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The double grazing periodic motions and bifurcations are investigated for a two-degree-of-freedom vibroimpact system with
symmetrical rigid stops in this paper. From the initial condition and periodicity, existence of the double grazing periodic motion
of the system is discussed. Using the existence condition derived, a set of parameter values is found that generates a double grazing
periodicmotion in the considered system. By extending the discontinuitymapping of one constraint surface to that of two constraint
surfaces, the Poincaré map of the vibroimpact system is constructed in the proximity of the grazing point of a double grazing
periodic orbit, which has a more complex form than that of the single grazing periodic orbit. The grazing bifurcation of the
system is analyzed through the Poincaré map with clearance as a bifurcation parameter. Numerical simulations show that there
is a continuous transition from the chaotic band to a period-1 periodic motion, which is confirmed by the numerical simulation of
the original system.

1. Introduction

Nonsmooth dynamical systems have some special bifurca-
tions, such as grazing bifurcation, sliding bifurcation, and
corner-collision bifurcation, besides the bifurcations occur-
ring in the smooth dynamical systems. These bifurcations
exhibit the complicated behavior of dynamical systems [1].
The research of nonsmooth dynamical systems is more
difficult than that of smooth systems, so it attracts much
attention of scholars from all over the world.

In the 1980s, Shaw and his coworkers [2, 3] studied the
impact oscillators with the theory of modern dynamical
systems. They considered the motion of a single-degree-of-
freedom periodically forced oscillator subjected to a rigid
amplitude constraint and found that grazing impact leads
to the singularity of the Poincaré map, which makes a
great effect on global dynamical behavior of systems. Nord-
mark [4] considered a single-degree-of-freedom periodically
forced oscillator subjected to a rigid amplitude constraint.
By the analytical methods, a nonconventional bifurcation

caused by grazing impact, that is, grazing bifurcation is
studied. Chin et al. [5, 6] investigated in detail the dynamics
of a vibroimpact system near the grazing impact by the
Nordmark map deduced in [4]. Some phenomena that
appeared only in nonsmooth systems were found, for exam-
ple, the bifurcation from periodic motion into chaos and
period-adding bifurcation scenario and so forth. Ivanov
[7] studied how to obtain a stable periodic impact motion
from the nonimpact periodic motion. Virgin and Begley
[8] explored some interesting global dynamic behavior in
the response of a double-sided, harmonically forced, impact
oscillator including the influence of Coulomb damping. Both
basins of attraction and grazing bifurcations were studied.
Using discontinuity mapping, Fredriksson and Nordmark
[9, 10] developed a normal-form calculation for nonsmooth
systems with several degrees of freedom which are useful
for analyzing the dynamics close to bifurcations. Bernardo
et al. [11] performed local analysis of grazing bifurcations
in 𝑛-dimensional piecewise-smooth systems of ordinary
differential equations. Under quite general circumstances,

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 642589, 9 pages
http://dx.doi.org/10.1155/2014/642589

http://dx.doi.org/10.1155/2014/642589


2 Abstract and Applied Analysis

they showed that this leads to a normal-form mapping
containing in lowest order either a square-root or a (3/2)-type
singularity. Bernardo et al. [12] analyzed sliding bifurcations
in 𝑛-dimensional piecewise-smooth dynamical systems with
discontinuous vector field and derived the normal form of
the discontinuity mapping. Foale and Bishop [13] and Hu
[14] also studied the grazing bifurcations of impact oscillators
and found that it is the grazing bifurcation that leads to
the change of stability of periodic motion and, as a result,
gives rise to chaos. Dankowicz et al. [15–17] investigated
codimension-one and codimension-two grazing bifurcation
in impact microactuators and the single-degree-of-freedom
impact oscillators, respectively. Unfoldings of the degenerate
grazing dynamics in impact microactuators were analyzed.
Kowalczyk et al. [18] proposed a strategy for the classification
of codimension-two discontinuity-induced bifurcations of
limit cycles in piecewise-smooth systems. Li and Tan [19]
presented a method for Lyapunov exponent calculation of a
two-degree-of-freedom vibroimpact system with symmetri-
cal rigid stops, which can be used for chaotic motions of the
system. Shen et al. [20] analyzed subharmonic and grazing
bifurcations for a simple bilinear oscillator via a combination
of analytical and numerical methods. They found that the
dynamics of the system for the case of large dissipation is quite
different from that for the case of small dissipation.

In this paper, existence of double grazing period-𝑛 orbit
is derived analytically for a two-degree-of-freedom vibroim-
pact system with symmetrical rigid stops, while most of the
literature mainly focused on the grazing motions with only
unilateral constraint in the past decades. Adopting the idea
of discontinuity mapping, the Poincaré map is constructed
in the vicinity of the grazing point for the system with two-
sided constraints, which is more complicated than that of
unilateral constraint.Thegrazing bifurcation of periodic orbit
is explored with the map derived and a continuous transition
from the chaotic band to a period-1 periodic motion is found.

The rest of the paper is outlined as follows. Section 2
describes the mechanical model and gives the equations of
motion.The existence of grazing periodicmotion is discussed
by the analytical method in Section 3. In Section 4, the
discontinuity mapping near the double grazing periodic
motion is deduced and the bifurcations are performed by the
numerical simulations. Finally, we give a brief conclusion in
Section 5.

2. The Mechanical Model

A two-degree-of-freedom system having symmetrically
placed rigid stops and subjected to periodic excitation is
shown in Figure 1 [19, 21]. Displacements of the masses𝑀

1

and 𝑀
2
are represented by 𝑋

1
and 𝑋

2
, respectively. The

masses are connected to linear springs with stiffnesses 𝐾
1

and 𝐾
2
and linear viscous dashpots with damping constants

𝐶
1
and 𝐶

2
. The masses move only in the horizontal direction

and the excitations on both masses are harmonic, which take
the forms of 𝑃

𝑖
sin(Ω𝑇 + 𝜏) (𝑖 = 1, 2), respectively.𝑀

1
moves

between the rigid stops 𝐴 and 𝐶. When the displacement 𝑋
1

of the mass 𝑀
1
is 𝐵(or −𝐵), the mass 𝑀

1
will hit the rigid
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Figure 1: Schematic representation of a two-degree-of-freedom
vibroimpact system with symmetrical rigid stops.

stop 𝐴 (or 𝐶), and the velocity of the mass 𝑀
1
will change

its value and direction. Then𝑀
1
hits the stop 𝐶 (or 𝐴) again

under some condition and so on.
Damping in the mechanical model is assumed as pro-

portional damping of the Rayleigh type, which in this case
implies that 𝐶

1
/𝐾
1
= 𝐶
2
/𝐾
2
. The impact is described by

a coefficient of restitution 𝑅, and the duration of impact is
negligible compared to the period of the force.

Between any two consecutive impacts (|𝑋
1
| < 𝐵), the

differential equations of motion are given by

[

𝑀
1
0

0 𝑀
2

]{

𝑋̈
1

𝑋̈
2

} + [

𝐶
1

−𝐶
1

−𝐶
1
𝐶
1
+ 𝐶
2

]{

𝑋̇
1

𝑋̇
2

}

+ [

𝐾
1

−𝐾
1

−𝐾
1
𝐾
1
+ 𝐾
2

]{

𝑋
1

𝑋
2

}

= [

𝑃
1

𝑃
2

] sin (Ω𝑇 + 𝜏) , 󵄨
󵄨
󵄨
󵄨
𝑋
1

󵄨
󵄨
󵄨
󵄨
< 𝐵.

(1)

The impacting equations of mass𝑀
1
are as follows:

𝑋̇
1𝐴+

= −𝑅𝑋̇
1𝐴−

(𝑋
1
= 𝐵) ,

𝑋̇
1𝐶+

= −𝑅𝑋̇
1𝐶−

(𝑋
1
= −𝐵) ,

(2)

where the subscripts −, + denote the values just before and
after impact, respectively.

Introduce the nondimensional quantities 𝜇
𝑚
= 𝑀
2
/𝑀
1
,

𝜇
𝑘
= 𝐾
2
/𝐾
1
, 𝜇
𝑘
= 𝜇
𝑐
, 𝑓
2
= 𝑃
2
/(𝑃
1
+ 𝑃
2
), 𝜔 = Ω√𝑀

1
/𝐾
1
,

𝑡 = 𝑇√𝐾
1
/𝑀
1
, 𝜁 = 𝐶

1
/2√𝐾

1
𝑀
1
, 𝑏 = 𝐵𝐾

1
/(𝑃
1
+𝑃
2
), and 𝑥

𝑖
=

𝑋
𝑖
𝐾
1
/(𝑃
1
+ 𝑃
2
). Thus nondimensional differential equations

of motion without impacting will now have the form

[

1 0

0 𝜇
𝑚

]{

𝑥̈
1

𝑥̈
2

} + [

2𝜁 −2𝜁

−2𝜁 2𝜁 (1 + 𝜇
𝑐
)
] {

𝑥̇
1

𝑥̇
2

}

+ [

1 −1

−1 1 + 𝜇
𝑘

]{

𝑥
1

𝑥
2

}

= {

1 − 𝑓
2

𝑓
2

} sin (𝜔𝑡 + 𝜏) , 󵄨
󵄨
󵄨
󵄨
𝑥
1

󵄨
󵄨
󵄨
󵄨
< 𝑏,

(3)

and the impacting equations of mass𝑀
1
become

𝑥̇
1𝐴+

= −𝑅𝑥̇
1𝐴−
, (𝑥

1
= 𝑏) ,

𝑥̇
1𝐶+

= −𝑅𝑥̇
1𝐶−
, (𝑥

1
= −𝑏) .

(4)
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Let Ψ stand for the canonical model matrix of (3) and
𝜔
1
and 𝜔

2
denote the eigenfrequencies of the system as no

impact occurs. By taking Ψ as a transition matrix, under the
transformation𝑋 = Ψ𝜉, (3) becomes

𝐼
̈
𝜉 + 𝐶

̇
𝜉 + Λ𝜉 = 𝐹 sin (𝜔𝑡 + 𝜏) , (5)

where 𝑋 = (𝑥
1
, 𝑥
2
)
𝑇, 𝜉 = (𝜉

1
, 𝜉
2
)
𝑇, 𝐼 is a unit matrix

of degree 2 × 2, and 𝐶 and Λ are diagonal matrices with
𝐶 = diag[2𝜁𝜔2

1
, 2𝜁𝜔
2

2
] and Λ = diag[𝜔2

1
, 𝜔
2

2
]. In addition,

𝐹 = (𝑓
1
, 𝑓
2
)

𝑇

= Ψ
𝑇
𝑃
𝑘
and 𝑃

𝑘
= (1 − 𝑓

2
, 𝑓
2
)
𝑇. Equation (3)

can be solved by using the modal coordinates and the modal
matrix approach. The general solution is

𝑥
𝑖
(𝑡)

=

2

∑

𝑗=1

𝜓
𝑖𝑗
(𝑒
−𝜂𝑗(𝑡−𝑡0)

(𝑎
𝑗
cos𝜔
𝑑𝑗
(𝑡 − 𝑡
0
) + 𝑏
𝑗
sin𝜔
𝑑𝑗
(𝑡 − 𝑡
0
))

+𝐴
𝑗
sin (𝜔𝑡 + 𝜏) + 𝐵

𝑗
cos (𝜔𝑡 + 𝜏)) ,

(6)

where 𝑡
0
denotes the time when the mass 𝑀

1
collides with

the constraint 𝐴 or 𝐶, 𝜓
𝑖𝑗
(𝑖, 𝑗 = 1, 2) are the elements of the

canonical modal matrix Ψ, 𝜂
𝑗
= 𝜁𝜔
2

𝑗
, 𝜔
𝑑𝑗
= √𝜔

2

𝑗
− 𝜂
2

𝑗
, and

𝑎
𝑗
, 𝑏
𝑗
are the constants of integration which are determined

by the initial condition and modal parameters of the system.
𝐴
𝑗
, 𝐵
𝑗
are the amplitude parameters given by

𝐴
𝑗
=

1

2𝜔
𝑑𝑗

(

𝜔 + 𝜔
𝑑𝑗

(𝜔 + 𝜔
𝑑𝑗
)

2

+ 𝜂
2

𝑗

−

𝜔 − 𝜔
𝑑𝑗

(𝜔 − 𝜔
𝑑𝑗
)

2

+ 𝜂
2

𝑗

)𝑓
𝑗
,

𝐵
𝑗
=

𝜂
𝑗

2𝜔
𝑑𝑗

(

1

(𝜔 − 𝜔
𝑑𝑗
)

2

+ 𝜂
2

𝑗

−

1

(𝜔 + 𝜔
𝑑𝑗
)

2

+ 𝜂
2

𝑗

)𝑓
𝑗
.

(7)

Let 𝑥̇
1
= V
1
, 𝑥̇
2
= V
2
, and 𝜑 = 𝜔𝑡(mod 2𝜋); then (5) can

be changed into one-order autonomous dynamical system

(

𝑥̇
1

V̇
1

𝑥̇
2

V̇
2

𝜑̇

) =
(

(

(

V
1

−2𝜁V
1
+ 2𝜁V
2
− 𝑥
1
+ 𝑥
2
+ (1 − 𝑓

2
) sin (𝜑 + 𝜏)

V
2

2𝜁V
1
− 2𝜁 (1 + 𝜇

𝑐
) V
2
+ 𝑥
1
− (1 + 𝜇

𝑘
) 𝑥
2
+ 𝑓
2
sin (𝜑 + 𝜏)

𝜇
𝑚

𝜔

)

)

)

, (8)

where the analytical expressions of 𝑥
𝑖
and V
𝑖
(𝑖 = 1, 2) can be

obtained from (6).

3. Existence of Grazing Periodic Motion

If the oscillator 𝑀
1
impacts each rigid constraint with zero

velocity and the direction of the acceleration is opposite
to the motion, then we say that the system is undergoing
grazing motion. A grazing periodic motion may be denoted
by 𝑛 − 𝑝 which means that the oscillator 𝑀

1
grazes with

each constraint for 𝑝 times in 𝑛 periodic external excitation
force. In the following, we will derive an existence condition
of grazing motion with period 𝑛𝑇, where 𝑇 is the period of
external excitation. Assume that the grazing periodic motion
begins from the grazing point on the constraint 𝐴. Inserting
the initial conditions

𝑥
1
(0) = 𝑥

10
= 𝑏, 𝑥

2
(0) = 𝑥

20
,

V
1
(0) = V

10
= 0, V

2
(0) = V

20

(9)

and the periodic conditions

𝑥
1
(

2𝑛𝜋

𝜔

) = 𝑥
10
= 𝑏, 𝑥

2
(

2𝑛𝜋

𝜔

) = 𝑥
20
,

V
1
(

2𝑛𝜋

𝜔

) = V
10
= 0, V

2
(

2𝑛𝜋

𝜔

) = V
20

(10)

into the general solution of system (3), we have

𝑎
𝑗
=

𝑒
𝑗
𝑏
𝑗
𝑠
𝑗

1 − 𝑒
𝑗
𝑐
𝑗

, (11)

where 𝑒
𝑗
= 𝑒
−𝜂𝑗(2𝑛𝜋/𝜔), 𝑐

𝑗
= cos(𝜔

𝑑𝑗
(2𝑛𝜋/𝜔)), and 𝑠

𝑗
=

sin(𝜔
𝑑𝑗
(2𝑛𝜋/𝜔)), 𝑗 = 1, 2.

If the grazing periodic motion begins from the grazing
point on the constraint 𝐶, similar to the case for (9) and (10),
the initial conditions and the periodic conditions are

𝑥
1
(0) = 𝑥

10
= −𝑏, 𝑥

2
(0) = 𝑥

20
,

V
1
(0) = V

10
= 0, V

2
(0) = V

20
,

(12)

𝑥
1
(

2𝑛𝜋

𝜔

) = 𝑥
10
= −𝑏, 𝑥

2
(

2𝑛𝜋

𝜔

) = 𝑥
20
,

V
1
(

2𝑛𝜋

𝜔

) = V
10
= 0, V

2
(

2𝑛𝜋

𝜔

) = V
20
,

(13)

respectively. Inserting (12) and (13) into (6), we can also
obtain the expression of 𝑎

𝑗
, which is the same as (11).

Substituting (11) into (9) and (10) yields

𝜓
11
𝑙
1
𝑏
1
+ 𝜓
12
𝑙
2
𝑏
2
= 0,

𝜓
21
𝑙
1
𝑏
1
+ 𝜓
22
𝑙
2
𝑏
2
= 0,

(14)
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where 𝑙
𝑗
= 𝜔
𝑑𝑗
(1 − (𝑒

𝑗
(𝑐
𝑗
− 𝑒
𝑗
)/(1 − 𝑒

𝑗
𝑐
𝑗
))), 𝑗 = 1, 2. Thus, if

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜓
11
𝑙
1
𝜓
12
𝑙
2

𝜓
21
𝑙
1
𝜓
22
𝑙
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= (𝜓
11
𝜓
22
− 𝜓
12
𝜓
21
) 𝑙
1
𝑙
2
̸= 0, (15)

we have 𝑏
1
= 0 and 𝑏

2
= 0. Hence, 𝑎

1
= 0 and 𝑎

2
= 0.

For simplicity, assume that the parameters are chosen
such that the integral constants 𝑎

1
, 𝑎
2
, 𝑏
1
, and 𝑏

2
are vanishing.

Inserting 𝑎
1
, 𝑎
2
, 𝑏
1
, and 𝑏

2
into (6) gives

𝑑
1
sin 𝜏 + 𝑑

2
cos 𝜏 = 𝑏,

𝑑
1
cos 𝜏 − 𝑑

2
sin 𝜏 = 0,

(16)

as the grazing periodic motion sets off from the grazing point
on the constraint 𝐴 or

𝑑
1
sin 𝜏 + 𝑑

2
cos 𝜏 = −𝑏,

𝑑
1
cos 𝜏 − 𝑑

2
sin 𝜏 = 0,

(17)

as the grazing periodic motion leaves from the grazing point
on the constraint 𝐶. Then it follows that

𝑏
2
= 𝑑
2

1
+ 𝑑
2

2
, 𝜏 = arctan(𝑑1

𝑑
2

) , (18)

where 𝑑
1
= 𝜓
11
𝐴
1
+ 𝜓
12
𝐴
2
and 𝑑

2
= 𝜓
11
𝐵
1
+ 𝜓
12
𝐵
2
. Denote

the acceleration of the oscillator𝑀
1
as 𝐴𝑔

1
(or 𝐴𝑔

2
) for the

case in which the periodic grazing motion begins from the
grazing point on the constraint𝐴 (or𝐶) with𝐴𝑔

1
= 𝑥̈(𝑡)|

𝑡=0
=

−𝜔
2
𝑏 and 𝐴𝑔

2
= 𝑥̈(𝑡)|

𝑡=0
= 𝜔
2
𝑏. If 𝑏 > 0, we have 𝐴𝑔

1
< 0

and 𝐴𝑔
2
> 0.

Based on the analysis above, we have the conclusion as
follows.

Theorem 1. If there exists a double grazing periodic orbit in
the system (3)-(4) with initial conditions (9), (12) and periodic
conditions (10), (13), then system parameters must satisfy the
following condition:

(𝜓
11
𝜓
22
− 𝜓
12
𝜓
21
) 𝑙
1
𝑙
2
̸= 0, 𝑏 = √𝑑

2

1
+ 𝑑
2

2
,

𝜏 = arctan(𝑑1
𝑑
2

) .

(19)

In order to verify the existence condition obtained,
numerical simulation of the original system will be given in
the following.

When the parameters have the values 𝑅 = 0.8, 𝜇
𝑘
= 5,

𝜇
𝑚
= 10, 𝜁 = 0.05, 𝑓

2
= 0, 𝜔 = 0.63, 𝜏 = 2.229311, and

𝑏 = 6.7107356, it can be verified that the existence condition
is satisfied and the period-1 grazing motion occurs. Phase
portrait and time history of the oscillator 𝑀

1
are shown in

Figures 2 and 3, respectively. Figure 2 shows that the oscillator
𝑀
1
collides with the constraints 𝐴 and 𝐶 with zero velocity.

Figure 4 is the phase portrait of the oscillator𝑀
1
in (𝑥
1
, 𝑥
2
)

plane.

0 2 4 6

0

1

2

3

4

5

−1

−2

−2

−3

−4

−4

−5

−6

�
1

x1

Figure 2: Phase portrait of the oscillator𝑀
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4. Grazing Bifurcation

The grazing periodic motion is likely to change qualitatively
for a tiny variation in system parameters; that is, grazing
bifurcation will take place. As a result, impact periodic
motion or nonimpact periodic motion will occur. Obviously,
the method for impact periodic motion cannot be applied
directly to grazing periodic motion. By extending the dis-
continuity mapping introduced in [4, 9], we derive a new
discontinuity mapping near the double grazing orbit. And
then we will analyze the grazing bifurcation with the help of
the discontinuity mapping obtained.

4.1. Derivation of Discontinuity Mapping of Double Grazing
Orbit. Assume that there is a double grazing orbit, denoted
as 𝛾, in the system (8). And the grazing point of constraint
𝐴 is marked as 𝑋∗

1
with 𝑋∗

1
= (𝑥
∗

1𝐴
, V∗
1𝐴
, 𝑥
∗

2𝐴
, V∗
2𝐴
). Define a

function ℎ
1
(𝑋) in a neighborhood 𝐵

1
(𝑋
∗

1
) of𝑋∗

1
by

ℎ
1
(𝑋) = 𝑥

1
− 𝑏. (20)

Therefore, ℎ
1
(𝑋) < 0 implies that the mass𝑀

1
has no impact

with the constraint plane𝐴, while ℎ
1
(𝑋) > 0 corresponds to a

penetration of the constraint plane𝐴.Thus the impact surface
Σ
1
of constraint 𝐴 can be defined as

Σ
1
= {𝑋 ∈ 𝐵

1
(𝑋
∗

1
) | ℎ
1
(𝑋) = 0} . (21)

A new function 𝐻
1
(𝑋, 𝑡) = ℎ

1
(Φ
𝑡
(𝑋)) may be obtained by

inserting the solution of the system, 𝑋 = Φ
𝑡
(𝑋), into ℎ

1
(𝑋),

which describes the minimum distance to the constraint 𝐴
after a flight of time 𝑡 from a starting point𝑋.

According to the relationship between the orbit and the
constraint𝐶, we can define some function similarly as before.
The grazing point of constraint 𝐶 is written as𝑋∗

2
with 𝑋∗

2
=

(𝑥
∗

1𝐶
, V∗
1𝐶
, 𝑥
∗

2𝐶
, V∗
2𝐶
). Define a function in a neighbourhood

𝐵
2
(𝑋
∗

2
) of𝑋∗

2
as follows:

ℎ
2
(𝑋) = 𝑥

1
+ 𝑏. (22)

Hence, ℎ
2
(𝑋) > 0 implicates that the mass𝑀

1
has no impact

with the constraint plane𝐶, while ℎ
2
(𝑋) < 0 corresponds to a

penetration of the constraint plane𝐶.The notation Σ
2
is used

to denote the impact surface of constraint 𝐶; namely,

Σ
2
= {𝑋 ∈ 𝐵

2
(𝑋
2

∗
) | ℎ
2
(𝑋) = 0} . (23)

Another new function𝐻
2
(𝑋, 𝑡) = ℎ

2
(Φ
𝑡
(𝑋)) can be obtained

if we insert the solution of the system𝑋 = Φ
𝑡
(𝑋) into ℎ

2
(𝑋),

which indicates the distance to the constraint 𝐶 after a flight
of time 𝑡 with𝑋 as a starting point.

For a double grazing periodic motion, we have

𝐻
1
(𝑋
∗

1
, 0) = 0,

𝜕𝐻
1

𝜕𝑡

(𝑋
∗

1
, 0) = 0,

𝐴𝑔
1
=

𝜕
2
𝐻
1

𝜕𝑡
2
(𝑋
∗

1
, 0) < 0,

𝐻
2
(𝑋
∗

2
, 0) = 0,

𝜕𝐻
2

𝜕𝑡

(𝑋
∗

2
, 0) = 0,

𝐴𝑔
2
=

𝜕
2
𝐻
2

𝜕𝑡
2
(𝑋
∗

2
, 0) > 0.

(24)

If 𝑋 is restricted on the impact surfaces Σ
1
and Σ

2
, respec-

tively, then from the signs of ]
1
= (𝜕𝐻

1
/𝜕𝑡)(𝑋, 0) and ]

2
=

(𝜕𝐻
2
/𝜕𝑡)(𝑋, 0), the impact surfaces can be divided into the

following subsets:

Σ
+

1
= {𝑋 ∈ Σ

1
| ]
1
> 0} , Σ

0

1
= {𝑋 ∈ Σ

1
| ]
1
= 0} ,

Σ
−

1
= {𝑋 ∈ Σ

1
| ]
1
< 0} ,

Σ
+

2
= {𝑋 ∈ Σ

2
| ]
2
> 0} , Σ

0

2
= {𝑋 ∈ Σ

2
| ]
2
= 0} ,

Σ
−

2
= {𝑋 ∈ Σ

2
| ]
2
< 0} .

(25)

So with the definitions above, the impact process on the
impact surfaces Σ

1
and Σ

2
can be expressed as twomappings;

that is,

𝐺
1
: Σ
+

1
󳨀→ Σ

−

1
,

𝐺
2
: Σ
−

2
󳨀→ Σ

+

2
.

(26)

Select constant phase planes just before the impact as the
Poincaré sections; namely,

Π
1
= {(𝑋, 𝜃) | 𝜃 = 𝜃

1
} , Π

2
= {(𝑋, 𝜃) | 𝜃 = 𝜃

2
} ,

(27)

where 𝜃
1
and 𝜃
2
are the phase angles of the system just before

the oscillator 𝑀
1
contacts with the constraints 𝐴 and 𝐶,

respectively. Let𝑋
1
= 𝛾∩Π

1
and𝑋

2
= 𝛾∩Π

2
. Thus based on

the assumptions of periodicity and symmetry of the system,
we have Φ

𝑇/2
(𝑋
1
) = 𝑋

2
and Φ

𝑇/2
(𝑋
2
) = 𝑋

1
, where Φ

𝑇/2
(𝑋)

is the smooth flow mapping of the system with 𝑇 = 2𝑛𝜋/𝜔.
As in Figure 5, let 𝑋∗

1
be the image of 𝑋

1
after the time of

flight 𝑡
1
,𝑋
2
the image of𝑋∗

1
after the time of flight 𝑡

2
,𝑋∗
2
the

image of 𝑋
2
after the time of flight 𝑡

3
, and 𝑋

1
the image of

𝑋
∗

2
after the time of flight 𝑡

4
. Then the total time in a period

is 𝑇 = 𝑡
1
+𝑡
2
+𝑡
3
+𝑡
4
. If the points in 𝐵

1
(𝑋
1
)∩Π
1
are mapped

by the flow mappingΦ
𝑡1
(𝑋) without consideration of impact

effect, the image of an impacting point would penetrate the
surface Σ

1
, which obviously leads to an error. This problem

would happen for points in 𝐵
2
(𝑋
2
) ∩ Π

2
if impact effect is

ignored. To deal with the impact incident, two mappings 𝐶
1

and𝐶
2
must be constructed for points near𝑋∗

1
and𝑋∗

2
, which

will enable us to write a valid Poincaré map. Consider

𝑃 (𝑋) = Φ
𝑡4
∘ 𝐶
2
∘ Φ
𝑡3
∘ Φ
𝑡2
∘ 𝐶
1
∘ Φ
𝑡1
(𝑋) . (28)

In what follows, the mappings 𝐶
1
and 𝐶

2
will be derived.

Starting at a point 𝑋
1
in the neighborhood 𝐵

1
(𝑋
∗

1
) of 𝑋∗

1
,

𝐻
1
(𝑋
1
, 𝑡) indicates the distance from the oscillator𝑀

1
to the

constraint 𝐴 as the variation of time 𝑡. Since 𝑋
1
∈ 𝐵
1
(𝑋
∗

1
),

𝐻
1
(𝑋
1
, 𝑡) will reach a local maximum through a small time

interval 𝜏
1
= 𝜏
1
(𝑋
1
). Introduce a function 𝜓

1
(𝑋
1
) =

𝐻
1
(𝑋
1
, 𝜏
1
(𝑋
1
)) such that 𝜓

1
(𝑋
1
) ≥ 0 for impacting points

on the constraint𝐴 and𝜓
1
(𝑋
1
) < 0 for nonimpacting points.

Similarly, the distance function 𝐻
2
(𝑋
2
, 𝑡) will get to a local

minimum through a small time interval 𝜏
2
= 𝜏
2
(𝑋
2
), where

𝑋
2
is a starting point in a neighborhood 𝐵

2
(𝑋
∗

2
) of 𝑋∗

2
. A

function 𝜓
2
(𝑋
2
) = 𝐻

2
(𝑋
2
, 𝜏
2
(𝑋
2
)) is introduced such that

𝜓
2
(𝑋
2
) ≤ 0 for impacting points, while 𝜓

2
(𝑋
2
) > 0 for

nonimpacting points.
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Σ2 Σ1

Σ
−

2
Σ
−

1

Σ
+

1

X

X

X
∗

2
X
∗

1

Σ
+

2
C2(X)

X2

X1

Π2

Π1

C1(X)

G2 ∘

Φt4

Φt1

Φt2
Φt3

G1 ∘

Φt𝑐1
(X)

Φt𝑐2
(X)

Φt𝑐2
(X)

Φt𝑐1
(X)

Figure 5: The schematic figure of the discontinuity mappings 𝐶
1
and 𝐶

2
.

For impacting points on constraint plane 𝐴, we define a
mappingΦ

𝑡𝑐1
, where 𝑡

𝑐1
is the time of flight from the impact-

ing point to the crossing point of Σ+
1
along the flow. Hence,

themappingΦ
𝑡𝑐1
takes an impacting point near the constraint

𝐴 to the impact surface and then under the impact mapping
𝐺
1
a point is obtained on Σ−

1
after rigid impact. Since the

mapping 𝐺
1
∘ Φ
𝑡𝑐1

does not take place in zero time [10], it
must be composited withΦ

−𝑡𝑐1
to reach this point. So for𝑋

1
∈

𝐵
1
(𝑋
∗

1
), the full discontinuity mapping 𝐶

1
may be written as

follows:

𝐶
1
= {

Φ
−𝑡𝑐1

∘ 𝐺
1
∘ Φ
𝑡𝑐1

𝜓
1
≥ 0,

𝐼 𝜓
1
< 0,

(29)

where 𝐺
1
(𝑋
1
) = (𝑥

1𝐴+
, V
1𝐴+
, 𝑥
2𝐴+
, V
2𝐴+
)
𝑇
= (𝑥
1𝐴−
, −𝑅V
1𝐴−

,
𝑥
2𝐴−
, V
2𝐴−
)
𝑇. The full discontinuity mapping 𝐶

2
can be

written similarly as follows:

𝐶
2
= {

Φ
−𝑡𝑐2

∘ 𝐺
2
∘ Φ
𝑡𝑐2

𝜓
2
≤ 0,

𝐼 𝜓
2
> 0,

(30)

where 𝐼 is the identity map, 𝑡
𝑐2
is the time of flight from

the impacting point of constraint 𝐶 to crossing point of Σ−
2
,

and 𝐺
2
(𝑋
2
) = (𝑥

1𝐶+
, V
1𝐶+
, 𝑥
2𝐶+
, V
2𝐶+
)
𝑇
= (𝑥
1𝐶−
, −𝑅V
1𝐶−

,
𝑥
2𝐶−
, V
2𝐶−
)
𝑇. We now consider the series expansions of the

discontinuity mappings 𝐶
1
and 𝐶

2
.

For 𝜓
1
(𝑋
1
) ≥ 0, an impacting point of constraint 𝐴,

denoted as𝑋
1
, can be mapped to the impact surface Σ

1
along

the flow. For simplicity, we will still use the notation 𝑋
1
to

denote the image of the impacting point, which is on Σ
1
. By

the impact law, it follows that

Δ𝑋
1
= 𝐺
1
(𝑋
1
) − 𝑋
1
= (

𝑥
1𝐴+

V
1𝐴+

𝑥
2𝐴+

V
2𝐴+

)−(

𝑥
1𝐴−

V
1𝐴−

𝑥
2𝐴−

V
2𝐴−

)

= −V
1𝐴−

(

0

𝑅 + 1

0

0

) ≜ −V
1𝐴−
𝛿,

(31)

where 𝛿 = (0, 𝑅 + 1, 0, 0)𝑇.

To determine 𝑡
𝑐1
, we start by expanding the function 𝐻

1

with respect to 𝑡. For 𝑋
1
∈ 𝐵
1
(𝑋
1
), near the time 𝜏

1
(𝑋
1
),

𝐻
1
(𝑋
1
, 𝑡) has the form

𝐻
1
(𝑋
1
, 𝑡) = 𝜓

1
(𝑋
1
) + (𝑡 − 𝜏

1
(𝑋
1
))
2𝐴𝑔1

2

+ 𝑜 (𝜓
1
(𝑋
1
) , 𝑡) .

(32)

From (8), it is clear that 𝐴𝑔
1
= (𝜕
2
𝐻
1
/𝜕𝑡
2
)(𝑋
∗

1
, 0) = −𝑥

∗

1𝐴
+

𝑥
∗

2𝐴
− 2𝜁V∗
1𝐴
+ 2𝜁V∗
2𝐴
+ (1 − 𝑓

2
) sin 𝜏. Since𝐻

1
(𝑋
1
, 𝑡
𝑐1
) = 0, we

have

𝑡
𝑐1
= 𝜏
1
(𝑋
1
) − √

−2𝜓
1
(𝑋
1
)

𝐴𝑔
1

+ 𝑜 (𝑋
1
) . (33)

Expressing ]
1
as a function of𝑋

1
yields

]
1
=

𝜕𝐻
1

𝜕𝑡

(𝑋
1
, 𝑡
𝑐1
) = √−2𝐴𝑔

1
𝜓
1
(𝑋
1
) + 𝑜 (𝑋

1
, 𝑡) . (34)

Hence,

Δ𝑋
1
= −V
1𝐴−
𝛿 = −]

1
𝛿 = −√−2𝐴𝑔

1
𝜓
1
(𝑋
1
)𝛿 + 𝑜 (𝑋

1
) .

(35)

For𝑋
1
∈ 𝐵
1
(𝑋
∗

1
),

Φ
𝑡𝑐1
(𝑋
1
) = 𝑋

1
+ 𝐹 (𝑋

∗

1
) 𝑡
𝑐1
+ 𝑜 (𝑋

1
, 𝑡
𝑐1
) ; (36)

then

Φ
−𝑡𝑐1
(𝑋
1
) ∘ 𝐺
1
∘ Φ
𝑡𝑐1
(𝑋
1
)

= 𝑋
1
− √−2𝐴𝑔

1
𝜓
1
(𝑋
1
)𝛿 + 𝑜 (𝑋

1
) .

(37)

Finally, we obtain

𝐶
1
(𝑋
1
) = {

𝑋
1
− √𝜓
1
(𝑋
1
)√−2𝐴𝑔

1
𝛿 + 𝑜 (𝑋

2

1
) , 𝜓

1
≥ 0,

𝑋
1
, 𝜓

1
< 0.

(38)
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The series expression of𝐶
2
can be given in the same way; that

is,

𝐶
2
(𝑋
2
) = {

𝑋
2
+ √−𝜓

2
(𝑋
2
)√2𝐴𝑔

2
𝛿 + 𝑜 (𝑋

2

2
) , 𝜓

2
≤ 0,

𝑋
2
, 𝜓

2
> 0.

(39)

Therefore, the Poincaré map can be written in the following
form:

𝑃 = Φ
𝑡4
∘ 𝐶
2
∘ Φ
𝑡3
∘ Φ
𝑡2
∘ 𝐶
1
∘ Φ
𝑡1
. (40)

Let 𝑡
1
→ 0 and 𝑡

3
→ 0; the Poincaré map can be simplified

as

𝑃 = Φ
𝑇/2
∘ 𝐶
2
∘ Φ
𝑇/2
∘ 𝐶
1
. (41)

Let 𝐿
1
= (𝜕Φ

𝑇/2
/𝜕𝑋)(𝑋

∗

1
), 𝐿
2
= (𝜕Φ

𝑇/2
/𝜕𝑋)(𝑋

∗

2
), 𝜂
1
=

(𝜕ℎ
1
/𝜕𝑋)(𝑋

∗

1
), and 𝜂

2
= (𝜕ℎ

2
/𝜕𝑋)(𝑋

∗

2
). Thus Φ

𝑇/2
, 𝜓
1
, 𝜓
2

can be linearized as the expressions of 𝐿
1
, 𝐿
2
, 𝜂
1
, and 𝜂

2
. Here

𝐿
1
and 𝐿

2
are both 4 × 4 matrices, and the elements can be

computed by the chain rule of the composite function. For
𝑋
1
∈ Π
1
, we will discuss the expression of the Poincaré map

in the following cases.
(1) For the case 𝜓

1
(𝑋
1
) < 0, namely, 𝜂

1
(𝑋
1
− 𝑋
∗

1
) < 0, it

yields

𝑋
2
= Φ
𝑇/2
∘ 𝐶
1
(𝑋
1
) = 𝑋

∗

2
+ 𝐿
1
(𝐶
1
(𝑋
1
) − 𝑋
∗

1
) + o (𝑋2

1
)

= 𝑋
∗

2
+ 𝐿
1
(𝑋
1
− 𝑋
∗

1
) + o (𝑋2

1
) .

(42)

(i) If 𝜓
2
(𝑋
2
) > 0, namely, 𝜂

2
(𝑋
2
− 𝑋
∗

2
) > 0, then

Φ
𝑇/2
∘ 𝐶
2
∘ Φ
𝑇/2
∘ 𝐶
1
(𝑋
1
)

= Φ
𝑇/2
∘ 𝐶
2
(𝑋
2
) = 𝑋

∗

1
+ 𝐿
2
(𝑋
2
− 𝑋
∗

2
) + o (𝑋2

2
) .

(43)

(ii) If 𝜓
2
(𝑋
2
) ≤ 0, namely, 𝜂

2
(𝑋
2
− 𝑋
∗

2
) ≤ 0, then

Φ
𝑇/2
∘ 𝐶
2
∘ Φ
𝑇/2
∘ 𝐶
1
(𝑋
1
)

= Φ
𝑇/2
∘ 𝐶
2
(𝑋
2
) = 𝑋

∗

1
+ 𝐿
2
(𝐶
2
(𝑋
2
) − 𝑋
∗

2
) + o (𝑋2

2
)

= 𝑋
∗

1
+ 𝐿
2
(𝑋
2
+ √−2𝐴𝑔

2
𝜓
2
(𝑋
2
)𝛿 − 𝑋

∗

2
) + o (𝑋2

2
) .

(44)

(2) For the case 𝜓
1
(𝑋
1
) ≥ 0, namely, 𝜂

1
(𝑋
1
− 𝑋
∗

1
) ≥ 0, it

follows that

𝑋
2
= Φ
𝑇/2
∘ 𝐶
1
(𝑋
1
) = 𝑋

∗

2
+ 𝐿
1
(𝐶
1
(𝑋
1
) − 𝑋
∗

1
) + o (𝑋2

1
)

= 𝑋
∗

2
+ 𝐿
1
(𝑋
1
− √−2𝐴𝑔

1
𝜓
1
(𝑋
1
)𝛿 − 𝑋

∗

1
) + o (𝑋2

1
) .

(45)

(i) If 𝜓
2
(𝑋
2
) > 0, namely, 𝜂

2
(𝑋
2
− 𝑋
∗

2
) > 0, then

Φ
𝑇/2
∘ 𝐶
2
∘ Φ
𝑇/2
∘ 𝐶
1
(𝑋
1
)

= Φ
𝑇/2
∘ 𝐶
2
(𝑋
2
) = 𝑋

∗

1
+ 𝐿
2
(𝑋
2
− 𝑋
∗

2
) + o (𝑋2

2
) .

(46)

(ii) If 𝜓
2
(𝑋
2
) ≤ 0, namely, 𝜂

2
(𝑋
2
− 𝑋
∗

2
) ≤ 0, then

Φ
𝑇/2
∘ 𝐶
2
∘ Φ
𝑇/2
∘ 𝐶
1
(𝑋
1
)

= Φ
𝑇/2
∘ 𝐶
2
(𝑋
2
) = 𝑋

∗

1
+ 𝐿
2
(𝐶
2
(𝑋
2
) − 𝑋
∗

2
) + o (𝑋2

2
)

= 𝑋
∗

1
+ 𝐿
2
(𝑋
2
+ √−2𝐴𝑔

2
𝜓
2
(𝑋
2
)𝛿 − 𝑋

∗

2
) + o (𝑋2

2
) .

(47)

Combining expressions (43)-(44) and (46)-(47), for arbitrary
point𝑋

1
∈ 𝐵
1
(𝑋
∗

1
), we have

𝑃 = Φ
𝑇/2
∘ 𝐶
2
∘ Φ
𝑇/2
∘ 𝐶
1

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

𝑋
∗

1
+ 𝐿
2
(𝑋
2
− 𝑋
∗

2
) + o (𝑋2

2
) , 𝜂

1
(𝑋
1
− 𝑋
∗

1
) < 0, 𝜂

2
(𝑋
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(48)

4.2. Numerical Simulation. In this subsection, we will use a
set of parameter values that generates the grazing periodic
motion as given in Section 3 to investigate the grazing bifur-
cation of the system.

Taking 𝑅 = 0.8, 𝜇
𝑘
= 5, 𝜇

𝑚
= 10, 𝜁 = 0.05, 𝑓

2
= 0,

𝜔 = 0.63, and 𝜏 = 2.229311, let the parameter 𝑏 gradually
increase from 6.5 to 6.9 by a step of 0.0002. For each 𝑏, we

take 1500 iterations and the first 1300 of which are omitted as
the transient process. Figure 6 is the bifurcation diagram of
map (48) which shows that the displacement 𝑥

1
of the first

oscillator𝑀
1
varies with the parameter 𝑏.

From Figure 6, we see that for 6.5 < 𝑏 < 6.7107356

there is a chaotic band in the system and the motion states
of the system are complex. When 𝑏 is equal to 6.69 and
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Figure 6: Bifurcation diagram of map (48).
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Figure 7: The velocity of the oscillator 𝑀
1
versus the number of

iteration for 𝑏 = 6.69.

the right-hand side of impact surface is selected as the
Poincaré section, the velocity of the oscillator 𝑀

1
changing

with the number of iteration is shown in Figure 7which shows
that the system has the periodic motion. When 𝑏 is 6.68, the
variation of velocity of the oscillator 𝑀

1
with the number

of iteration is shown in Figure 8. By means of the Lyapunov
exponents, we say that chaos appears in the system. When
𝑏 > 6.7107365, there is only one fixed point on the Poincaré
section for each 𝑏. As expected, the grazing bifurcation occurs
at 𝑏 = 6.7107365. Thus structural stability of the system
begins to change such that transition from chaotic motion to
a stable period-1 periodic motion occurs.

To compare the numerical results of the map (48) with
that of the original system (3)-(4) under the same parameter
values, now we begin to do numerical simulation for the
original system. At first, we take bifurcation parameter 𝑏 =
6.8 and plot the phase portrait of the oscillator𝑀

1
as shown in

Figure 9. It can be seen that there is a nonimpacting periodic
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Figure 8: The velocity of the oscillator 𝑀
1
versus the number of

iteration for 𝑏 = 6.68.
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Figure 9: Phase portrait of the oscillator𝑀
1
with 𝑏 = 6.8.

orbit located at the right-hand side of the grazing bifurcation
point of the original system.When 𝑏 = 6.6, Figure 10 indicates
that there exists the chaotic motion located at the left-hand
side of the grazing bifurcation point of the original system.
These numerical results are in agreement with that of themap
(48) (see Figure 6).

5. Conclusions

For a two-degree-of-freedom vibroimpact system with sym-
metrical rigid stops, using the initial condition and the peri-
odicity condition of grazing periodic motion, the parameter
condition is derived that may generate a double grazing
period-𝑛 motion. According to the derived condition, a
group of parameters are obtained for the original vibroimpact
system, which leads to a double grazing periodic motion.
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Figure 10: Phase portrait of the oscillator𝑀
1
with 𝑏 = 6.6.

By the improved discontinuity mapping presented in
this paper, the Poincaré map is constructed near the known
double grazing periodic orbit.Thus grazing bifurcation of the
system is analyzed using the Poincaré map with clearance
𝑏 as a bifurcation parameter. Numerical simulation shows
that there exists a transition from the chaotic band to
a period-1 periodic motion via grazing bifurcation. This
numerical result of the Poincaré map is in agreement with
that of the original vibroimpact system. In the later study,
the discontinuity mapping and the Poincaré map for the
nonsmooth dynamical systems with many constraints can be
set up in a similar way.
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