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Considering the effects of the living environment on growth of populations, it is unrealistic to assume that the growth rates of
predator and prey are all constants in the models with integrated pest management (IPM) strategies. Therefore, a nonautonomous
predator-prey system with impulsive effect is developed and investigated in the present work. In order to determine the optimal
application timing of IPM tactics, the threshold value which guarantees the stability of pest-free periodic solution has been obtained
firstly.The analytical formula of optimal application timings within a given period for different cases has been obtained such that the
threshold value is the smallest, which is themost effective in successful pest control. Moreover, extensively numerical investigations
have also been confirmed our main results and the biological implications have been discussed in more detail.Themain results can
guide the farmer to design the optimal pest control strategies.

1. Introduction

Recently, many ecologists are becoming increasingly con-
cerned with the questions of pest control and designing the
optimal control strategies. It is well known that the pesticides
are still the main tactics for controlling pests, because the
pesticides are relatively cheap and can be easily applied.
But spraying insecticides for a long time may trigger “3R”
questions (resistance, resurgence, and residue); then, the
Department of Agricultural Ecology proposed the integrated
pest management (IPM) strategies [1, 2].

IPM is a long term management strategy, which includes
chemical (insecticides), biological (releasing the natural
enemy), agricultural control (crop rotation), and physics
methods (utilizing light to trap and kill pest) [3, 4]. IPM
which has been proved by experiment is more effective than
any single control strategy. But when should we release the
natural enemy and what proportion do we need to kill the
pest by spraying pesticide? Undoubtedly, the mathematical
models can help us to design the optimal control tactics
and, in particular, help us to predict the density of pest
population and to determine optimal application timing of
IPM strategies (see [5–8]).

Volterra first proposed a simple predator-prey system,
which has been extended and modified in many ways [9, 10].

In recent years, continuous or discrete predator-prey systems
concerning IPM strategies have been developed and inves-
tigated intensively in [11–13]. Considering the interventions
by human such as a periodic spraying pesticide and a
constant periodic releasing for the predator, the impulsive
differential equations with fixed moments were employed to
model the interventions, and consequently the Lotka-Volterra
system has been extended [14]. However, one of the major
assumptions in those publications was that all the growth
rates of predator and prey are constants. However, many
ecologists have shown that the growth of populations of
various species is affected by the special living environment
including the seasons, weather conditions, and food supply
[15]. Therefore, it is more realistic to consider the effects
of periodic parameters on the dynamics of predator-prey
models. Therefore, nonautonomous predator-prey systems
with impulsive effect have been developed and investigated
in [10, 16, 17].

However, those works mainly focused on the effects
of periodic perturbations on the dynamics; the interesting
questions concerning the effects of successful pest control, in
particular how to apply the IPM tactics in periodic environ-
ment and to determine the optimal application timing, have
not been addressed in more detail.
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Thus, in the present work, a nonautonomous predator-
prey model with periodic perturbations and periodic impul-
sive effects is developed and investigated. Firstly, the stability
of pest-free periodic solution and its threshold condition have
been investigated, which can be used for determining the
optimal timing of IPM applications. Secondly, we assume
that only one-impulsive controlling has been applied within
a given period, and the optimal application timing has
been determined and consequently the analytical formula is
also provided, under which the threshold value reaches its
minimum. Then, we assume that two-impulsive controlling
or more impulsive controlling has been applied within a
given period, and similarly the optimal time points and their
analytical formula have also been obtained and provided.
Moreover, the biological implications have been discussed in
more detail. Finally, some numerical simulations concerning
the main results have been done. We conclude that the
main results can help us to design the optimal pest control
strategies.

2. The Periodic Integrated Pest
Control Strategies

2.1. Autonomous ODE Model with Multi-Impulsive Effects.
Assume that the pest population follows the classical logistic
growth system and that pest control by spraying pesticides
and releasing natural enemies is implemented at some fixed
times for each crop season. Denote the size of the pest and
the natural enemy populations at time 𝑡 by 𝑥(𝑡) and 𝑦(𝑡),
respectively. Assume that pests are killed by pesticides at a
proportional rate 𝑝𝑘 (0 ≤ 𝑝𝑘 < 1) and the natural enemy
is released by a constant 𝜎 at time 𝜏𝑘. Therefore, we have the
following system with impulsive effects at fixed moments:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑟𝑥 (𝑡) [1 − 𝑎𝑥 (𝑡)] − 𝑏𝑥 (𝑡) 𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) [𝑐𝑥 (𝑡) − 𝛿] ,

𝑡 ̸= 𝜏𝑘, (𝑘 = 1, 2, . . .) ,

𝑥 (𝜏
+

𝑘
) = (1 − 𝑝𝑘) 𝑥 (𝜏𝑘) ,

𝑦 (𝜏
+

𝑘
) = 𝑦 (𝜏𝑘) + 𝜎,

𝑡 = 𝜏𝑘,

(1)

where 𝑟 is the intrinsic growth rate of pest population, 𝑎
denotes the carrying capacity parameter, 𝑏 is the attack rate
of predator, 𝑐 represents conversion efficiency, and 𝛿 is the
death rate of predator. System (1) is said to be a 𝑇 periodic
system if there exists a positive integer 𝑞 such that 𝑝𝑘+𝑞 = 𝑝𝑘,
𝜏𝑘+𝑞 = 𝜏𝑘 + 𝑇. This implies that, in each period 𝑇, 𝑞 times of
the pesticide applications are used and 𝑞 times of the natural
enemy releases are applied.

The dynamical behavior and biological implications of
system (1) have been extensively studied in [18]. It follows
from the literature [18] that if exp(−𝛿𝑇) < 1, then system (1)

has a “pest-eradication” periodic solution (0, 𝑦
𝑇
(𝑡)) over the

𝑛th time interval 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1)𝑇 with

𝑦
𝑇
(𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑌
∗ exp [−𝛿 (𝑡 − 𝑛𝑇)] ,

𝑡 ∈ (𝑛𝑇, 𝑛𝑇 + 𝜏1] ,

...
𝑌
∗ exp [−𝛿 (𝑡 − 𝑛𝑇)]

+𝜎

𝑘

∑

𝑗=1

exp [−𝛿 (𝑡 − 𝑛𝑇 − 𝜏𝑗)] ,

𝑡 ∈ (𝑛𝑇 + 𝜏𝑘, 𝑛𝑇 + 𝜏𝑘+1] ,

...
𝑌
∗ exp [−𝛿 (𝑡 − 𝑛𝑇)]

+𝜎

𝑞

∑

𝑗=1

exp [−𝛿 (𝑡 − 𝑛𝑇 − 𝜏𝑗)] ,

𝑡 ∈ (𝑛𝑇 + 𝜏𝑞, (𝑛 + 1) 𝑇] ,

(2)

where 𝑌
∗

= (𝜎∑
𝑞

𝑗=1
exp(−𝛿(𝑇 − 𝜏𝑗)))/(1 − exp(−𝛿𝑇)) and

(0, 𝑦
𝑇
(𝑡)) is globally asymptotically stable provided that 𝑅0 <

1 with

𝑅0 ≜

𝑞

∏

𝑖=1

(1 − 𝑝𝑖) exp(𝑟𝑇 −
𝑏𝑞𝜎

𝛿
) . (3)

The analytical formula defined above clearly shows how
the key parameters affect the threshold value 𝑅0, which can
be used to design the optimal control strategies such that
the threshold value 𝑅0 is the smallest. We will address those
points in the following for more generalized model.

2.2. Nonautonomous ODE Model with Multi-Impulsive Ef-
fects. However, it is well known that the growth of popula-
tions of various species is affected by several factors such as
the seasons, weather conditions, and food supply, which can
be described by using the periodic coefficients in model (1);
that is, we have the following model:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑟 (𝑡) 𝑥 (𝑡) [1 − 𝑎 (𝑡) 𝑥 (𝑡)] − 𝑏 (𝑡) 𝑥 (𝑡) 𝑦 (𝑡) ,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑦 (𝑡) [𝑐 (𝑡) 𝑥 (𝑡) − 𝛿 (𝑡)] ,

𝑡 ̸= 𝜏𝑘,

𝑥 (𝜏
+

𝑘
) = (1 − 𝑝𝑘) 𝑥 (𝜏𝑘) ,

𝑦 (𝜏
+

𝑘
) = 𝑦 (𝜏𝑘) + 𝜎𝑘,

𝑡 = 𝜏𝑘,

(4)

where 𝑟(𝑡), 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), and 𝛿(𝑡) are continuous 𝑇 periodic
functions. System (4) is said to be a 𝑇 periodic system if there
exists a positive integer 𝑞 such that 𝑝𝑘+𝑞 = 𝑝𝑘, 𝜎𝑘+𝑞 = 𝜎𝑘, and
𝜏𝑘+𝑞 = 𝜏𝑘 + 𝑇.
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In order to analyze the dynamics of the pest population
in system (4), the following subsystem is useful:

𝑑𝑦 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑦 (𝑡) , 𝑡 ̸= 𝜏𝑘,

𝑦 (𝜏
+

𝑘
) = 𝑦 (𝜏𝑘) + 𝜎𝑘, 𝑡 = 𝜏𝑘

(5)

and we have the following main results for subsystem (5).

Lemma 1. The subsystem (5) has a positive periodic solution
𝑦
𝑇
(𝑡) and for every solution𝑦(𝑡) of (5) one has |𝑦(𝑡)−𝑦𝑇(𝑡)| →

0 as 𝑛 → ∞, where

𝑦
𝑇
(𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑌
∗

𝑛
exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇, 𝑛𝑇 + 𝜏1] ,

...

𝑌
∗

𝑛
exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+

𝑘

∑

𝑗=1

𝜎𝑗 exp[−∫

𝑡

𝑛𝑇+𝜏𝑗

𝛿 (𝑠) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇 + 𝜏𝑘, n𝑇 + 𝜏𝑘+1] ,

...

𝑌
∗

𝑛
exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+

𝑞

∑

𝑗=1

𝜎𝑗 exp[−∫

𝑡

𝑛𝑇+𝜏𝑗

𝛿 (𝑠) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇 + 𝜏𝑞, (𝑛 + 1) 𝑇] ,

(6)

𝑌
∗

𝑛
=

∑
𝑞

𝑗=1
𝜎𝑗 exp [− ∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑗
𝛿 (𝑠) 𝑑𝑠]

1 − exp [− ∫
(𝑛+1)𝑇

𝑛𝑇
𝛿 (𝑠) 𝑑𝑠]

, (7)

𝑛 ∈ N andN = {0, 1, 2, . . .}.

Proof. In any given time interval (𝑛𝑇, (𝑛 + 1)𝑇] (where 𝑛 is
a natural number), we investigate the dynamical behavior of
system (5). In fact, integrating the first equation of system (5)
from 𝑛𝑇 to 𝑛𝑇 + 𝜏1 yields

𝑦 (𝑡) = 𝑦 (𝑛𝑇) exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] , 𝑡 ∈ (𝑛𝑇, 𝑛𝑇 + 𝜏1] .

(8)

At time 𝑛𝑇 + 𝜏1, the 𝜎1 natural enemy is released; thus, we
have

𝑦 ((𝑛𝑇 + 𝜏1)
+
) = 𝑦 (𝑛𝑇) exp [−∫

𝑛𝑇+𝜏1

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] + 𝜎1. (9)

Again, integrating the first equation of system (5) from 𝑛𝑇+𝜏1

to 𝑛𝑇 + 𝜏2, one yields

𝑦 (𝑡) = 𝑦 ((𝑛𝑇 + 𝜏1)
+
) exp [−∫

𝑡

𝑛𝑇+𝜏1

𝛿 (𝑠) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇 + 𝜏1, 𝑛𝑇 + 𝜏2] .

(10)

At time 𝑛𝑇 + 𝜏2, the 𝜎2 natural enemy is released, and

𝑦 ((𝑛𝑇 + 𝜏2)
+
) = 𝑦 (𝑛𝑇) exp [−∫

𝑛𝑇+𝜏2

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+ 𝜎1 exp [−∫

𝑛𝑇+𝜏2

𝑛𝑇+𝜏1

𝛿 (𝑠) 𝑑𝑠] + 𝜎2.

(11)

By induction, we get

𝑦 (𝑡) = 𝑦 (𝑛𝑇) exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+

𝑞

∑

𝑗=1

𝜎𝑗 exp[−∫

𝑡

𝑛𝑇+𝜏𝑗

𝛿 (𝑠) 𝑑𝑠]

(12)

for all 𝑡 ∈ (𝑛𝑇 + 𝜏𝑞, (𝑛 + 1)𝑇]. Therefore, we have

𝑦 ((𝑛 + 1) 𝑇) = 𝑦 (𝑛𝑇) exp[−∫

(𝑛+1)𝑇

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+

𝑞

∑

𝑗=1

𝜎𝑗 exp[−∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑗

𝛿 (𝑠) 𝑑𝑠] .

(13)

Denote 𝑌𝑛+1 = 𝑦((𝑛 + 1)𝑇); then, we have the following
difference equation:

𝑌𝑛+1 = 𝑌𝑛 exp[−∫

(𝑛+1)𝑇

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+

𝑞

∑

𝑗=1

𝜎𝑗 exp[−∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑗

𝛿 (𝑠) 𝑑𝑠] ,

(14)

which has a unique steady state

𝑌
∗

𝑛
=

∑
𝑞

𝑗=1
𝜎𝑗 exp [− ∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑗
𝛿 (𝑠) 𝑑𝑠]

1 − exp [− ∫
(𝑛+1)𝑇

𝑛𝑇
𝛿 (𝑠) 𝑑𝑠]

. (15)

Thus, there is a periodic solution of system (5), denoted
by 𝑦
𝑇
(𝑡), which is given in (6). For the stability of 𝑦𝑇(𝑡), it

follows from (12) and the formula of 𝑦𝑇(𝑡) that

𝑦 (𝑡) − 𝑦

𝑇
(𝑡)



=



𝑦 (𝑛𝑇) exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+

𝑘

∑

𝑗=1

𝜎𝑗 exp[−∫

𝑡

𝑛𝑇+𝜏𝑗

𝛿 (𝑠) 𝑑𝑠]

− 𝑌
∗

𝑛
exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

−

𝑘

∑

𝑗=1

𝜎𝑗 exp[−∫

𝑡

𝑛𝑇+𝜏𝑗

𝛿 (𝑠) 𝑑𝑠]
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=

𝑦 (𝑛𝑇) − 𝑌

∗

𝑛


exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

→ 0 as 𝑛 → ∞,

𝑡 ∈ (𝑛𝑇 + 𝜏𝑘, 𝑛𝑇 + 𝜏𝑘+1] ,

(16)

and then the results of Lemma 1 follow. This completes the
proof of Lemma 1.

Based on the conclusion of Lemma 1, there exists a “pest-
free” periodic solution of system (4) over the 𝑛th time interval
𝑛𝑇 < 𝑡 ≤ (𝑛 + 1)𝑇, and we have the following threshold
conditions.

Theorem 2. Let

𝑅0 =

𝑞

∏

𝑖=1

(1 − 𝑝𝑖)

× exp[∫

(𝑛+1)𝑇

𝑛𝑇

𝑟 (𝑡) 𝑑𝑡

−

𝑞−1

∑

𝑗=0

∫

𝑛𝑇+𝜏𝑗+1

𝑛𝑇+𝜏𝑗

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡

−∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑞

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡] ;

(17)

then the pest-free periodic solution (0, 𝑦
𝑇
(𝑡)) of system (4) is

globally asymptotically stable if 𝑅0 < 1.

Proof. Firstly, we prove the local stability. Define 𝑥(𝑡) = 𝑢(𝑡),
𝑦(𝑡) = 𝑦

𝑇
(𝑡) + V(𝑡); there may be written

(
𝑢 (𝑡)

V (𝑡)) = Φ (𝑡) (
𝑢 (0)

V (0)) , (18)

where Φ(𝑡) satisfies

𝑑Φ

𝑑𝑡
= (

𝑟 (𝑡) − 𝑏 (𝑡) 𝑦
𝑇
(𝑡) 0

𝑐 (𝑡) 𝑦
𝑇
(𝑡) −𝛿 (𝑡)

)Φ (𝑡) , (19)

andΦ(0) = 𝐼 denoted the identitymatrix.The resetting of the
third and fourth equations of (4) becomes

(
𝑢 (𝑛𝑇 + 𝜏

+

𝑘
)

V (𝑛𝑇 + 𝜏
+

𝑘
)
) = (

1 − 𝑝𝑘 0

0 1
)(

𝑢 (𝑛𝑇 + 𝜏𝑘)

V (𝑛𝑇 + 𝜏𝑘)
) . (20)

Hence, if both eigenvalues of

𝑀 = (

𝑞

∏

𝑖=1

(1 − 𝑝𝑖) 0

0 1

)Φ (𝑇) (21)

have absolute value less than one, then the periodic solution
(0, 𝑦
𝑇
(𝑡)) is locally stable. In fact, the two Floquet multiplies

are thus

𝜇1 =

𝑞

∏

𝑖=1

(1 − 𝑝𝑖) exp[∫

(𝑛+1)𝑇

𝑛𝑇

(𝑟 (𝑡) − 𝑏 (𝑡) 𝑦
𝑇
(𝑡)) 𝑑𝑡] ,

𝜇2 = exp[−∫

(𝑛+1)𝑇

𝑛𝑇

𝛿 (𝑡) 𝑑𝑡] < 1;

(22)

according to Floquet theory (see [19–21] and the references
therein), the solution (0, 𝑦

𝑇
(𝑡)) is locally stable if |𝜇1| < 1;

that is, if (17) holds true, the solution of system (4) is locally
stable.

In the following, we will prove the global attractivity of
(0, 𝑦
𝑇
(𝑡)). It follows from the second equation of system (4)

that we have𝑑𝑦(𝑡)/𝑑𝑡 > −𝛿(𝑡)𝑦(𝑡), and consider the following
impulsive differential equation:

𝑑𝑢 (𝑡)

𝑑𝑡
= −𝛿 (𝑡) 𝑢 (𝑡) , 𝑡 ̸= 𝜏𝑘,

𝑢 (𝜏
+

𝑘
) = 𝑢 (𝜏𝑘) + 𝜎𝑘, 𝑡 = 𝜏𝑘,

(23)

where 𝛿(𝑡) is continuous 𝑇 periodic function and 𝜎𝑘+𝑞 = 𝜎𝑘,
𝜏𝑘+𝑞 = 𝜏𝑘 + 𝑇.

According to Lemma 1 and the comparison theorem on
impulsive differential equations, we get 𝑦(𝑡) ≥ 𝑢(𝑡) and
𝑢(𝑡) → 𝑦

𝑇
(𝑡) as 𝑡 → ∞. Therefore,

𝑦 (𝑡) ≥ 𝑢 (𝑡) > 𝑦
𝑇
(𝑡) − 𝜖 (24)

holds for 𝜖 (𝜖 > 0) small enough and all 𝑡 large enough.
Without loss of generality, we assume that (24) holds for all
𝑡 ≥ 0. Thus, we have

𝑑𝑥 (𝑡)

𝑑𝑡
≤ 𝑟 (𝑡) 𝑥 (𝑡) − 𝑏 (𝑡) 𝑥 (𝑡) [𝑦

𝑇
(𝑡) − 𝜖] , 𝑡 ̸= 𝜏𝑘,

𝑥 (𝜏
+

𝑘
) = (1 − 𝑝𝑘) 𝑥 (𝜏𝑘) , 𝑡 = 𝜏𝑘.

(25)

Again, from the comparison theorem on impulsive differ-
ential equations, we get

𝑥 (𝑛𝑇 + 𝜏1)

≤ 𝑥 (𝑛𝑇) exp{∫

𝑛𝑇+𝜏1

𝑛𝑇

[𝑟 (𝑡) − 𝑏 (𝑡) (𝑦
𝑇
(𝑡) − 𝜖)] 𝑑𝑡} ,

𝑥 (𝑛𝑇 + 𝜏2)

≤ (1 − 𝑝1) 𝑥 (𝑛𝑇 + 𝜏1)

× exp{∫

𝑛𝑇+𝜏2

𝑛𝑇+𝜏1

[𝑟 (𝑡) − 𝑏 (𝑡) (𝑦
𝑇
(𝑡) − 𝜖)] 𝑑𝑡}
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≤ (1 − 𝑝1) 𝑥 (𝑛𝑇)

× exp
{

{

{

1

∑

𝑗=0

∫

𝑛𝑇+𝜏𝑗+1

𝑛𝑇+𝜏𝑗

[𝑟 (𝑡) − 𝑏 (𝑡) (𝑦
𝑇
(𝑡) − 𝜖)] 𝑑𝑡

}

}

}

,

...

𝑥 ((𝑛 + 1) 𝑇)

≤

𝑞

∏

𝑖=1

(1 − 𝑝𝑖) 𝑥 (𝑛𝑇)

× exp
{

{

{

𝑞−1

∑

𝑗=0

∫

𝑛𝑇+𝜏𝑗+1

𝑛𝑇+𝜏𝑗

[𝑟 (𝑡) − 𝑏 (𝑡) (𝑦
𝑇
(𝑡) − 𝜖)] 𝑑𝑡

+ ∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑞

[𝑟 (𝑡) − 𝑏 (𝑡) (𝑦
𝑇
(𝑡) − 𝜖)] 𝑑𝑡

}

}

}

=

𝑞

∏

𝑖=1

(1 − 𝑝𝑖) 𝑥 (𝑛𝑇)

× exp{∫

(𝑛+1)𝑇

𝑛𝑇

[𝑟 (𝑡) + 𝑏 (𝑡) 𝜖] 𝑑𝑡

−

𝑞−1

∑

𝑗=0

∫

𝑛𝑇+𝜏𝑗+1

𝑛𝑇+𝜏𝑗

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡

−∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑞

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡}

≜ 𝑥 (𝑛𝑇) 𝑅𝜖,

(26)

where 𝜏0 = 0 and

𝑅𝜖 =

𝑞

∏

𝑖=1

(1 − 𝑝𝑖) exp{∫

(𝑛+1)𝑇

𝑛𝑇

[𝑟 (𝑡) + 𝑏 (𝑡) 𝜖] 𝑑𝑡

−

𝑞−1

∑

𝑗=0

∫

𝑛𝑇+𝜏𝑗+1

𝑛𝑇+𝜏𝑗

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡

−∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑞

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡} .

(27)

Let 𝜖 → 0; we get the expression of𝑅0, which is given in (17).
Therefore, if 𝑅0 < 1, then 𝑥(𝑛𝑇) ≤ (𝑅0)

𝑛
𝑥(0). Consequently,

𝑥(𝑛𝑇) → 0 as 𝑛 → ∞.
Next, we can prove that 𝑦(𝑡) → 𝑦

𝑇
(𝑡) as 𝑡 → ∞. For

any 𝜖 > 0, there must exist a 𝑡1 > 0 such that 0 < 𝑥(𝑡) < 𝜖 for
𝑡 > 𝑡1. Without loss of generality, we assume that 0 < 𝑥(𝑡) < 𝜖

holds true for all 𝑡 > 0; then, we have

𝑑𝑦 (𝑡)

𝑑𝑡
< (𝜖𝑐 (𝑡) − 𝛿 (𝑡)) 𝑦 (𝑡) , (28)

and consider the following impulsive differential equation:

𝑑V (𝑡)
𝑑𝑡

= (𝜖𝑐 (𝑡) − 𝛿 (𝑡)) V (𝑡) , 𝑡 ̸= 𝜏𝑘,

V (𝜏+
𝑘
) = V (𝜏𝑘) + 𝜎𝑘, 𝑡 = 𝜏𝑘.

(29)

By using the same methods as those for system (23), it is
easy to prove that system (29) has a globally stable periodic
solution, denoted by V𝑇(𝑡) and

V𝑇 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

V∗
𝑛
exp [∫

𝑡

𝑛𝑇

(𝜖𝑐 (𝑠) − 𝛿 (𝑠)) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇, 𝑛𝑇 + 𝜏1] ,

...

V∗
𝑛
exp [∫

𝑡

𝑛𝑇

(𝜖𝑐 (𝑠) − 𝛿 (𝑠)) 𝑑𝑠]

+

𝑘

∑

𝑗=1

𝜎𝑗 exp[∫

𝑡

𝑛𝑇+𝜏𝑗

(𝜖𝑐 (𝑠) − 𝛿 (𝑠)) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇 + 𝜏𝑘, 𝑛𝑇 + 𝜏𝑘+1] ,

...

V∗
𝑛
exp [∫

𝑡

𝑛𝑇

(𝜖𝑐 (𝑠) − 𝛿 (𝑠)) 𝑑𝑠]

+

𝑞

∑

𝑗=1

𝜎𝑗 exp[∫

𝑡

𝑛𝑇+𝜏𝑗

(𝜖𝑐 (𝑠) − 𝛿 (𝑠)) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇 + 𝜏𝑞, (𝑛 + 1) 𝑇] ,

(30)

with

V∗
𝑛
=

∑
𝑞

𝑗=1
𝜎𝑗 exp [∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑗
(𝜖𝑐 (𝑠) − 𝛿 (𝑠)) 𝑑𝑠]

1 − exp [∫
(𝑛+1)𝑇

𝑛𝑇
(𝜖𝑐 (𝑠) − 𝛿 (𝑠)) 𝑑𝑠]

. (31)

Therefore, combined with (24), for any 𝜖1 > 0, there exists
a 𝑡2 > 0 such that 𝑦𝑇(𝑡) − 𝜖1 < 𝑦(𝑡) < V𝑇(𝑡) + 𝜖1 for any 𝑡 > 𝑡2.
Let 𝜖 → 0; then we have 𝑦

𝑇
(𝑡) − 𝜖1 < 𝑦(𝑡) < 𝑦

𝑇
(𝑡) + 𝜖1 for

𝑡 > 𝑡2, which indicates that 𝑦(𝑡) → 𝑦
𝑇
(𝑡) as 𝑡 → ∞.

This completes the proof of global attractivity of
(0, 𝑦
𝑇
(𝑡)). Then it is globally asymptotically stable. The proof

of Theorem 2 is complete.

3. The Optimal Control Time with Different 𝑞

Assume that pesticide is sprayed and the natural enemy is
released only at the time points 𝑛𝑇 + 𝜏𝑖 (𝑖 = 1, 2, . . . , 𝑞 and
0 < 𝜏1 < 𝜏2 < ⋅ ⋅ ⋅ < 𝜏𝑞 < 𝑇) during each period 𝑇. It is well
known that the size of the pest population at the end will be
different if impulsive control occurs at different time. So, it
is necessary to determine the optimal time to make sure that
the pest can be eliminated quickly.

3.1. The Optimal Control Time with 𝑞 = 1. In this subsection,
we consider one-pulse controlling at time 𝑛𝑇 + 𝜏1 in each
period 𝑇 (where 𝜏1 ∈ [0, 𝑇]) with aims to find the optimal
time 𝑛𝑇 + 𝜏1 such that the threshold value is the smallest.
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Therefore, if 𝑞 = 1, then the threshold value 𝑅0 can be
reduced as

𝑅0 = (1 − 𝑝1)

× exp[∫

(𝑛+1)𝑇

𝑛𝑇

𝑟 (𝑡) 𝑑𝑡

− ∫

𝑛𝑇+𝜏1

𝑛𝑇

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡

−∫

(𝑛+1)𝑇

𝑛𝑇+𝜏1

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡] ,

(32)

where

𝑦
𝑇
(𝑡) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑌
∗

𝑛
exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇, 𝑛𝑇 + 𝜏1] ,

𝑌
∗

𝑛
exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+𝜎1 exp [−∫

𝑡

𝑛𝑇+𝜏1

𝛿 (𝑠) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇 + 𝜏1, (𝑛 + 1) 𝑇] ,

𝑌
∗

𝑛
=

𝜎1 exp [− ∫
(𝑛+1)𝑇

𝑛𝑇+𝜏1
𝛿 (𝑠) 𝑑𝑠]

1 − exp [− ∫
(𝑛+1)𝑇

𝑛𝑇
𝛿 (𝑠) 𝑑𝑠]

.

(33)

Denote

𝐴 = ∫

(𝑛+1)𝑇

𝑛𝑇

𝑟 (𝑡) 𝑑𝑡,

𝐵 (𝜏1) = 𝑌
∗

𝑛
∫

(𝑛+1)𝑇

𝑛𝑇

𝑏 (𝑡) exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] 𝑑𝑡,

𝐶1 (𝜏1) = 𝜎1 ∫

(𝑛+1)𝑇

𝑛𝑇+𝜏1

𝑏 (𝑡) exp [−∫

𝑡

𝑛𝑇+𝜏1

𝛿 (𝑠) 𝑑𝑠] 𝑑𝑡.

(34)

Thus, we have

𝑅0 = (1 − 𝑝1) exp (𝐴 − 𝐵 (𝜏1) − 𝐶1 (𝜏1)) . (35)

Taking the derivative of function 𝑅0 with respect to 𝜏1,
one obtains
𝑑𝑅0

𝑑𝜏1

= − (1 − 𝑝1) (
𝑑𝐵 (𝜏1)

𝑑𝜏1

+
𝑑𝐶1 (𝜏1)

𝑑𝜏1

)

× exp (𝐴 − 𝐵 (𝜏1) − 𝐶1 (𝜏1))

= −𝑅0 (
𝑑𝐵 (𝜏1)

𝑑𝜏1

+
𝑑𝐶1 (𝜏1)

𝑑𝜏1

)

= −𝑅0 [𝛿 (𝑛𝑇 + 𝜏1) (𝐵 (𝜏1) + 𝐶1 (𝜏1)) − 𝜎1𝑏 (𝑛𝑇 + 𝜏1)] .

(36)

Letting 𝑑𝑅0/𝑑𝜏1 = 0, we can see that 𝜏1min satisfies
equation 𝑑𝐵(𝜏1)/𝑑𝜏1 + 𝑑𝐶1(𝜏1)/𝑑𝜏1 = 0; that is

𝐺1 ≐ 𝛿 (𝑛𝑇 + 𝜏1min) (𝐵 (𝜏1min) + 𝐶1 (𝜏1min))

− 𝜎1𝑏 (𝑛𝑇 + 𝜏1min) = 0.

(37)

The second derivative of 𝑅0 with respect to 𝜏1 at 𝜏1min can be
calculated as follows:

𝑑
2
𝑅0

𝑑𝜏
2

1

𝜏1=𝜏1min

= −𝑅0 [
𝑑𝛿 (𝑛𝑇 + 𝜏1)

𝑑𝜏1

(𝐵 (𝜏1min) + 𝐶1 (𝜏1min))

− 𝜎1

𝑑𝑏 (𝑛𝑇 + 𝜏1min)

𝑑𝜏1

]

= −𝜎1𝑅0 [
𝑏 (𝑛𝑇 + 𝜏1min)

𝛿 (𝑛𝑇 + 𝜏1min)

𝑑𝛿 (𝑛𝑇 + 𝜏1)

𝑑𝜏1

𝜏1=𝜏1min

−
𝑑𝑏 (𝑛𝑇 + 𝜏1)

𝑑𝜏1

𝜏1=𝜏1min

] .

(38)

If 𝑑2𝑅0/𝑑𝜏
2

1
|
𝜏1=𝜏1min

> 0, that is, 𝜏1min satisfies

𝑏 (𝑛𝑇 + 𝜏1min)

𝛿 (𝑛𝑇 + 𝜏1min)

𝑑𝛿 (𝑛𝑇 + 𝜏1)

𝑑𝜏1

|𝜏1=𝜏1min

−
𝑑𝑏 (𝑛𝑇 + 𝜏1)

𝑑𝜏1

|𝜏1=𝜏1min

< 0,

(39)

then 𝜏1min is the minimal value point.
According to the above discussion, we have the following

theorem.

Theorem 3. If 𝜏1min satisfies (37) and inequality (39), then the
threshold value 𝑅0 reaches its minimum value.

For example, if we let 𝑟(𝑡) = 𝑟0 + 𝑎 cos(𝜔𝑡), 𝑏(𝑡) =

𝑏0 + 𝑏 sin(𝜔𝑡), and 𝛿(𝑡) = 𝛿0 + 𝛿1 cos(𝜔𝑡), then by simple
calculations we have

𝑑
2
𝑅0

𝑑𝜏
2

1

𝜏1=𝜏1min

= 𝜔𝜎1𝑅0 [
𝑏𝛿1 + 𝛿1𝑏0 sin (𝜔𝜏1min) + 𝑏𝛿0 cos (𝜔𝜏1min)

𝛿0 + 𝛿1 cos (𝜔𝜏1min)
] ,

(40)

and if 𝜏1min satisfies

𝑏𝛿1 + 𝛿1𝑏0 sin (𝜔𝜏1min) + 𝑏𝛿0 cos (𝜔𝜏1min)

𝛿0 + 𝛿1 cos (𝜔𝜏1min)
> 0, (41)

then 𝜏1min is the minimum value point.That is, 𝑅0 reaches its
minimum value when 𝜏1 = 𝜏1min.

To confirm our main results obtained in this subsection,
we fixed all parameters including 𝑟(𝑡), 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝛿(𝑡),
𝑝1, 𝜎1, and initial values 𝑥0, 𝑦0 and carry out the numerical
investigations. To find the optimal timing of applying IPM
strategy, we consider 𝑑𝑅0/𝑑𝜏1 as a function with respect to
𝜏1 aiming to find the time point such that 𝑑𝑅0/𝑑𝜏1 = 0.
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Figure 1: Illustration of the existence of the minimal value point.
The parameter values are fixed as follows: 𝑟(𝑡) = 1.5+0.3 cos(0.4𝜋𝑡),
𝑏(𝑡) = 1 + 0.2 sin(0.4𝜋𝑡), 𝛿(𝑡) = 0.5 + 0.1 cos(0.4𝜋𝑡), 𝜎1 = 0.5, and
𝑝1 = 0.25.

Since 𝑑𝑅0/𝑑𝜏1 = −𝑅0𝐺1 = 0, we only need to plot the −𝐺1

with respect to time 𝜏1, as shown in Figure 1. By calculation,
we have 𝜏1min = 0.95, which satisfies inequality (41), and
consequently 𝜏1min is a minimum value point.

Now, we can consider the effects of different timing of
applying IPM strategies on the pest population, in particular
the amplitudes of the pest population. To do this, we choose
three different time points, denoted by 𝜏1min, 𝜏1, and 𝜏



1
, at

which the one-time control action has been implemented.
It follows from Figure 2 that the maximal value of the pest
population is the smallest when we implement the one-time
control action at time 𝜏1min, which confirms that the results
obtained here can help us to design the optimal control
strategies.

In the following, we would like to address how the
impulsive period 𝑇, release quantity 𝜎1, pest killing rate 𝑝1,
and death rate of the pest population 𝑏(𝑡) affect the threshold
value 𝑅0. To address this question, we fix the parameters
concerning periodic functions 𝑟(𝑡), 𝑎(𝑡), 𝑐(𝑡), and 𝛿(𝑡) and
vary the impulsive period 𝑇, the release quantity 𝜎1, the
killing rate 𝑝1, and the death rate 𝑏(𝑡), respectively.

In Figure 3, we see that the threshold value 𝑅0 is not
monotonic with respect to time 𝑡 and the effects of all four
parameters (𝑇, 𝜎1, 𝑝1, and 𝑏0) on threshold condition 𝑅0 are
complex. Figure 3(a) shows the effect of impulsive period 𝑇

on the𝑅0, and the results indicate that the larger the impulsive
period 𝑇 is, the larger the threshold value is, which will result
in a more sever pest outbreak. Oppositely, in Figure 3(b),
the results indicate that the smaller the release quantity 𝜎1

is, the larger the 𝑅0 is. Figures 3(c) and 3(d) clarify that
slightly increasing the pest killing rate 𝑝1 and the death rate
of pest 𝑏(𝑡) can reduce the quantity of threshold value 𝑅0

dramatically, and the results can be used to help the farmer
to select appropriate pesticides. At the same time, we can see
clearly how the periodic perturbations affect the threshold
value 𝑅0, as indicated in the bold curves in Figure 3.

3.2. TheOptimal Control Time with 𝑞 = 2. In this subsection,
we consider two-pulse controlling at times 𝑛𝑇+𝜏1 and 𝑛𝑇+𝜏2

in each period 𝑇, where 0 < 𝜏1 < 𝜏2 < 𝑇. In the following, we
focus on finding the optimal time points 𝑛𝑇 + 𝜏1 and 𝑛𝑇 + 𝜏2

such that the threshold value 𝑅0 is the smallest.
Therefore, if 𝑞 = 2, then the threshold value 𝑅0 becomes

as
𝑅0 = (1 − 𝑝1) (1 − 𝑝2)

× exp[∫

(𝑛+1)𝑇

𝑛𝑇

𝑟 (𝑡) 𝑑𝑡

− ∫

𝑛𝑇+𝜏1

𝑛𝑇

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡

− ∫

𝑛𝑇+𝜏2

𝑛𝑇+𝜏1

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡

−∫

(𝑛+1)𝑇

𝑛𝑇+𝜏2

𝑏 (𝑡) 𝑦
𝑇
(𝑡) 𝑑𝑡] ,

(42)

where

𝑦
𝑇
(𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑌
∗

𝑛
exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇, 𝑛𝑇 + 𝜏1] ,

𝑌
∗

𝑛
exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+𝜎1 exp [−∫

𝑡

𝑛𝑇+𝜏1

𝛿 (𝑠) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇 + 𝜏1, 𝑛𝑇 + 𝜏2] ,

𝑌
∗

𝑛
exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠]

+𝜎1 exp [−∫

𝑡

𝑛𝑇+𝜏1

𝛿 (𝑠) 𝑑𝑠]

+𝜎2 exp [−∫

𝑡

𝑛𝑇+𝜏2

𝛿 (𝑠) 𝑑𝑠] ,

𝑡 ∈ (𝑛𝑇 + 𝜏2, (𝑛 + 1) 𝑇] ,

𝑌
∗

𝑛
=

𝜎1 exp [− ∫
(𝑛+1)𝑇

𝑛𝑇+𝜏1
𝛿 (𝑠) 𝑑𝑠]

1 − exp [− ∫
(𝑛+1)𝑇

𝑛𝑇
𝛿 (𝑠) 𝑑𝑠]

+

𝜎2 exp [− ∫
(𝑛+1)𝑇

𝑛𝑇+𝜏2
𝛿 (𝑠) 𝑑𝑠]

1 − exp [− ∫
(𝑛+1)𝑇

𝑛𝑇
𝛿 (𝑠) 𝑑𝑠]

≐ 𝑌
∗

𝑛1
+ 𝑌
∗

𝑛2
.

(43)
Thus, we get

𝑅0 = (1 − 𝑝1) (1 − 𝑝2)

× exp (𝐴 − 𝐵 (𝜏1, 𝜏2) − 𝐶1 (𝜏1) − 𝐶2 (𝜏2)) ,

(44)

where

𝐴 = ∫

(𝑛+1)𝑇

𝑛𝑇

𝑟 (𝑡) 𝑑𝑡,

𝐶1 (𝜏1) = 𝜎1 ∫

(𝑛+1)𝑇

𝑛𝑇+𝜏1

𝑏 (𝑡) exp [−∫

𝑡

𝑛𝑇+𝜏1

𝛿 (𝑠) 𝑑𝑠] 𝑑𝑡,
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Figure 2: Supposing that one-pulse controlling is implemented in each period 𝑇, we plot the solution curve of system (4). We fixed all
parameters as follows: 𝑟(𝑡) = 0.7 + 0.1 cos(0.4𝜋𝑡), 𝑎(𝑡) = 1/(50 + 9 sin(0.4𝜋𝑡)), 𝑏(𝑡) = 0.5 + 0.02 sin(0.4𝜋𝑡), 𝑐(𝑡) = 0.5𝑏(𝑡), 𝛿(𝑡) = 0.3 +

0.2 cos(0.4𝜋𝑡), 𝑝1 = 0.25, 𝜎1 = 1, 𝑥0 = 2.6, and 𝑦0 = 1. The impulsive timing is (a-b) 𝜏1min = 0.95; (c-d) 𝜏1 = 2.5; (e-f) 𝜏
1
= 3.5.

𝐶2 (𝜏2) = 𝜎2 ∫

(𝑛+1)𝑇

𝑛𝑇+𝜏2

𝑏 (𝑡) exp [−∫

𝑡

𝑛𝑇+𝜏2

𝛿 (𝑠) 𝑑𝑠] 𝑑𝑡,

𝐵 (𝜏1, 𝜏2)

= 𝑌
∗

𝑛
∫

(𝑛+1)𝑇

𝑛𝑇

𝑏 (𝑡) exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] 𝑑𝑡

= 𝑌
∗

𝑛1
∫

(𝑛+1)𝑇

𝑛𝑇

𝑏 (𝑡) exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] 𝑑𝑡

+ 𝑌
∗

𝑛2
∫

(𝑛+1)𝑇

𝑛𝑇

𝑏 (𝑡) exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] 𝑑𝑡

≐ 𝐵1 (𝜏1) + 𝐵2 (𝜏2) .

(45)

Taking the derivatives of the function 𝑅0 with respect to
𝜏1 and 𝜏2, respectively, we get

𝜕𝑅0

𝜕𝜏1

= −𝑅0 (
𝑑𝐵1 (𝜏1)

𝑑𝜏1

+
𝑑𝐶1 (𝜏1)

𝑑𝜏1

) ,

𝜕𝑅0

𝜕𝜏2

= −𝑅0 (
𝑑𝐵2 (𝜏2)

𝑑𝜏2

+
𝑑𝐶2 (𝜏2)

𝑑𝜏2

) ,

(46)

with
𝑑𝐵𝑖 (𝜏𝑖)

𝑑𝜏𝑖

= 𝛿 (𝑛𝑇 + 𝜏𝑖) 𝐵𝑖 (𝜏𝑖) , (𝑖 = 1, 2) ,

𝑑𝐶𝑖 (𝜏𝑖)

𝑑𝜏𝑖

= 𝛿 (𝑛𝑇 + 𝜏𝑖) 𝐶𝑖 (𝜏𝑖) − 𝜎𝑖𝑏 (𝑛𝑇 + 𝜏𝑖) , (𝑖 = 1, 2) .

(47)

Letting 𝜕𝑅0/𝜕𝜏1 = 0, 𝜕𝑅0/𝜕𝜏2 = 0, we have 𝜏1min
and 𝜏2min satisfying the following equations 𝑑𝐵𝑖(𝜏𝑖)/𝑑𝜏𝑖 +

𝑑𝐶𝑖(𝜏𝑖)/𝑑𝜏𝑖 = 0; that is,

𝐺𝑖 ≐ 𝛿 (𝑛𝑇 + 𝜏𝑖) (𝐵𝑖 (𝜏𝑖) + 𝐶𝑖 (𝜏𝑖)) − 𝜎𝑖𝑏 (𝑛𝑇 + 𝜏𝑖) = 0,

(𝑖 = 1, 2) .

(48)

The second partial derivatives of the function 𝑅0 with
respect to 𝜏1, 𝜏2 at the points 𝜏1min and 𝜏2min can be calculated
as follows:

𝑅


11
=

𝜕
2
𝑅0

𝜕𝜏
2

1

𝜏1=𝜏1min

= −𝜎1𝑅0 [
𝑏(𝑛𝑇 + 𝜏1min)

𝛿(𝑛𝑇 + 𝜏1min)

𝑑𝛿(𝑛𝑇 + 𝜏1)

𝑑𝜏1

𝜏1=𝜏1min
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Figure 3:The effects of the impulsive period𝑇, the releasing quantity 𝜎1, the killing rate 𝑝1, and the death rate 𝑏(𝑡) on the threshold condition
𝑅0. The baseline parameter values are as follows: 𝑟(𝑡) = 1.8 + 0.3 cos(0.4𝜋𝑡), 𝑏(𝑡) = 1 + 0.2 sin(0.4𝜋𝑡), 𝛿(𝑡) = 0.5 + 0.1 cos(0.4𝜋𝑡), 𝑝1 = 0.25,
𝑇 = 5, 𝜎1 = 5. (a) The effect of the period 𝑇 on 𝑅0; (b) the effect of the releasing quantity 𝜎1 on 𝑅0; (c) the effect of pest killing rate 𝑝1 on 𝑅0;
(d) the effect of death rate 𝑏

0
on 𝑅
0
.

−
𝑑𝑏(𝑛𝑇 + 𝜏1)

𝑑𝜏1

𝜏1=𝜏1min

] ,

𝑅


22
=

𝜕
2
𝑅0

𝜕𝜏
2

2

𝜏2=𝜏2min

= −𝜎2𝑅0 [
𝑏 (𝑛𝑇 + 𝜏2min)

𝛿 (𝑛𝑇 + 𝜏2min)

𝑑𝛿 (𝑛𝑇 + 𝜏2)

𝑑𝜏2

𝜏2=𝜏2min

−
𝑑𝑏 (𝑛𝑇 + 𝜏2)

𝑑𝜏2

𝜏2=𝜏2min

] ,

𝑅


12
=

𝜕
2
𝑅0

𝜕𝜏1𝜕𝜏2

(𝜏1=𝜏1min,𝜏2=𝜏2min)

= −
𝜕𝑅0

𝜕𝜏2

(
𝑑𝐵1 (𝜏1)

𝑑𝜏1

+
𝑑𝐶1 (𝜏1)

𝑑𝜏1

) = 0.

(49)

By calculation, we easily get

𝑅


11
𝑅


22
− (𝑅


12
)
2

= 𝜎1𝜎2𝑅
2

0

2

∏

𝑖=1

[
𝑏(𝑛𝑇 + 𝜏𝑖min)

𝛿(𝑛𝑇 + 𝜏𝑖min)

𝑑𝛿(𝑛𝑇 + 𝜏𝑖)

𝑑𝜏𝑖

𝜏𝑖=𝜏𝑖min

−
𝑑𝑏(𝑛𝑇 + 𝜏𝑖)

𝑑𝜏𝑖

𝜏𝑖=𝜏𝑖min

] .

(50)
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Figure 4: Illustrations of existences of 𝜏𝑖min (𝑖 = 1, 2).The parameter
values are fixed as follows: 𝑏(𝑡) = 1 + 0.2 sin(0.7𝜋𝑡), 𝛿(𝑡) = 0.5 +

0.1 cos(0.7𝜋𝑡), 𝜎1 = 0.5.

According to the method of extremes for multivariable
function, if 𝑅

11
𝑅


22
− (𝑅


12
)
2

> 0, and 𝑅


11
> 0, that is, if

𝜏𝑖min (𝑖 = 1, 2) satisfy

𝑏 (𝑛𝑇 + 𝜏𝑖min)

𝛿 (𝑛𝑇 + 𝜏𝑖min)

𝑑𝛿 (𝑛𝑇 + 𝜏𝑖)

𝑑𝜏𝑖

𝜏𝑖=𝜏𝑖min

−
𝑑𝑏 (𝑛𝑇 + 𝜏𝑖)

𝑑𝜏𝑖

𝜏𝑖=𝜏𝑖min

< 0, (𝑖 = 1, 2) ,

(51)

then 𝜏𝑖min (𝑖 = 1, 2) are the minimum value points.
From the above argument, we have the following theo-

rem.

Theorem4. If 𝜏𝑖min (𝑖 = 1, 2) satisfy (48) and inequalities (51),
then threshold value 𝑅0 reaches its minimum value.

Similarly, in order to get the exact values for 𝜏𝑖min, we
let 𝑟(𝑡) = 𝑟0 + 𝑎 cos(𝜔𝑡), 𝑏(𝑡) = 𝑏0 + 𝑏 sin(𝜔𝑡), 𝛿(𝑡) =

𝛿0 + 𝛿1 cos(𝜔𝑡); then,

𝐺𝑖 = [𝛿0 + 𝛿1 cos (𝜔𝜏𝑖)] [𝐵𝑖 (𝜏𝑖) + 𝐶𝑖 (𝜏𝑖)]

− 𝜎𝑖 [𝑏0 + 𝑏 sin (𝜔𝜏𝑖)] , (𝑖 = 1, 2)

(52)

and if 𝜏𝑖min (𝑖 = 1, 2) satisfy

𝑏𝛿1 + 𝛿1𝑏0 sin (𝜔𝜏𝑖min) + 𝑏𝛿0 cos (𝜔𝜏𝑖min)

𝛿0 + 𝛿1 cos (𝜔𝜏𝑖min)
> 0, (53)

then 𝜏𝑖min (𝑖 = 1, 2) are theminimumvalue points. Since 𝜏2 >
𝜏1, we may assume that 𝜏2 = 𝜏1 + 𝑓, where 𝑓 is a positive
constant. Then, we plot −𝐺2 with respect to 𝑓, as shown in
Figure 4. It is clear that theminimumvalue point of𝑓 is about
0.29. Thus, 𝜏2min = 𝜏1min + 0.29 = 1.24.

In the following, we will discuss the effects of the pest
killing rates (𝑝1, 𝑝2) and releasing quantities (𝜎1, 𝜎2) on the

threshold value 𝑅0. As we can see from Figure 5, 𝑅0 is quite
sensitive to all four parameters (𝑝1, 𝑝2, 𝜎1, 𝜎2). According to
these numerical simulations, the farmer can take appropriate
measures to achieve successful pest control.

Moreover, we can investigate the more general case, that
is, 𝑞-time impulsive control actions implemented at time 𝑛𝑇+

𝜏𝑖 (𝑖 = 1, 2, . . . , 𝑞 and 𝜏1 < 𝜏2 < ⋅ ⋅ ⋅ < 𝜏𝑞) within period
(𝑛𝑇, (𝑛 + 1)𝑇] [22]. Similarly, we can get a unique group of
optimal impulsive moments for 𝑖 = 1, 2, . . . 𝑞, which satisfy

𝐺𝑖 ≐ 𝛿 (𝑛𝑇 + 𝜏𝑖) (𝐵𝑖 (𝜏𝑖) + 𝐶𝑖 (𝜏𝑖)) − 𝜎𝑖𝑏 (𝑛𝑇 + 𝜏𝑖) = 0,

(𝑖 = 1, 2, . . . 𝑞) .

(54)

In fact,

𝑅0 =

𝑞

∏

𝑖=1

(1 − 𝑝𝑖)

× exp (𝐴 − 𝐵 (𝜏1, 𝜏2, . . . , 𝜏𝑞) − 𝐶 (𝜏1, 𝜏2, . . . , 𝜏𝑞)) ,

(55)

where

𝐵 (𝜏1, 𝜏2, . . . , 𝜏𝑞) =

𝑞

∑

𝑗=1

𝑌
∗

𝑛𝑗
∫

(𝑛+1)𝑇

𝑛𝑇

𝑏 (𝑡) exp [−∫

𝑡

𝑛𝑇

𝛿 (𝑠) 𝑑𝑠] 𝑑𝑡

≐

𝑞

∑

𝑗=1

𝐵𝑖 (𝜏𝑖) ,

𝐶 (𝜏1, 𝜏2, . . . , 𝜏𝑞) =

𝑞

∑

𝑗=1

𝜎𝑗 ∫

(𝑛+1)𝑇

𝑛𝑇+𝜏𝑗

𝑏 (𝑡)

× exp[−∫

𝑡

𝑛𝑇+𝜏𝑗

𝛿 (𝑠) 𝑑𝑠] 𝑑𝑡

≐

𝑞

∑

𝑗=1

𝐶𝑖 (𝜏𝑖) .

(56)

Taking the derivatives of the function 𝑅0 with respect to
𝜏𝑖 (𝑖 = 1, 2, . . . , 𝑞), respectively, we get

𝜕𝑅0

𝜕𝜏𝑖

= − 𝑅0 (
𝑑𝐵𝑖 (𝜏𝑖)

𝑑𝜏𝑖

+
𝑑𝐶𝑖 (𝜏𝑖)

𝑑𝜏𝑖

) ,

(𝑖 = 1, 2, . . . , 𝑞)

(57)

with

𝑑𝐵𝑖 (𝜏𝑖)

𝑑𝜏𝑖

= 𝛿 (𝑛𝑇 + 𝜏𝑖) 𝐵𝑖 (𝜏𝑖) ,

𝑑𝐶𝑖 (𝜏𝑖)

𝑑𝜏𝑖

= 𝛿 (𝑛𝑇 + 𝜏𝑖) 𝐶𝑖 (𝜏𝑖) − 𝜎𝑖𝑏 (𝑛𝑇 + 𝜏𝑖) .

(𝑖 = 1, 2, . . . , 𝑞) .

(58)

Letting 𝜕𝑅0/𝜕𝜏𝑖 = 0, (𝑖 = 1, 2, . . . , 𝑞), we have 𝜏𝑖min satisfying
(54).
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Figure 5:The effects of the pest killing rates (𝑝1, 𝑝2) and the releasing quantities (𝜎1, 𝜎2) on the threshold condition𝑅0.The baseline parameter
values are as follows: 𝑟(𝑡) = 2 + 0.3 cos(0.4𝜋𝑡), 𝑏(𝑡) = 1 + 0.2 sin(0.4𝜋𝑡), 𝛿(𝑡) = 0.5 + 0.1 cos(0.4𝜋𝑡), 𝑇 = 5, 𝜏1 = 1, 𝜏2 = 3. (a) The effect of the
releasing quantities 𝑝1 and 𝑝2 on 𝑅0 with 𝜎1 = 2.5 and 𝜎2 = 1.8; (b) the effect of pest killing rates 𝜎1 and 𝜎2 on 𝑅0 with 𝑝1 = 0.25 and 𝑝2 = 0.2.

If 𝑟(𝑡) = 𝑟0 + 𝑎 cos(𝜔𝑡), 𝑏(𝑡) = 𝑏0 + 𝑏 sin(𝜔𝑡), and 𝛿(𝑡) =

𝛿0 + 𝛿1 cos(𝜔𝑡), then

𝐺𝑖 = [𝛿0 + 𝛿1 cos (𝜔𝜏𝑖)] [𝐵𝑖 (𝜏𝑖) + 𝐶𝑖 (𝜏𝑖)]

− 𝜎𝑖 [𝑏0 + 𝑏 sin (𝜔𝜏𝑖)] , (𝑖 = 1, 2, . . . , 𝑞) .

(59)

This indicates that if 𝜏𝑖min (𝑖 = 1, 2, . . . , 𝑞) satisfy the
following inequalities:

𝑏𝛿1 + 𝛿1𝑏0 sin (𝜔𝜏𝑖min) + 𝑏𝛿0 cos (𝜔𝜏𝑖min)

𝛿0 + 𝛿1 cos (𝜔𝜏𝑖min)
> 0,

(𝑖 = 1, 2, . . . , 𝑞) ,

(60)

then, 𝜏𝑖min (𝑖 = 1, 2, . . . , 𝑞) are the minimum value points.

4. Discussion and Biological Conclusions

It is well known that the growth rate of the species is
affected by the living environments, so it is more practical
to consider the growth rates of predator and prey as the
functions with respect to time 𝑡 in the models with IPM
strategies. Therefore, nonautonomous predator-prey systems
with impulsive effects have been developed and investigated
in the literatures [11–13]. However, those works mainly
focused on the dynamical behavior including the existence
and stability of pest-free periodic solutions. Frompest control
point of view, one of interesting questions is to determine
the optimal application timing of pest control tactics in such
models and fall within the scope of the study.

In order to address this question, the existence and global
stability of pest-free periodic solution have been proved
in theory firstly. Moreover, the optimal application timings

which minimize the threshold value for one-time pulse con-
trol, two-time pulse controls, and multipulse controls within
a given period have been obtained, and most importantly the
analytical formula of the optimal timings of IPM applications
has been provided for each case. For examples, Figure 1
illustrates the existence of the minimum value point of the
threshold value 𝑅0, under which the maximum amplitude
of pest population reaches its minimum value, and this is
validated by comparison of different sizes of pest population
at three different impulsive timings in Figure 2; Figure 3
clarifies how the four parameters (the impulsive period, the
release quantity, the killing rate of pest, and the death rate
of pest) affect the successful pest control. All those results
obtained here are useful for the farmer to select appropriate
timings at which the IPM strategies are applied.

Note that the complex dynamical behavior of model (4)
can be seen in Figure 6, where the period 𝑇 is chosen as a
bifurcation parameter. As the parameter 𝑇 increases, model
(4) may give different solutions with period 𝑇, 2𝑇, and even-
tually the model (4) undergoes a period-double bifurcation
and leads to chaos. Moreover, the multiple attractors can
coexist for a wide range of parameter, which indicates that
the final stable states of pest and natural enemy populations
depend on their initial densities.

In this paper, we mainly focus on the simplest prey-
predator model with impulsive effects. It is interesting to
consider the evolution of pesticide resistance, which can be
involved into the killing rate related to pesticide applications.
Moreover, according to the definition of IPM, the control
actions can only be applied once the density of pest popu-
lations reaches the economic threshold. Therefore, based on
above facts, we would like to developmore realistic models in
our future works.
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Figure 6: The bifurcation diagram of stable periodic solution of system (1) with 𝑎(𝑡) = 1/(50 + 15 sin(3𝑡)), 𝑏(𝑡) = 0.5, 𝑐(𝑡) = 0.5, 𝛿(𝑡) = 0.4,
𝑟(𝑡) = 0.5, 𝑝

1
= 0.7, 𝜎

1
= 0.5. (a) The bifurcation diagram of pest for system (1); (b) the bifurcation diagram of natural enemy for system (1).
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