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In the era of big data, many urgent issues to tackle in all walks of life all can be solved via big data technique. Compared with the
Internet, economy, industry, and aerospace fields, the application of big data in the area of architecture is relatively few. In this paper,
on the basis of the actual data, the values of Boston suburb houses are forecast by several machine learning methods. According
to the predictions, the government and developers can make decisions about whether developing the real estate on corresponding
regions or not. In this paper, support vector machine (SVM), least squares support vector machine (LSSVM), and partial least
squares (PLS) methods are used to forecast the home values. And these algorithms are compared according to the predicted results.
Experiment shows that although the data set exists serious nonlinearity, the experiment result also show SVM and LSSVMmethods
are superior to PLS on dealing with the problem of nonlinearity.The global optimal solution can be found and best forecasting effect
can be achieved by SVM because of solving a quadratic programming problem. In this paper, the different computation efficiencies
of the algorithms are compared according to the computing times of relevant algorithms.

1. Introduction

Facing the upcoming era of big data, more and more people
begin to engage in data analysis and mining. Machine
learning [1], as a common means of data analysis, has gotten
more and more attention. People of different industries are
using machine learning algorithms to solve the problems
based on their own industry data [2, 3]. Experts in the field
of industry used machine learning in pattern recognition [4]
and fault diagnosis [5, 6]. People in the field of economy
began to use machine learning algorithms in economic
modeling [7, 8]. The advantages of these algorithms were
taken by the specialist in the field of aerospace in the aspect
of classification and prediction [9]. Researchers in the field
of construction combined machine learning methods with
the professional domain knowledge of construction indus-
try. Many intelligent systems are used in the construction
industry, and lots of them have achieved good economic and
social benefits. In general, the budget of construction project
and benefit analysis of construction are usually gotten by
the experience of the professionals and the construction of

traditional models. If the housing values can be accurately
predicted, the government can make a reasonable urban
planning. The historical housing price index was used by
Malpezzi in 1999 to predict the changes of prices of 133
U.S. cities [10]. He thought that the price of the house was
not randomly changed but followed certain rules. So, the
prices can be partly predicted. Anglin predicted the real estate
prices of Toronto by establishing a VAR model [11]. The
results showed that the growth of the real estate prices is
associated with unemployment and consumer prices. Some
experts predicted the property’s value by neural network.

Artificial neural network (ANN), which is constructed by
a large number of neurons nodes and corresponding weights,
is an artificial system to simulate the neural network of
animals and plants in nature. Because of its good nonlinear
characteristic, ANN can simulate the nonlinear function.
But its accuracy is low and convergence speed is also not
very ideal [12]. Since the ANN system is composed of a
large number of individual neurons, the system has strong
expansibility and evolutional ability. Due to the existence of
multiple equilibrium position, ANN may be trapped in local
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minimumproblem in optimization. It is difficult to obtain the
global optimal value [13].

In order to find the global optimal solution, SVMmethod,
which was founded on the statistical learning theory, was
put forward in the 1990s [14, 15]. By solving a quadratic
programming problem, SVM can find the global optimal
solution. But when the samples are a lot, it leads to a higher
complexity. For solving the problems of less number of
samples, sample data is nonlinear and samples have high
dimensions; SVM has great advantages. SVM not only has
a strong learning ability but also has a strong generalization
ability. SVM is mainly solving classification and regres-
sion problems. For the linear undivided sample data, SVM
mapped the samples to a high-dimensional space to make
them linear separable [16]. LSSVM is the improved results of
SVM [17]. By changing the inequality constraints in the SVM
into equality constraints, the original quadratic programming
problem becomes a problem to solving system of linear
equations. When compared with SVM, LSSVM not only
reduced the complexity of the calculation but also improved
the efficiency of calculation. In addition, the parameters that
need to be adjusted in LSSVM are less. But LSSVM lost
the sparse characteristic of SVM [18]. PLS is put forward
by Wold to solve chemical sample analysis problems in the
late 1960s. It has a lot of advantages in solving the problem
of multiple variables, especially when all sample variables
exhibit serious internal correlations. PLS algorithm is simple
and has strong explanatory power. So it was gradually applied
to other aspects besides the area of chemistry [19].

In this paper, the background and current situation of
the application of machine learningmethods are firstly intro-
duced. The development of its application in construction
and real estate value is also expounded.Then, severalmachine
learning algorithms which are involved in this paper are
introduced.The mathematics process of them is described in
detail. It validates the models constructed by SVM, LSSVM
and PLS with the real data of housing value of Boston suburb.
According to the prediction results of these several methods,
a discussion is made.

2. Algorithm

2.1. The Regression Algorithm of SVM. SVM was proposed
in 1995 based on statistical learning theory [20]. Compared
with the traditional machine learning methods, the machine
learning algorithms at present stage aremore rigorous in logic
and more outstanding in generalization performance.

SVM is constructed on the basis of VC dimension theory
and structure risk minimum principle, pursuing the best
balance point between the learn ability andmodel complexity.
In the problems of small sample, nonlinearity and high
dimension, SVM has significant advantages. Small sample
refers not to the absolute number of samples, but the number
of samples which SVM algorithm requires is relatively small
to the complexity of the problem. Solving the nonlinear
problems is the core of SVM method. By the introduction
of kernel function and slack variable SVM algorithm cleverly
solved the problem of linear inseparable. Kernel function is a

function that satisfies the Mercer condition. The complexity
of the calculation is effectively reduced by the kernel function.
The reason why SVM has very big advantages in solving
high dimension problems is that SVM does not need to use
all of the samples in dealing with problems and only those
support vectors are needed. The troubles in sample storage
and computing are avoided [21].

SVM ismainly used to solve the problems of classification
of the samples of different categories and the regression of the
samples. The classification problem mainly refers to seeking
a hyperplane in the higher dimensional space to separate out
the samples of different categories. For SVM, the multiple
classification can be solved via constructing two classifiers.
SVM regression is to predict the concrete value on the basis
of different sample characteristics [22, 23]. The training data
set is defined as (𝑥

𝑖
, 𝑦
𝑖
), 𝑖 = 1 ⋅ ⋅ ⋅ 𝑚, where 𝑥

𝑖
is the input data

and 𝑦
𝑖
is the corresponding output data.

The regression function can be expressed as follows:

𝑦 = (𝑧
∗
⋅ 𝑥
𝑖
) + 𝑙, (1)

where 𝑧∗ represents weight vector and 𝑙 is a normal. Both of
these parameters can be gotten from the function as follows:
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where 𝜀 is the insensitive loss function, 𝐹 represents the
punishment coefficient, and 𝑠∗

𝑖
is the slack variable.

The introduction of kernel function can solve the problem
that the nonlinear mapping function cannot be expressed.
According to the kernel function, the inner product of higher
dimension feature space can be obtained. The nonlinear
regression function can be expressed as

𝑦 =
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where 𝛼̃(󸀠) = (𝛼̃
1
, 𝛼̃󸀠
1
, . . . , 𝛼̃

𝑞
, 𝛼̃󸀠
𝑞
)
𝑇 is the solution.

Like other multivariate statistical models, the selection
of each variable’s value in the model has deep influence
to their model’s performance, such as the type of kernel
function and the corresponding kernel parameters. In SVM
regression model, regularization parameter and 𝜀-insensitive
loss function played a crucial role. Regularization parameter
determines the balance between maximum classification
interval and minimizing training error. If regularization
parameter is chosen inappropriately, the model may appear
overfitting and underfitting. 𝜀 is also an important parameter,
in which value depends on the type of noise.



Abstract and Applied Analysis 3

2.2. The Regression Algorithm of LSSVM. LSSVM is put
forward by Suykens et al. [24]. The purpose of it is to
solve some problems that exist in SVM algorithm, such
as the selection of hyperplane parameters, and the matrix
scale is highly affected by the number of training samples
when solving a quadratic programming problem. Suykens
starts from the loss function, using the two-norm in the
objective function and replacing inequality constraints in
SVM algorithm by equality constraints. Using Kuhn-Tucker
conditions can get the solution of this set of equations. When
the data size reaches a certain extent, the scale caused by
solving a quadratic programming problem is very large. Some
traditional methods are difficult to apply in such a large data
size. By solving the linear equations, LSSVMnot only reduces
the difficulty of solution but also promotes the speed to solve
the problem. So it is more suitable for applying to solve the
problems of data on a large scale [25].

Although LSSVM may not necessarily be able to obtain
the global optimal solution, it still can get a high recognition
rate. The square of error is used in objective function of
LSSVM optimization problem, that is the Lagrange Multipli-
ers are proportional to the error term.Thedirect consequence
is that the ultimate decision function has relationship with all
of the samples, which represents that LSSVM loses the sparse
characteristic of SVM solution [26].

The training samples are described as (𝑥
𝑗
, 𝑦
𝑗
), 𝑗 = 1 ⋅ ⋅ ⋅ 𝑚.

𝑥
𝑗
is the input data. Each column represents a feature. 𝑦

𝑗
is

the output data. Owing to these training data, the regression
model can be described as follows:

𝑦 = 𝑧
𝑇
𝜓 (𝑥) + 𝑙, (4)

where 𝜓(𝑥) represents the nonlinear mapping function, 𝑧
represents the weight factor, and 𝑙 is the invariable coefficient.
The cost function can be described as follows:
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where 𝑒
𝑗
represents random error and 𝑟 represents regular-

ization parameter. Lagrange function is introduced to solve
this equation
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Equation (7) can be described as
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The solution of 𝑙 and 𝛼̃ can be obtained from (8). After
introducing the kernel function, the objective function could
be rewritten as

𝑦 (𝑥) =
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2.3. Partial Least Squares Regression Algorithm. In 1983, PLS
regression was put forward for the first time. As a new
method of multivariate statistical data analysis, it has many
advantages that traditional multivariate statistical analysis
methods do not have [27].

PLS can find the best functionmatching with the original
data accordingly to minimize the sum of the squares of
error. Although the independent variables have multiple
correlation, PLS is still able to build the model [28]. All
of the independent variables will be contained in the final
model of PLS regression. And maximum information will be
extracted from the original data, which ensures the accuracy
of the model. PLS model is easier to distinguish the noise
from normal information. When the number of variables is
greater than the number of sample points, PLS algorithm
is often chosen to construct model. PLS can construct
regressionmodel, simplify the data structure, and analyze the
correlation at the same time [29].

The mathematical derivation processes of PLS regression
are to be described as follows.

The input matrix should be normalized at first. Nor-
malization can make the follow-up data processing more
convenient and prevent the predicting accuracy to be influ-
enced by the existence of singular samples. Consider 𝑋 =
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where 𝑥 represents mean value of𝑋
𝑛
, 𝑑
𝑥
represents standard
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𝑛
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Figure 1: Features of the training data.

the better ℎ
𝑚
can be on behalf of 𝑀

0
. After this, ℎ

1
has the

major information of 𝑦,

𝑤
1
=

𝑀󸀠
0
𝑁
0

󵄩󵄩󵄩󵄩𝑀
󸀠

0
𝑁
0

󵄩󵄩󵄩󵄩
,

󵄩󵄩󵄩󵄩𝑤1
󵄩󵄩󵄩󵄩 = 1,

𝑀
0
= ℎ
1
𝑙
󸀠

1
+ 𝑀
1
,

𝑁
0
= ℎ
1
𝑝
1
+ 𝑁
1
,

(11)

where 𝑙
1
and 𝑝

1
are two parameters,

𝑙
1
=

𝑀󸀠
0
ℎ
1

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩
2
, 𝑝

1
=

𝑁󸀠
0
ℎ
1

󵄩󵄩󵄩󵄩ℎ1
󵄩󵄩󵄩󵄩
2
. (12)

The residual matrix can be expressed as follows:
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According to the above steps, if the regression equation
has achieved sufficient accuracy, algorithm will continue to
perform the following steps. But when the precision does not
meet the requirement, more ingredients should be picked up
from the residual matrix.

Sufficient ingredient can be extracted after 𝑖 rounds; the
equation has achieved the precision, 𝑖 = 2, . . . , 𝑘, where 𝑘

represents the number of main ingredients. The regression
equation of𝑁

0
is described as follows:
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where 𝑤󸀠
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and 𝐸 is the unit matrix.

The regression equation of 𝑌 on𝑋 can be obtained by an
inverse process of standardization.

3. Experimental

In this paper, the data is selected from UCI data sets, which
can be downloaded from the Internet. Housing value of
Boston suburb can be measured through the data of 13
features.These features include per capita crime rate by town,
proportion of nonretail business acres per town, and index of
accessibility to radial highways.

Housing value of Boston suburb is analyzed and forecast
by SVM, LSSVM, and PLS methods and the corresponding
characteristics. After getting rid of the missing samples from
original data set, 400 samples are treated as training data
and 52 samples are treated as test data. Housing value of
the training data can be seen in Figure 2. All features of
the training data can be seen in Figure 1. The predicted
results are shown as follows. The ordinate means the median
value of owner-occupied homes in the $1000’s and the
abscissa represents different sample points. The blue line
represents the real data values and the red line represents
predicted values through different machine learning models.
According to the comparative results between the real values
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Figure 2: Housing value of the training data.

and predicted values, the effects of different methods can be
compared.

After constructing SVM model by the training samples,
housing value can be forecast on the basis of testing samples.
From the contrast between real data and forecasting data in
Figure 3, it can be seen that although forecasting data have
certain deviations from the real data, they can also reflect the
change trend of different samples anyway. The mean square
error of estimating data, which is obtained by SVM, is 10.7373.
The running time of SVM algorithm is 0.4610 s.

LSSVM algorithm is used to predict the housing value of
Boston suburb. As shown in Figure 4, several forecasting data
have relative great deflection to the real data.Themean square
error of forecast data is 15.1310, which shows that the accuracy
of SVM is bigger than that of LSSVM. The running time of
LSSVM algorithm is 20.3730 s. Since a parameters optimiza-
tion step is joined in LSSVM program, the calculation time
of overall program is longer than that of SVMmethod. After
removing the parameter optimization process, the operation
time is 0.3460 s, which suggests that LSSVM has a higher
computational efficiency. But the corresponding prediction
effect will be worse.

As shown in Figure 5, PLS is used for predicting the
homes’ value of Boston suburb. The predicting situation is
not very ideal. There is a big deviation with the real value.
The mean square error of predictive value is 25.0540. The
algorithm’s running time is 0.7460 s. For this nonlinear data
sets, the forecasting ability of PLS is obviously worse than that
of SVM and LSSVM.

According to the predicting results of home’s value of
Boston suburb, SVM has a higher prediction accuracy than
LSSVMand PLS. Because of LSSVM simplifiedmathematical
mechanism of SVM, its computation efficiency is the highest.
Due to the presence of strong nonlinearity about the home’s
value of Boston suburb in the data set, the forecast result
of PLS algorithm is not very ideal and the computation
efficiency is very low.
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Figure 3: Forecasting results by SVM.
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Figure 4: Forecasting results by LSSVM.

4. Conclusion

In this paper, SVM, LSSVM, and PLS algorithms are used
in the field of construction to predict the housing value.
According to multiple characteristics, the housing value of
Boston suburb is forecasted. The models of several machine
learning methods should be constructed and analyzed at first
and then combined with the corresponding characteristics
of testing data to predict the housing value. The prediction
results of various machine learning approaches are not the
same. Aiming at the nonlinear data, SVM and LSSVM have
better prediction effect, learning ability, and generalization
ability than PLS. The prediction effect of SVM is superior to
that of LSSVM. LSSVM is remoulded on the basis of SVM
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Figure 5: Forecasting results by PLS.

mathematical process. The quadratic programming problem
in SVM is transformed into solving an equation system in
LSSVM, which leads to the fact that the computation com-
plexity is reduced and the calculation efficiency of LSSVM
algorithm is higher than SVM algorithm. Compared with
PLS, SVM and LSSVM are more suitable for the nonlinear
field. Due to the simplicity of algorithm, PLS algorithm is
more suitable for the linear system.At this stage, PLS is widely
used in industrial and other fields.
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