒,

(iv) varying 𝑒 in range 0 < 𝑒 < 0.4 and fixing 𝜔
2
= 2,

𝑑
2
= 0.5, 𝜔

1
= 1.2, 𝑑

1
= 1.8, and 𝑐 = 0.0002 for

several values of 𝐴,

(v) varying 𝑒 in range 0 < 𝑒 < 0.4 and fixing 𝐴 = 0.2,
𝑑
1
= 1, 𝜔

1
= 1.2, 𝑑

2
= 1.2, and 𝜔

2
= 2 for several

values of 𝑐.

For cases (i) and (ii), we give bifurcation diagrams in
(𝑑
1
, 𝑥
2
) and (𝑑

2
, 𝑥
2
) plane of system (17) for 0 < 𝑑

1
< 4

and 0 < 𝑑
2
< 4 and several values of 𝜔

2
in Figures 9 and 10,

respectively. We observe that a wide chaotic region in Figure
9(a). The coexistences of periodic orbits and chaotic motions
in chaotic windows and intermittent mechanism in Figure
9(b). Figure 9(c) shows that the onset of chaos after period-n
and chaotic regions with complex periodic windows, Figure
9(d) also shows the onset of chaos and chaotic regions with
small periodic windows. Comparing Figures 10(a)–10(d), we
find that, as 𝜔

2
is increased, the complexity of dynamical



10 Abstract and Applied Analysis

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−6

−4

−2

0

2

4

6

A

x
2

(a)

−5

−4

−3

−2

−1

0

1

2

3

4

5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
A

x
2

(b)

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
A

x
2

(c)

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
A

x
2

(d)

Figure 12: Bifurcation diagrams of system (17) in (𝑒, 𝑥
2
) plane for case (iii): (a) 𝐴 = 0.3, (b) 𝐴 = 0.5, (c) 𝐴 = 1, and (d) 𝐴 = 2.

behaviors is decreased, and as 𝜔
2
= 4 there is only a period-

one orbit and there is no bifurcation (see Figure 10(d)).
For case (iii), the bifurcation diagrams in (𝜔

2
, 𝑥
2
) plane

and the corresponding maximum Lyapunov exponents are
given in Figure 11, where we show that the maximum Lya-
punov exponents are all negative in Figure 11(d) for 𝑒 =

0.25 which are corresponding to quasiperiodic solutions in
Figure 11(b). Figures 11(a) and 11(c) exhibit the process of
the quasiperiodic route to chaos and chaos converges to
quasiperiodic orbit.

For case (iv), the bifurcation diagrams in Figures 12(a)–
12(d) in (𝑒, 𝑥

2
) plane for various values of 𝐴 are plotted for

showing the effect of parameter 𝐴 on dynamical behaviors.
When 𝐴 is increased a little, the chaotic behavior occurrence
has changed and the amplitude had decreased a little in Figure
12(b). But, as 𝐴 is further increased, there is only the period-
five orbit and a period-doubling bifurcation of period-
one.

For case (v), the bifurcation diagrams in Figures 13(a)–
13(d) in (𝑒, 𝑥

2
) plane for various values of 𝑐 are plotted for

showing the effect of parameter 𝑐 on dynamical behaviors.
We show that the chaotic behavior occurs alternately in

smaller region of 𝑐 and the chaotic motions behavior occurs
alternately in bigger region as a is increased. Therefore, we
find that the parameter 𝑐 plays a very important role for
dynamical behaviors from comparing. It can be considered
as an control strategy of chaos by adjusting the parameter 𝑒.

6. Conclusions

In this paper, we have investigated the behaviors of the
nonlinear Schrödinger equation with Kerr law nonlinearity
with two perturbation terms and find many complex and
interesting dynamical behaviors by using analytic andnumer-
ical methods. We conclude that chaos occurs easily due to
the absence of damping in the system.This phenomenon will
cause the distortion in the process of information transmis-
sion. One can add a controller to suppress the chaos. The
efficiency of this controller was demonstrated. The complex
fiber-optic transmission system of the perturbed NLSE with
Kerr law nonlinearity was controlled. What is more is that
we discussed the sensitivity to be controlled and found the
practical parameters regions. Some of the results obtained for
other NLSEs can be extended correspondingly.
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Figure 13: Bifurcation diagrams of system (17) in (𝑒, 𝑥
2
) plane for case (iii): (a) 𝑐 = 0.002, (b) 𝑐 = 0.02, (c) 𝑐 = 0.8, and (d) 𝑐 = 1.2.
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