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Coincidence and common fixed point theorems for a class of Ćirić-Suzuki hybrid contractions involving a multivalued and two
single-valuedmaps in ametric space are obtained. Some applications including the existence of a common solution for certain class
of functional equations arising in a dynamic programming are also discussed.

1. Introduction

Consistent with [1] (see also [2, 3]), 𝑌 denotes an arbitrary
nonempty set, (𝑋, 𝑑) a metric space, and 𝐶𝐿(𝑋) (resp.,
𝐶𝐵(𝑋)), the collection of all nonempty closed (resp., closed
bounded) subsets of 𝑋. The hyperspace (𝐶𝐿(𝑋),𝐻) (resp.,
(𝐶𝐵(𝑋),𝐻)) is called the generalized Hausdorff (resp., the
Hausdorff) metric space induced by the metric 𝑑 on𝑋.

For nonempty subsets 𝐴, 𝐵 of𝑋, 𝑑(𝐴, 𝐵) denotes the gap
between the subsets 𝐴 and 𝐵, while

𝜌 (𝐴, 𝐵) = sup {𝑑 (𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} ,

𝐵𝑁 (𝑋) = {𝐴 : 0 ̸= 𝐴 ⊆ 𝑋 and the diameter of 𝐴 is finite} .
(1)

As usual, we write 𝑑(𝑥, 𝐵) (resp., 𝜌(𝑥, 𝐵)) for 𝑑(𝐴, 𝐵) (resp.,
𝜌(𝐴, 𝐵)) when 𝐴 = {𝑥}.

For the sake of brevity, we follow the following notations,
wherein 𝑆, 𝑓, and 𝑔 are maps to be defined specifically in a

particular context, while𝑥 and𝑦 are elements of some specific
domain:

𝑀(𝑆; 𝑓𝑥, 𝑔𝑦)

= max{𝑑 (𝑓𝑥, 𝑔𝑦) , 𝑑 (𝑓𝑥, 𝑆𝑥) , 𝑑 (𝑔𝑦, 𝑆𝑦) ,

𝑑 (𝑆𝑥, 𝑔𝑦) + 𝑑 (𝑆𝑦, 𝑓𝑥)

2
} ;

𝑀 (𝑆; 𝑓𝑥, 𝑓𝑦)

= max{𝑑 (𝑓𝑥, 𝑓𝑦) , 𝑑 (𝑓𝑥, 𝑆𝑥) , 𝑑 (𝑓𝑦, 𝑆𝑦) ,

𝑑 (𝑆𝑥, 𝑓𝑦) + 𝑑 (𝑆𝑦, 𝑓𝑥)

2
} ;

𝑀 (𝑆𝑥, 𝑆𝑦)

= max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑆𝑥) , 𝑑 (𝑦, 𝑆𝑦) ,

𝑑 (𝑦, 𝑆𝑥) + 𝑑 (𝑥, 𝑆𝑦)

2
} ;
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𝑀
1
(𝑓𝑥, 𝑔𝑦)

= max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑔𝑦) ,

𝑑 (𝑦, 𝑓𝑥) + 𝑑 (𝑥, 𝑔𝑦)

2
} .

(2)

The Banach contraction principle (Bcp) plays an impor-
tant role in nonlinear analysis and has numerous generaliza-
tions and several applications (see, e.g., [1–21] and others).
Nadler Jr. [1] (see also [22]) initiated the study of multivalued
Banach contractions inmetric spaces. In view of its numerous
applications, the Nadler multivalued contraction theorem
received enormous attention (see, e.g., [2, 3, 7, 8, 11–15, 17–
21, 23–36] and references thereof).

The following result [13, p. 250] extends and generalizes
many results due to Fisher [37], Goebel [38], Kubiak [29], and
others.

Theorem 1. Let 𝑆 : 𝑌 → 𝐶𝐿(𝑋) and 𝑓, 𝑔 : 𝑌 → 𝑋 be such
that 𝑆(𝑌) ⊆ 𝑓(𝑌) ∩ 𝑔(𝑌), and one of 𝑆(𝑌), 𝑓(𝑌) or 𝑔(𝑌) is a
complete subspace of𝑋. Assume there exists 𝑟 ∈ [0, 1) such that
for every 𝑥, 𝑦 ∈ 𝑌,

𝐻(𝑆𝑥, 𝑆𝑦) ≤ 𝑟𝑀 (𝑆; 𝑓𝑥, 𝑔𝑦) . (3)

Then

(i) 𝑆 and 𝑓 have a coincidence point V in 𝑌,
(ii) 𝑆 and 𝑔 have a coincidence point 𝑤 in 𝑌.

Further, if 𝑌 = 𝑋, then
(iii) 𝑆 and 𝑓 have a common fixed point V provided that 𝑓V

is a fixed point of 𝑓, and 𝑓 and 𝑆 commute at V;
(iv) 𝑆 and 𝑔 have a common fixed point𝑤 provided that 𝑔𝑤

is a fixed point of 𝑔, and 𝑔 and 𝑆 commute at 𝑤;
(v) 𝑆, 𝑓, and 𝑔 have a common fixed point provided that

(iii) and (iv) both are true.

We remark that certain contractive conditions studied for
𝑆 : 𝑌 → 𝐶𝐿(𝑋) and 𝑓, 𝑔 : 𝑌 → 𝑋 by Ćirić [5], Covitz and
Nadler Jr. [16], Czerwik [6], Fisher [37], Goebel [38], Jungck
[17], Kubiak [29], Naimpally et al. [8], Pathak [15], Pathak
et al. [9], Petrusel and Rus [10], Reich [11], and Rus [3] are
included in the following condition:

𝐻(𝑆𝑥, 𝑆𝑦) ≤ 𝑟𝑀 (𝑆; 𝑓𝑥, 𝑔𝑦) , (4)

for every 𝑥, 𝑦 ∈ 𝑌, where 0 ≤ 𝑟 < 1.
In particular, (4) with 𝑌 = 𝑋 and 𝑓 = 𝑔 = the identity

map on𝑋 was studied by Ćirić [5].
Recently, Suzuki [39, Th. 2] obtained a remarkable

generalization of the Bcp. The same has been extended
to multivalued maps by Kikkawa and Suzuki [30] in the
following manner.

Theorem 2. Define a strictly decreasing function 𝜂 : [0, 1) →
((1/2), 1] by

𝜂 (𝑟) =
1

1 + 𝑟
. (5)

Let (𝑋, 𝑑) be a complete metric space and 𝑆 : 𝑌 → 𝐶𝐵(𝑋).
Assume there exists 𝑟 ∈ [0, 1) such that for every 𝑥, 𝑦 ∈ 𝑌,

𝜂 (𝑟) 𝑑 (𝑥, 𝑆𝑥) ≤ 𝑑 (𝑥, 𝑦) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐻 (𝑆𝑥, 𝑆𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦) .

(6)

Then there exists 𝑧 ∈ 𝑋 such that 𝑧 ∈ 𝑆𝑧.

Subsequently, some interesting extensions and general-
izations of Theorem 2 were obtained among others by Abbas
et al. [23], Dhompongsa and Yingtaweesittikul [24], Dorić
and Lazović [25], Kamal et al. [18], Moţ and Petruşel [26],
Singh and Mishra [27, 31, 36], and Singh et al. [28, 32, 33].

The importance of Suzuki contraction theorem [39, Th.
2] and subsequently obtained coincidence and fixed point
theorems (cf. [23–28, 30–33, 36] and others) for maps in
metric spaces satisfying Suzuki-type contractive conditions
is that the contractive conditions are required to be satisfied
not for all points of the domain.

In all that follows we take a nonincreasing function 𝜑
from [0, 1) onto (0, 1] defined by

𝜑 (𝑟) =

{{

{{

{

1 if 0 ≤ 𝑟 < 1
2

1 − 𝑟 if 1
2
≤ 𝑟 < 1.

(7)

Recently, Singh et al. [33] obtained the following coinci-
dence and common fixed point theorem which is a general-
ization of a result of Dorić and Lazović [25].

Theorem 3. Let 𝑆 : 𝑌 → 𝐶𝐿(𝑋) and 𝑓 : 𝑌 → 𝑋 be such
that 𝑆(𝑌) ⊆ 𝑓(𝑌). Assume there exists 𝑟 ∈ [0, 1) such that for
every 𝑥, 𝑦 ∈ 𝑌,

𝜑 (𝑟) 𝑑 (𝑓𝑥, 𝑆𝑥) ≤ 𝑑 (𝑓𝑥, 𝑓𝑦)

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐻 (𝑆𝑥, 𝑆𝑦) ≤ 𝑟𝑀 (𝑆; 𝑓𝑥, 𝑓𝑦) .

(8)

If one of 𝑆(𝑌) or 𝑓(𝑌) is a complete subspace of 𝑋, then there
exists a point 𝑧 ∈ 𝑌 such that 𝑓𝑧 ∈ 𝑆𝑧.

Further, if 𝑌 = 𝑋 and 𝑓𝑧 is a fixed point of 𝑓, then 𝑓𝑧 is a
fixed point of 𝑆 provided that 𝑓 is IT-commuting with 𝑆 at 𝑧.

In this paper, we obtain a coincidence and common fixed
point theorem (cf. Theorem 6) extending and generalizing
Theorems 1, 2, 3, and several others. We also deduce the
existence of common solution for a certain class of functional
equations arising in dynamic programming. Examples are
given to justify theorems and applications.

2. Main Results

The following definition is due to Itoh and Takahashi [19] (see
also [27]).
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Definition 4. Let 𝑆 : 𝑋 → 𝐶𝐿(𝑋) and 𝑓 : 𝑋 → 𝑋. Then the
hybrid pair (𝑆, 𝑓) is IT-commuting at 𝑧 ∈ 𝑋 if 𝑓𝑆𝑧 ⊆ 𝑆𝑓𝑧.

We remark that IT-commuting maps are more general
than commuting maps [34, p. 2]. However, a pair of maps
𝑓, 𝑔 : 𝑋 → 𝑋 are IT-commuting (also called weakly
compatible by Jungck and Rhoades [20]) at 𝑥 ∈ 𝑋 if 𝑓𝑔𝑥 =
𝑔𝑓𝑥 when 𝑓𝑥 = 𝑔𝑥.

We will need the following lemma essentially due to
Nadler Jr. [1] (see also [5], [2, p. 61], [35, p. 4], [3, p. 76]).

Lemma 5. If 𝐴, 𝐵 ∈ 𝐶𝐿(𝑋) and 𝑎 ∈ 𝐴, then for each 𝜀 > 0,
there exists 𝑏 ∈ 𝐵 such that 𝑑(𝑎, 𝑏) ≤ 𝐻(𝐴, 𝐵) + 𝜀.

Let𝐶(𝑆, 𝑓) denote the collection of all coincidence points
of 𝑆 and 𝑓; that is, 𝐶(𝑆, 𝑓) = {𝑧 ∈ 𝑌 : 𝑓𝑧 ∈ 𝑆𝑧} when 𝑆 : 𝑌 →

𝐶𝐿(𝑋) and 𝑓 : 𝑌 → 𝑋; and 𝐶(𝑆, 𝑓) = {𝑧 ∈ 𝑌 : 𝑓𝑧 = 𝑆𝑧}
when 𝑆, 𝑓 : 𝑌 → 𝑋.

The following is the main result of this section.

Theorem 6. Let 𝑆 : 𝑌 → 𝐶𝐿(𝑋) and 𝑓, 𝑔 : 𝑌 → 𝑋 be such
that 𝑆(𝑌) ⊆ 𝑓(𝑌) ∩ 𝑔(𝑌). Assume there exists 𝑟 ∈ [0, 1) such
that for every 𝑥, 𝑦 ∈ 𝑌,

𝜑 (𝑟)min {𝑑 (𝑓𝑥, 𝑆𝑥) , 𝑑 (𝑔𝑦, 𝑆𝑦)} ≤ 𝑑 (𝑓𝑥, 𝑔𝑦) (9a)

implies

𝐻(𝑆𝑥, 𝑆𝑦) ≤ 𝑟𝑀 (𝑆; 𝑓𝑥, 𝑔𝑦) . (9b)

If one of 𝑆(𝑌), 𝑓(𝑌), or 𝑔(𝑌) is a complete subspace of 𝑋, then

(I) 𝐶(𝑆, 𝑓) is nonempty; that is, there exists a point 𝑧 ∈ 𝑌
such that 𝑓𝑧 ∈ 𝑆𝑧.

(II) 𝐶(𝑆, 𝑔) is nonempty; that is, there exists a point 𝑧
1
∈ 𝑌

such that 𝑔𝑧
1
∈ 𝑆𝑧
1
.

Further if, 𝑌 = 𝑋, then
(III) 𝑆 and 𝑓 have a common fixed point provided that the

maps 𝑆 and 𝑓 are IT-commuting just at coincidence
point 𝑧 and 𝑓𝑧 is fixed point of 𝑓;

(IV) 𝑆 and 𝑔 have a common fixed point provided that the
maps 𝑆 and 𝑔 are IT-commuting just at coincidence
point 𝑧

1
and 𝑔𝑧

1
is fixed point of 𝑔;

(V) 𝑆, 𝑓, and 𝑔 have a common fixed point provided that
both (III) and (IV) are true.

Proof. Without loss of generality, we may take 𝑟 > 0 and 𝑓, 𝑔
nonconstant maps.

Let 𝜀 > 0 be such that 𝛽 = 𝑟 + 𝜀 < 1. We construct two
sequences {𝑥

𝑛
} in 𝑌 and {𝑦

𝑛
} in𝑋 as follows.

Let 𝑥
0
∈ 𝑌 and 𝑦

0
= 𝑔𝑥
1
∈ 𝑆𝑥
0
. By Lemma 5, there exists

𝑦
1
= 𝑓𝑥
2
∈ 𝑆𝑥
1
such that

𝑑 (𝑓𝑥
2
, 𝑔𝑥
1
) ≤ 𝐻 (𝑆𝑥

0
, 𝑆𝑥
1
) + 𝜀𝑀 (𝑆; 𝑓𝑥

0
, 𝑔𝑥
1
) . (10)

Similarly, there exists 𝑦
2
= 𝑔𝑥
3
∈ 𝑆𝑥
2
such that

𝑑 (𝑓𝑥
2
, 𝑔𝑥
3
) ≤ 𝐻 (𝑆𝑥

2
, 𝑆𝑥
1
) + 𝜀𝑀 (𝑆; 𝑓𝑥

2
, 𝑔𝑥
1
) . (11)

Continuing in this manner, we find a sequence {𝑦
𝑛
} in𝑋 such

that

𝑦
2𝑛
= 𝑔𝑥
2𝑛+1

∈ 𝑆𝑥
2𝑛
, 𝑦

2𝑛+1
= 𝑓𝑥
2𝑛+2

∈ 𝑆𝑥
2𝑛+1

,

𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

)

≤ 𝐻 (𝑆𝑥
2𝑛
, 𝑆𝑥
2𝑛−1

) + 𝜀𝑀 (𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

) ,

𝑑 (𝑓𝑥
2𝑛+2

, 𝑔𝑥
2𝑛+1

)

≤ 𝐻 (𝑆𝑥
2𝑛
, 𝑆𝑥
2𝑛+1

) + 𝜀𝑀 (𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

) .

(12)

Now, we show that for any 𝑛 ∈ 𝑁,

𝑑 (𝑦
2𝑛
, 𝑦
2𝑛−1

) ≤ 𝛽𝑑 (𝑦
2𝑛−1

, 𝑦
2𝑛−2

) . (13)

Suppose if 𝑑(𝑔𝑥
2𝑛−1

, 𝑆𝑥
2𝑛−1

) ≥ 𝑑(𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
), then

𝜑 (𝑟)min {𝑑 (𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
) , 𝑑 (𝑔𝑥

2𝑛−1
, 𝑆𝑥
2𝑛−1

)}

≤ 𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

) .

(14)

Therefore, by the assumption,

𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

)

≤ 𝐻 (𝑆𝑥
2𝑛
, 𝑆𝑥
2𝑛−1

) + 𝜀𝑀 (𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

)

≤ 𝑟𝑀 (𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

) + 𝜀𝑀 (𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

)

= 𝛽𝑀(𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

)

= 𝛽max{𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

) , 𝑑 (𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
) ,

𝑑 (𝑔𝑥
2𝑛−1

, 𝑆𝑥
2𝑛−1

) ,

𝑑 (𝑔𝑥
2𝑛−1

, 𝑆𝑥
2𝑛
) + 𝑑 (𝑓𝑥

2𝑛
, 𝑆𝑥
2𝑛−1

)

2
} .

(15)

This yields (13).
Suppose if 𝑑(𝑓𝑥

2𝑛
, 𝑆𝑥
2𝑛
) ≥ 𝑑(𝑔𝑥

2𝑛−1
, 𝑆𝑥
2𝑛−1

), then

𝜑 (𝑟)min {𝑑 (𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
) , 𝑑 (𝑔𝑥

2𝑛−1
, 𝑆𝑥
2𝑛−1

)}

≤ 𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

) .

(16)
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Therefore, by the assumption,

𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

)

≤ 𝐻 (𝑆𝑥
2𝑛
, 𝑆𝑥
2𝑛−1

) + 𝜀𝑀 (𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

)

≤ 𝑟𝑀 (𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

) + 𝜀𝑀 (𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

)

= 𝛽𝑀(𝑆; 𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

)

= 𝛽max{𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

) , 𝑑 (𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
) ,

𝑑 (𝑔𝑥
2𝑛−1

, 𝑆𝑥
2𝑛−1

) ,

𝑑 (𝑔𝑥
2𝑛−1

, 𝑆𝑥
2𝑛
) + 𝑑 (𝑓𝑥

2𝑛
, 𝑆𝑥
2𝑛−1

)

2
}

≤ 𝛽max {𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛−1

) , 𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑥
2𝑛+1

)} ,

(17)

yielding (13). So, in both cases, we obtain (13). In an analogous
manner, we show that

𝑑 (𝑦
2𝑛+1

, 𝑦
2𝑛
) ≤ 𝛽𝑑 (𝑦

2𝑛
, 𝑦
2𝑛−1

) . (18)

We conclude from (13) and (18) that for any 𝑛 ∈ 𝑁,

𝑑 (𝑦
𝑛+1
, 𝑦
𝑛
) ≤ 𝛽𝑑 (𝑦

𝑛
, 𝑦
𝑛−1
) . (19)

Therefore the sequence {𝑦
𝑛
} is Cauchy. Assume that the space

𝑔(𝑌) is complete. Notice that the sequence {𝑦
2𝑛
} is contained

in 𝑔(𝑌) and has a limit in 𝑔(𝑌). Call it 𝑢. Let 𝑧 ∈ 𝑓−1𝑢. Then
𝑧 ∈ 𝑌 and 𝑓𝑧 = 𝑢. The subsequence {𝑦

2𝑛+1
} also converges to

𝑢. Let 𝑧
1
∈ 𝑔
−1
𝑢. Then

𝑔𝑧
1
= 𝑢. (20)

Now we show that for any 𝑔𝑦 ∈ 𝑋 − {𝑓𝑧},

𝑑 (𝑢, 𝑆𝑦) ≤ 𝑟max {𝑑 (𝑢, 𝑔𝑦) , 𝑑 (𝑔𝑦, 𝑆𝑦)} , (21)

and for any 𝑓𝑦 ∈ 𝑋 − {𝑔𝑧},

𝑑 (𝑢, 𝑆𝑦) ≤ 𝑟max {𝑑 (𝑢, 𝑓𝑦) , 𝑑 (𝑓𝑦, 𝑆𝑦)} . (22)

Since 𝑓𝑥
2𝑛
→ 𝑓𝑧, there exists 𝑛

0
∈ 𝑁 (naturals) such that

𝑑 (𝑓𝑥
2𝑛
, 𝑓𝑧) ≤

1

3
𝑑 (𝑓𝑧, 𝑔𝑦) for 𝑔𝑦 ̸= 𝑓𝑧 and all 𝑛 ≥ 𝑛

0
.

(23)

Also, since 𝑔𝑥
2𝑛+1

→ 𝑓𝑧, there exists 𝑛
1
∈ 𝑁 such that

𝑑 (𝑔𝑥
2𝑛+1

, 𝑓𝑧) ≤
1

3
𝑑 (𝑓𝑧, 𝑔𝑦)

for 𝑔𝑦 ̸= 𝑓𝑧 and all 𝑛 ≥ 𝑛
1
.

(24)

Then, as in [39, p. 1862] (see also [25]),

𝜑 (𝑟) 𝑑 (𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
)

≤ 𝑑 (𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
) ≤ 𝑑 (𝑓𝑥

2𝑛
, 𝑔𝑥
2𝑛+1

)

≤
2

3
𝑑 (𝑓𝑧, 𝑔𝑦) = 𝑑 (𝑓𝑧, 𝑔𝑦) −

1

3
𝑑 (𝑓𝑧, 𝑔𝑦)

≤ 𝑑 (𝑓𝑧, 𝑔𝑦) − 𝑑 (𝑓𝑥
2𝑛
, 𝑓𝑧) ≤ 𝑑 (𝑓𝑥

2𝑛
, 𝑔𝑦) .

(25)

Therefore,

𝜑 (𝑟) 𝑑 (𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
) ≤ 𝑑 (𝑓𝑥

2𝑛
, 𝑔𝑦) . (26)

Now, either 𝑑(𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
) ≤ 𝑑(𝑔𝑦, 𝑆𝑦) or 𝑑(𝑔𝑦, 𝑆𝑦) ≤

𝑑(𝑓𝑥
2𝑛
, 𝑆𝑥
2𝑛
).

In each case, by (26) and the assumption,

𝑑 (𝑓𝑥
2𝑛+1

, 𝑆𝑦)

≤ 𝐻 (𝑆𝑥
2𝑛
, 𝑆𝑦) ≤ 𝑟𝑀 (𝑆; 𝑓𝑥

2𝑛
, 𝑔𝑦) .

≤ 𝑟max{𝑑 (𝑓𝑥
2𝑛
, 𝑔𝑦) , 𝑑 (𝑓𝑥

2𝑛
, 𝑆𝑥
2𝑛
) , 𝑑 (𝑔𝑦, 𝑆𝑦) ,

𝑑 (𝑓𝑥
2𝑛
, 𝑆𝑦) + 𝑑 (𝑔𝑦, 𝑆𝑥

2𝑛
)

2
} .

(27)

Making 𝑛 → ∞,

𝑑 (𝑢, 𝑆𝑦)

≤ 𝑟max{𝑑 (𝑢, 𝑔𝑦) , 𝑑 (𝑢, 𝑢) , 𝑑 (𝑔𝑦, 𝑆𝑦) ,

𝑑 (𝑢, 𝑆𝑦) + 𝑑 (𝑢, 𝑔𝑦)

2
}

≤ 𝑟max{𝑑 (𝑢, 𝑔𝑦) , 𝑑 (𝑔𝑦, 𝑆𝑦) ,
𝑑 (𝑢, 𝑆𝑦) + 𝑑 (𝑢, 𝑔𝑦)

2
}

= 𝑟max {𝑑 (𝑢, 𝑔𝑦) , 𝑑 (𝑔𝑦, 𝑆𝑦)} .
(28)

This yields (21); that is,

𝑑 (𝑓𝑧, 𝑆𝑦) ≤ 𝑟max {𝑑 (𝑓𝑧, 𝑔𝑦) , 𝑑 (𝑔𝑦, 𝑆𝑦)} . (29)

Analogously, we can prove (22); that is,

𝑑 (𝑔𝑧
1
, 𝑆𝑦) ≤ 𝑟max {𝑑 (𝑔𝑧

1
, 𝑓𝑦) , 𝑑 (𝑓𝑦, 𝑆𝑦)} . (30)

Now, we show that 𝐶(𝑆, 𝑓) is nonempty.
We first consider the case 0 ≤ 𝑟 < 1/2.
Suppose𝑓𝑧 ∉ 𝑆𝑧.Then as in [24, p. 6], let 𝑔𝑎 ∈ 𝑆𝑧 be such

that 2𝑟𝑑(𝑔𝑎, 𝑓𝑧) < 𝑑(𝑆𝑧, 𝑓𝑧).
Since𝑔𝑎 ∈ 𝑆𝑧 implies𝑔𝑎 ̸= 𝑓𝑧, we have from (21) and (22),

𝑑 (𝑓𝑧, 𝑆𝑎) ≤ 𝑟max {𝑑 (𝑓𝑧, 𝑔𝑎) , 𝑑 (𝑔𝑎, 𝑆𝑎)} . (31)

On the other hand, since 𝜑(𝑟)𝑑(𝑓𝑧, 𝑆𝑧) ≤ 𝑑(𝑓𝑧, 𝑆𝑧) ≤

𝑑(𝑓𝑧, 𝑔𝑎),

𝜑 (𝑟)min {𝑑 (𝑓𝑧, 𝑆𝑧) , 𝑑 (𝑔𝑎, 𝑆𝑎)} ≤ 𝑑 (𝑓𝑧, 𝑔𝑎) . (32)
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Therefore, by the assumption (13),

𝑑 (𝑔𝑎, 𝑆𝑎) ≤ 𝐻 (𝑆𝑧, 𝑆𝑎)

≤ 𝑟max{𝑑 (𝑓𝑧, 𝑔𝑎) , 𝑑 (𝑓𝑧, 𝑆𝑧) , 𝑑 (𝑔𝑎, 𝑆𝑎) ,

𝑑 (𝑓𝑧, 𝑆𝑎) + 𝑑 (𝑔𝑎, 𝑆𝑧)

2
}

= 𝑟max {𝑑 (𝑓𝑧, 𝑔𝑎) , 𝑑 (𝑔𝑎, 𝑆𝑎)} .
(33)

This gives 𝑑(𝑔𝑎, 𝑆𝑎) ≤ 𝐻(𝑆𝑧, 𝑆𝑎) ≤ 𝑟𝑑(𝑓𝑧, 𝑔𝑎) < 𝑑(𝑓𝑧, 𝑔𝑎).
So by (31), 𝑑(𝑓𝑧, 𝑆𝑎) ≤ 𝑟𝑑(𝑓𝑧, 𝑔𝑎). Thus, by the assump-

tion,

𝑑 (𝑓𝑧, 𝑆𝑧) ≤ 𝑑 (𝑓𝑧, 𝑆𝑎) + 𝐻 (𝑆𝑧, 𝑆𝑎)

≤ 𝑟𝑑 (𝑓𝑧, 𝑔𝑎) + 𝑟𝑑 (𝑓𝑧, 𝑔𝑎)

= 2𝑟𝑑 (𝑓𝑧, 𝑔𝑎) < 𝑑 (𝑓𝑧, 𝑆𝑧) .

(34)

This contradicts 𝑓𝑧 ∉ 𝑆𝑧. Consequently, 𝑓𝑧 ∈ 𝑆𝑧, and 𝐶(𝑆, 𝑓)
is nonempty.

In an analogous manner, we can prove in the case 0 ≤ 𝑟 <
1/2 that 𝐶(𝑆, 𝑔) is nonempty.

We now consider the case 1/2 ≤ 𝑟 < 1. We first show that

𝐻(𝑆𝑧, 𝑆𝑦)

≤ 𝑟max{𝑑 (𝑓𝑧, 𝑔𝑦) , 𝑑 (𝑓𝑧, 𝑆𝑧) , 𝑑 (𝑔𝑦, 𝑆𝑦) ,

𝑑 (𝑔𝑦, 𝑆𝑧) + 𝑑 (𝑓𝑧, 𝑆𝑦)

2
} .

(35)

Assume that 𝑓𝑧 ̸= 𝑔𝑦. Then for every 𝑛 ∈ 𝑁, there exists 𝑧
𝑛
∈

𝑆𝑦 such that

𝑑 (𝑓𝑧, 𝑧
𝑛
) ≤ 𝑑 (𝑓𝑧, 𝑆𝑦) +

1

𝑛
𝑑 (𝑓𝑧, 𝑔𝑦) . (36)

Therefore,

𝑑 (𝑔𝑦, 𝑆𝑦) ≤ 𝑑 (𝑔𝑦, 𝑧
𝑛
)

≤ 𝑑 (𝑔𝑦, 𝑓𝑧) + 𝑑 (𝑓𝑧, 𝑧
𝑛
)

≤ 𝑑 (𝑔𝑦, 𝑓𝑧) + 𝑑 (𝑓𝑧, 𝑆𝑦) +
1

𝑛
𝑑 (𝑓𝑧, 𝑔𝑦) .

(37)

So using (31), the inequality (37) implies

𝑑 (𝑔𝑦, 𝑆𝑦) ≤ 𝑑 (𝑓𝑧, 𝑔𝑦) + 𝑟max {𝑑 (𝑓𝑧, 𝑔𝑦) , 𝑑 (𝑔𝑦, 𝑆𝑦)}

+
1

𝑛
𝑑 (𝑓𝑧, 𝑔𝑦) .

(38)

If 𝑑(𝑓𝑧, 𝑔𝑦) ≥ 𝑑(𝑔𝑦, 𝑆𝑦), then (38) gives

𝑑 (𝑔𝑦, 𝑆𝑦) ≤ 𝑑 (𝑓𝑧, 𝑔𝑦) + 𝑟𝑑 (𝑓𝑧, 𝑔𝑦) +
1

𝑛
𝑑 (𝑓𝑧, 𝑔𝑦)

= (1 + 𝑟 +
1

𝑛
) 𝑑 (𝑓𝑧, 𝑔𝑦) .

(39)

Making 𝑛 → ∞,

𝑑 (𝑔𝑦, 𝑆𝑦) ≤ (1 + 𝑟) 𝑑 (𝑓𝑧, 𝑔𝑦) . (40)

Thus,

𝜑 (𝑟) 𝑑 (𝑔𝑦, 𝑆𝑦) = (1 − 𝑟) 𝑑 (𝑔𝑦, 𝑆𝑦)

≤ (
1

1 + 𝑟
) 𝑑 (𝑔𝑦, 𝑆𝑦) ≤ 𝑑 (𝑓𝑧, 𝑔𝑦) .

(41)

Then

𝜑 (𝑟)min {𝑑 (𝑓𝑧, 𝑆𝑧) , 𝑑 (𝑔𝑦, 𝑆𝑦)} ≤ 𝑑 (𝑓𝑧, 𝑔𝑦) , (42)

and by the assumption,

𝐻(𝑆𝑧, 𝑆𝑦)

≤ 𝑟max{𝑑 (𝑓𝑧, 𝑔𝑦) , 𝑑 (𝑓𝑧, 𝑆𝑧) , 𝑑 (𝑔𝑦, 𝑆𝑦) ,

𝑑 (𝑔𝑦, 𝑆𝑧) + 𝑑 (𝑓𝑧, 𝑆𝑦)

2
} .

(43)

If 𝑑(𝑓𝑧, 𝑔𝑦) < 𝑑(𝑔𝑦, 𝑆𝑦), then (38) gives

𝑑 (𝑔𝑦, 𝑆𝑦) ≤ 𝑑 (𝑓𝑧, 𝑔𝑦) + 𝑟𝑑 (𝑔𝑦, 𝑆𝑦) +
1

𝑛
𝑑 (𝑓𝑧, 𝑔𝑦) ; (44)

that is, (1 − 𝑟)𝑑(𝑔𝑦, 𝑆𝑦) ≤ (1 + 1/𝑛)𝑑(𝑓𝑧, 𝑔𝑦).
Making 𝑛 → ∞, 𝜑(𝑟)𝑑(𝑔𝑦, 𝑆𝑦) ≤ 𝑑(𝑓𝑧, 𝑔𝑦).
Then 𝜑(𝑟)min{𝑑(𝑓𝑧, 𝑆𝑧), 𝑑(𝑔𝑦, 𝑆𝑦)} ≤ 𝑑(𝑓𝑧, 𝑔𝑦), and by

the assumption, we get (43).
Since 𝑑(𝑆𝑧, 𝑓𝑥

2𝑛+2
) ≤ 𝐻(𝑆𝑧, 𝑆𝑥

2𝑛+1
), taking 𝑦 = 𝑥

2𝑛+1
in

(43) and passing to the limit, we obtain

𝑑 (𝑆𝑧, 𝑓𝑧) ≤ 𝑟𝑑 (𝑓𝑧, 𝑆𝑧) . (45)

This gives 𝑓𝑧 ∈ 𝑆𝑧; that is, 𝑧 is a coincidence point of 𝑓 and
𝑆. Analogously, 𝑔𝑧 ∈ 𝑆𝑧. Thus, (I) and (II) are completely
proved.

Further, if 𝑌 = 𝑋, 𝑓𝑧 is a fixed point of 𝑓, and 𝑆 and 𝑓
are IT-commuting at 𝑧, then 𝑓𝑆𝑧 ⊆ 𝑆𝑓𝑧. Therefore, 𝑓𝑧 ∈ 𝑆𝑧
implies 𝑓𝑓𝑧 ∈ 𝑓𝑆𝑧 ⊆ 𝑆𝑓𝑧, so 𝑓𝑧 ∈ 𝑆𝑓𝑧. This proves that
𝑢 = 𝑓𝑧 is a common fixed point of 𝑓 and 𝑆. This proves
(III). Analogously, 𝑆 and 𝑔 have a common fixed point 𝑔𝑧

1
.

Therefore (20) implies that 𝑢 is a common fixed point of 𝑆
and 𝑔. This proves (IV). Now (V) is immediate.

Remark 7. In Theorem 6, the hypothesis “𝑓𝑧 is a fixed point
of 𝑓” is essential for the existence of a common fixed point of
𝑆 and 𝑓 (see also [8]). Similarly, the hypothesis “𝑔𝑧

1
is a fixed

point of 𝑔” is essential for the existence of a common fixed
point of 𝑆 and 𝑔. Further, the contractive condition for three
maps 𝑆 : 𝑌 → 𝐶𝐿(𝑋) and 𝑓, 𝑔 : 𝑌 → 𝑋 studied by Abbas et
al. [23] are included in the assumptions of Theorem 6.

Corollary 8. Theorem 2.

Proof. It comes fromTheorem 6 when 𝑔 = 𝑓.
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The following result due to Dorić and Lazović [25]
generalizing many fixed point theorems is obtained as a
special case from Theorem 6 when 𝑌 = 𝑋 and 𝑓 and 𝑔 are
the identity map on𝑋.

Corollary 9. Let (𝑋, 𝑑) be a complete metric space and 𝑆 :
𝑋 → 𝐶𝐿(𝑋). Assume there exists 𝑟 ∈ [0, 1) such that for every
𝑥, 𝑦 ∈ 𝑋,

𝜑 (𝑟) 𝑑 (𝑥, 𝑆𝑥) ≤ 𝑑 (𝑥, 𝑦)

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐻 (𝑆𝑥, 𝑆𝑦) ≤ 𝑟𝑀 (𝑆𝑥, 𝑆𝑦) .

(46)

Then there exists an element 𝑧 ∈ 𝑋 such that 𝑧 ∈ 𝑆𝑧.

The following result extends and generalizes coincidence
and fixed point theorems of Fisher [37], Goebel [38], Jungck
[17], and others.

Corollary 10. Let 𝑓, 𝑔, 𝑃 : 𝑌 → 𝑋 be such that 𝑃(𝑌) ⊆
𝑓(𝑌) ∩ 𝑔(𝑌). Let 𝑃(𝑌) or 𝑓(𝑌) or 𝑔(𝑌) be a complete subspace
of𝑋. Assume there exists 𝑟 ∈ [0, 1) such that for every 𝑥, 𝑦 ∈ 𝑌,

𝜑 (𝑟)min {𝑑 (𝑓𝑥, 𝑃𝑥) , 𝑑 (𝑔𝑦, 𝑃𝑦)} ≤ 𝑑 (𝑓𝑥, 𝑔𝑦) , (47)

implies

𝑑 (𝑃𝑥, 𝑃𝑦) ≤ 𝑟𝑀(𝑃; 𝑓𝑥, 𝑔𝑦) . (48)

Then𝐶(𝑃, 𝑓) and𝐶(𝑃, 𝑔) are nonempty. Further, if 𝑌 = 𝑋 and
if 𝑃 commutes with 𝑓 and 𝑔 at a common coincidence point,
then 𝑓, 𝑔, and 𝑃 have a unique common fixed point; that is,
there exists a unique point 𝑧 ∈ 𝑋 such that 𝑓𝑧 = 𝑔𝑧 = 𝑃𝑧 = 𝑧.

Proof. Set 𝑆𝑥 = {𝑃𝑥} for every 𝑥 ∈ 𝑌. Then it easily comes
from Theorem 6 that 𝐶(𝑃, 𝑓) and 𝐶(𝑃, 𝑔) are nonempty.
Further, if 𝑌 = 𝑋 and 𝑃 commutes with 𝑓 and 𝑔 at 𝑧, then
𝑓𝑓𝑧 = 𝑓𝑃𝑧 = 𝑃𝑓𝑧 and 𝑔𝑔𝑧 = 𝑔𝑃𝑧 = 𝑃𝑔𝑧.

Also 𝜑(𝑟)min{𝑑(𝑓𝑧, 𝑃𝑧), 𝑑(𝑓𝑓𝑧, 𝑃𝑓𝑧)} = 0 ≤ 𝑑(𝑓𝑧, 𝑓𝑓𝑧),
and this implies

𝑑 (𝑃𝑧, 𝑃𝑓𝑧) ≤ 𝑟max{𝑑 (𝑓𝑧, 𝑓𝑓𝑧) , 𝑑 (𝑓𝑧, 𝑃𝑧) , 𝑑 (𝑓𝑓𝑧, 𝑃𝑓𝑧) ,

𝑑 (𝑓𝑧, 𝑃𝑓𝑧) + 𝑑 (𝑓𝑓𝑧, 𝑃𝑧)

2
}

= 𝑟𝑑 (𝑃𝑧, 𝑃𝑓𝑧) .

(49)

This says that 𝑓𝑧 is fixed point of 𝑓 and 𝑃. Analogously 𝑔𝑧 is
fixed point of 𝑔 and 𝑃. The uniqueness of the common fixed
point follows easily.

Corollary 11. Let (𝑋, 𝑑) be a complete metric space and let
𝑓, 𝑔 : 𝑋 → 𝑋 be an onto maps. Assume there exists 𝑟 ∈ [0, 1)
such that for every 𝑥, 𝑦 ∈ 𝑋,

𝜑 (𝑟)min {𝑑 (𝑥, 𝑓𝑥) , 𝑑 (𝑦, 𝑔𝑦)} ≤ 𝑑 (𝑓𝑥, 𝑔𝑦)

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑑 (𝑥, 𝑦) ≤ 𝑟𝑀
1
(𝑓𝑥, 𝑔𝑦) .

(50)

Then 𝑓 and 𝑔 have a unique common fixed point.

Proof. It comes from Corollary 10 when 𝑌 = 𝑋 and 𝑃 is the
identity map on𝑋.

Corollary 12. Let (𝑋, 𝑑) be a complete metric space and let
𝑓 : 𝑋 → 𝑋 be onto maps. Assume there exists 𝑟 ∈ [0, 1) such
that for every 𝑥, 𝑦 ∈ 𝑋,

𝜑 (𝑟) 𝑑 (𝑥, 𝑓𝑥) ≤ 𝑑 (𝑓𝑥, 𝑓𝑦)

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑑 (𝑥, 𝑦) ≤ 𝑟𝑀 (𝑓𝑥, 𝑓𝑦) .

(51)

Then 𝑓 has a unique fixed point.

Proof. It comes from Corollary 11 when 𝑓 = 𝑔.

The following example shows that Theorem 6 is indeed
more general thanTheorem 1.

Example 13. Consider a metric space 𝑋 =

{(0, 0), (0, 1), (1, 0), (1, 2), (2, 1)}, where 𝑑 is defined by
𝑑 [(𝑥
1
, 𝑥
2
) , (𝑦
1
, 𝑦
2
)] =

󵄨󵄨󵄨󵄨𝑥1 − 𝑦1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑥2 − 𝑦2

󵄨󵄨󵄨󵄨 . (52)
Let 𝑆, 𝑓 and 𝑔 : 𝑋 → 𝑋 be such that

𝑆 (𝑥
1
, 𝑥
2
) =

{{

{{

{

(0, 0) if (𝑥
1
, 𝑥
2
) ̸= (1, 2) , (2, 1)

(0, 1) if (𝑥
1
, 𝑥
2
) = (1, 2)

(1, 0) if (𝑥
1
, 𝑥
2
) = (2, 1) ,

𝑓 (𝑥
1
, 𝑥
2
) = (𝑥

2
, 𝑥
1
) ∀ (𝑥

1
, 𝑥
2
) ∈ 𝑋,

𝑔 (𝑥
1
, 𝑥
2
) = {

(𝑥
1
, 𝑥
2
) if (𝑥

1
, 𝑥
2
) ̸= (1, 0)

(0, 1) if (𝑥
1
, 𝑥
2
) = (1, 0) .

(53)

It is readily verified that

𝑑 (𝑆𝑥, 𝑆𝑦)

≤
1

2
max{𝑑 (𝑓𝑥, 𝑔𝑦) , 𝑑 (𝑓𝑥, 𝑆𝑥) , 𝑑 (𝑔𝑦, 𝑆𝑦) ,

𝑑 (𝑆𝑥, 𝑔𝑦) + 𝑑 (𝑆𝑦, 𝑓𝑥)

2
} ,

(54)

for all (𝑥, 𝑦) ∈ 𝑋 except for 𝑥, 𝑦 ∈ {(1, 2), (2, 1)} with 𝑟 = 1/2.
For 𝑥, 𝑦 ∈ {(1, 2), (2, 1)}, condition (3) yields 2 ≤ 2𝑟,

which contradicts 0 ≤ 𝑟 < 1. Therefore, the condition (3)
of Theorem 1 is not satisfied. So, in order to see that the
maps 𝑆, 𝑓, and 𝑔 satisfy the assumption of Theorem 6, we
notice that the condition (9a) ofTheorem 6 does not hold for
𝑥, 𝑦 ∈ {(1, 2), (2, 1)}. Indeed, for (𝑥, 𝑦) = ((1, 2), (2, 1)),

𝜑 (𝑟)min {𝑑 (𝑓𝑥, 𝑆𝑥) , 𝑑 (𝑔𝑦, 𝑇𝑦)}

= 𝜑 (𝑟)min {𝑑 (𝑓 (1, 2) , 𝑆 (1, 2)) , 𝑑 (𝑔 (2, 1) , 𝑇 (2, 1))}

= 𝜑 (𝑟)min {2, 2} = 2𝜑 (𝑟) .
(55)

That is, 𝜑(𝑟)min{𝑑(𝑓𝑥, 𝑆𝑥), 𝑑(𝑔𝑦, 𝑇𝑦)} = 1 > 0 = 𝑑(𝑓𝑥, 𝑔𝑦).
This violates (9a) when 𝜑(𝑟) = 1/2 (as 𝑟 = 1/2). Similarly

(9a) is also not true for (𝑥, 𝑦) = ((2, 1), (1, 2)). It is easily seen
that all other hypotheses of Theorem 6 are also true.

Now we give an application of Corollary 10.
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Theorem 14. Let 𝑆 : 𝑌 → 𝐵𝑁(𝑋) and 𝑓, 𝑔 : 𝑌 → 𝑋 be such
that 𝑆(𝑌) ⊆ 𝑓(𝑌) ∩𝑔(𝑌), and let one of 𝑆(𝑌), 𝑓(𝑌), or 𝑔(𝑌) be
a complete subspace of 𝑋. Assume there exists 𝑟 ∈ [0, 1) such
that for every 𝑥, 𝑦 ∈ 𝑌,

𝜑 (𝑟)min {𝜌 (𝑓𝑥, 𝑆𝑥) , 𝜌 (𝑔𝑦, 𝑆𝑦)} ≤ 𝑑 (𝑓𝑥, 𝑔𝑦) , (56)

implies

𝜌 (𝑆𝑥, 𝑆𝑦)

≤ 𝑟max{𝑑 (𝑓𝑥, 𝑔𝑦) , 𝜌 (𝑓𝑥, 𝑆𝑥) , 𝜌 (𝑔𝑦, 𝑆𝑦) ,

𝑑 (𝑓𝑥, 𝑆𝑦) + 𝑑 (𝑔𝑦, 𝑆𝑥)

2
} .

(57)

Then 𝐶(𝑆, 𝑓) and 𝐶(𝑆, 𝑔) are nonempty.

Proof. Choose 𝜆 ∈ (0, 1). Define single-valued maps ℎ
1
, ℎ
2
:

𝑋 → 𝑋 as follows. For each 𝑥 ∈ 𝑋, let ℎ
1
𝑥 be a point of 𝑆𝑥

which satisfies

𝑑 (𝑓𝑥, ℎ
1
𝑥) ≥ 𝑟

𝜆
𝜌 (𝑓𝑥, 𝑆𝑥) . (58)

Similarly, for each 𝑦 ∈ 𝑋, let ℎ
2
𝑦 be a point of 𝑆𝑦 such that

𝑑 (𝑔𝑦, ℎ
2
𝑦) ≥ 𝑟

𝜆
𝜌 (𝑔𝑦, 𝑆𝑦) . (59)

Since ℎ
1
𝑥 ∈ 𝑆𝑥 and ℎ

2
𝑦 ∈ 𝑆𝑦,

𝑑 (𝑓𝑥, ℎ
1
𝑥) ≤ 𝜌 (𝑓𝑥, 𝑆𝑥) , 𝑑 (𝑔𝑦, ℎ

2
𝑦) ≤ 𝜌 (𝑔𝑦, 𝑆𝑦) .

(60)

So (56) gives

𝜑 (𝑟)min {𝑑 (𝑓𝑥, ℎ
1
𝑥) , 𝑑 (𝑔𝑦, ℎ

2
𝑦)}

≤ 𝜑 (𝑟)min {𝜌 (𝑓𝑥, 𝑆𝑥) , 𝜌 (𝑔𝑦, 𝑆𝑦)} ≤ 𝑑 (𝑓𝑥, 𝑔𝑦) ,
(61)

and this implies (57). Therefore,

𝑑 (ℎ
1
𝑥, ℎ
2
𝑦)

≤ 𝜌 (𝑆𝑥, 𝑆𝑦)

≤ 𝑟 ⋅ 𝑟
−𝜆max{𝑟𝜆𝑑 (𝑓𝑥, 𝑔𝑦) , 𝑟𝜆𝜌 (𝑓𝑥, 𝑆𝑥) , 𝑟𝜆𝜌 (𝑔𝑦, 𝑆𝑦) ,

𝑟
𝜆
𝑑 (𝑓𝑥, 𝑆𝑦) + 𝑟

𝜆
𝑑 (𝑔𝑦, 𝑆𝑥)

2
}

≤ 𝑟
1−𝜆max{𝑑 (𝑓𝑥, 𝑔𝑦) , 𝑑 (𝑓𝑥, ℎ

1
𝑥) , 𝑑 (𝑔𝑦, ℎ

2
𝑦) ,

𝑑 (𝑓𝑥, ℎ
2
𝑦) + 𝑑 (𝑔𝑦, ℎ

1
𝑥)

2
} .

(62)

So (61), namely, 𝜑(𝑟󸀠)min{𝑑(𝑓𝑥, ℎ
1
𝑥), 𝑑(𝑔𝑦, ℎ

2
𝑦)} ≤ 𝑑(𝑓𝑥,

𝑔𝑦), implies

𝑑 (ℎ
1
𝑥, ℎ
2
𝑦)≤𝑟
󸀠max{𝑑 (𝑓𝑥, 𝑔𝑦) , 𝑑 (𝑓𝑥, ℎ

1
𝑥) , 𝑑 (𝑔𝑦, ℎ

2
𝑦) ,

𝑑 (𝑓𝑥, ℎ
2
𝑦) + 𝑑 (𝑔𝑦, ℎ

1
𝑥)

2
} ,

(63)

where 𝑟󸀠 = 𝑟1−𝜆 < 1.
Hence, by Corollary 10, there exist 𝑧

1
, 𝑧
2
∈ 𝑌 such that

ℎ
1
𝑧
1
= 𝑓𝑧

1
and ℎ

2
𝑧
2
= 𝑔𝑧

2
. This implies that 𝑧

1
is a

coincidence point of 𝑓 and 𝑆, and 𝑧
2
is a coincidence point

of 𝑔 and 𝑆.

Corollary 15. Let 𝑆 : 𝑌 → 𝐵𝑁(𝑋) and 𝑓 : 𝑌 → 𝑋 be such
that 𝑆(𝑌) ⊆ 𝑓(𝑌), and let 𝑆(𝑌) or 𝑓(𝑌) be a complete subspace
of𝑋. Assume there exists 𝑟 ∈ [0, 1) such that for every 𝑥, 𝑦 ∈ 𝑌,

𝜑 (𝑟) 𝜌 (𝑓𝑥, 𝑆𝑥) ≤ 𝑑 (𝑓𝑥, 𝑓𝑦) , (64)

implies

𝜌 (𝑆𝑥, 𝑆𝑦)

≤ 𝑟max{𝑑 (𝑓𝑥, 𝑓𝑦) , 𝜌 (𝑓𝑥, 𝑆𝑥) , 𝜌 (𝑓𝑦, 𝑆𝑦) ,

𝑑 (𝑓𝑥, 𝑆𝑦) + 𝑑 (𝑓𝑦, 𝑆𝑥)

2
} .

(65)

Then there exists 𝑧 ∈ 𝑌 such that 𝑓𝑧 ∈ 𝑆𝑧.

Proof. It comes fromTheorem 14 when 𝑔 = 𝑓.

Corollary 16. Let 𝑋 be a complete metric space and let 𝑆 :
𝑋 → 𝐵𝑁(𝑋). Assume there exists 𝑟 ∈ [0, 1) such that for
every 𝑥, 𝑦 ∈ 𝑋,

𝜑 (𝑟) 𝜌 (𝑥, 𝑆𝑥) ≤ 𝑑 (𝑥, 𝑦) , (66)

implies

𝜌 (𝑆𝑥, 𝑆𝑦)

≤ 𝑟max{𝑑 (𝑥, 𝑦) , 𝜌 (𝑥, 𝑆𝑥) , 𝜌 (𝑦, 𝑆𝑦) ,

𝑑 (𝑥, 𝑆𝑦) + 𝑑 (𝑦, 𝑆𝑥)

2
} .

(67)

Then there exists a unique point 𝑧 ∈ 𝑋 such that 𝑧 ∈ 𝑆𝑧.

Proof. It comes fromTheorem 14 that 𝑆has a fixed pointwhen
𝑓 = 𝑔 is the identity map on 𝑋. The uniqueness of the fixed
point follows easily.

3. Applications

Throughout this section, we assume that𝑈 and𝑉 are Banach
spaces,𝑊 ⊆ 𝑈, and 𝐷 ⊆ 𝑉. Let 𝑅 denote the field of reals,
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𝜏 : 𝑊 × 𝐷 → 𝑊, 𝑔, 𝑔󸀠 : 𝑊 × 𝐷 → 𝑅, and 𝐺, 𝐹
1
, 𝐹
2
: 𝑊 ×

𝐷 × 𝑅 → 𝑅. Considering𝑊 and𝐷 as the state and decision
spaces, respectively, the problem of dynamic programming
reduces to the problem of solving the functional equations:

𝑝 = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑝 (𝜏 (𝑥, 𝑦)))} , 𝑥 ∈ 𝑊, (68a)

𝑞
𝑖
= sup
𝑦∈𝐷

{𝑔
󸀠
(𝑥, 𝑦) + 𝐹

𝑖
(𝑥, 𝑦, 𝑞 (𝜏 (𝑥, 𝑦)))} ,

𝑥 ∈ 𝑊, 𝑖 = 1, 2.

(68b)

Indeed, in the multistage process, some functional equations
arise in a natural way (cf. Bellman [40] and Bellman and Lee
[41]; see also [6, 9, 15, 28, 33, 42–45]). In this section, we study
the existence of a common solution of the functional equa-
tions (68a) and (68b) arising in the dynamic programming.

Let 𝐵(𝑊) denote the set of all bounded real-valued
functions on 𝑊. For an arbitrary ℎ ∈ 𝐵(𝑊), define ‖ℎ‖ =
sup
𝑥∈𝑊

|ℎ(𝑥)|. Then (𝐵(𝑊), ‖ ⋅ ‖) is a Banach space. Suppose
that the following conditions hold:

(DP-1) 𝐺, 𝐹
1
, 𝐹
2
, 𝑔, and 𝑔󸀠 are bounded.

(DP-2) Let 𝜑(𝑟) be considered as in the previous sections.
Assume that there exists 𝑟 ∈ [0, 1) such that for every (𝑥, 𝑦) ∈
𝑊 × 𝐷, ℎ, 𝑘 ∈ 𝐵(𝑊) and 𝑡 ∈ 𝑊,

𝜑 (𝑟)min {󵄨󵄨󵄨󵄨𝐽1ℎ (𝑡) − 𝐴ℎ (𝑡)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐽2𝑘 (𝑡) − 𝐴𝑘 (𝑡)

󵄨󵄨󵄨󵄨}

≤
󵄨󵄨󵄨󵄨𝐽1ℎ (𝑡) − 𝐽2𝑘 (𝑡)

󵄨󵄨󵄨󵄨 ,

(69)

implies
󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦, ℎ (𝑡)) − 𝐺 (𝑥, 𝑦, 𝑘 (𝑡))

󵄨󵄨󵄨󵄨 ≤ 𝑟𝑀 (𝐴; 𝐽
1
ℎ, 𝐽
2
𝑘) , (70)

where

𝑀(𝐴; 𝐽
1
ℎ, 𝐽
2
𝑘)

= max{ 󵄨󵄨󵄨󵄨𝐽1ℎ (𝑡) − 𝐽2𝑘 (𝑡)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐽1ℎ (𝑡) − 𝐴ℎ (𝑡)

󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝐽2𝑘 (𝑡) − 𝐴𝑘 (𝑡)
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝐽1ℎ (𝑡) − 𝐴𝑘 (𝑡)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐽2𝑘 (𝑡) − 𝐴ℎ (𝑡)

󵄨󵄨󵄨󵄨

2
} ,

(71)

and 𝐴, 𝐽
1
, and 𝐽

2
are defined as follows:

𝐴ℎ (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))} ,

𝑥 ∈ 𝑊, ℎ ∈ 𝐵 (𝑊) ,

𝐽
𝑖
ℎ (𝑥) = 𝑞

𝑖
= sup
𝑦∈𝐷

{𝑔
󸀠
(𝑥, 𝑦) + 𝐹

𝑖
(𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))} ,

𝑥 ∈ 𝑊, ℎ ∈ 𝐵 (𝑊) , 𝑖 = 1, 2.

(72)

(DP-3) For any ℎ, 𝑘 ∈ 𝐵(𝑊), there exists 𝑢, V ∈ 𝐵(𝑊) such
that

𝐴ℎ (𝑥) = 𝐽
1
𝑢 (𝑥) , 𝐴𝑘 (𝑥) = 𝐽

2
V (𝑥) , 𝑥 ∈ 𝑊. (73)

(DP-4) There exists ℎ, 𝑘 ∈ 𝐵(𝑊) such that

𝐽
1
ℎ (𝑥) = 𝐴ℎ (𝑥) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐽

1
𝐴ℎ (𝑥) = 𝐴𝐽

1
ℎ (𝑥) ,

𝐽
2
𝑘 (𝑥) = 𝐴𝑘 (𝑥) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐽

2
𝐴𝑘 (𝑥) = 𝐴𝐽

2
𝑘 (𝑥) .

(74)

Theorem 17. Assume the conditions (DP-1)–(DP-4). Let
𝐽(𝐵(𝑊)) be a closed convex subspace of 𝐵(𝑊). Then the
functional equations (68a) and (68b), 𝑖 = 1, 2, have a unique
bounded common solution in 𝐵(𝑊).

Proof. For any ℎ, 𝑘 ∈ 𝐵(𝑊), let 𝑑(ℎ, 𝑘) = sup{|ℎ(𝑥) − 𝑘(𝑥)| :
𝑥 ∈ 𝑊}. Then (𝐵(𝑊), 𝑑) is a complete metric space. By virtue
of (DP-3) and (DP-4), 𝐴(𝐵(𝑊)) ⊆ 𝐽

1
(𝐵(𝑊)) ∩ 𝐽

2
(𝐵(𝑊)) and

the map 𝐴 is IT-commuting with 𝐽
1
and 𝐽
2
at coincidence

points.
Let 𝜆 be an arbitrary positive number and ℎ

1
, ℎ
2
∈ 𝐵(𝑊).

Pick 𝑥 ∈ 𝑊, and choose 𝑦
1
, 𝑦
2
∈ 𝐷 such that

𝐴ℎ
𝑗
< 𝑔 (𝑥, 𝑦

𝑗
) + 𝐺 (𝑥, 𝑦

𝑗
, ℎ
𝑗
(𝑥
𝑗
)) + 𝜆, 𝑗 = 1, 2, (75)

where 𝑥
𝑗
= 𝜏(𝑥, 𝑦

𝑗
). Further,

𝐴ℎ
1
≥ 𝑔 (𝑥, 𝑦

2
) + 𝐺 (𝑥, 𝑦

2
, ℎ
1
(𝑥
2
)) , (76)

𝐴ℎ
2
≥ 𝑔 (𝑥, 𝑦

1
) + 𝐺 (𝑥, 𝑦

1
, ℎ
2
(𝑥
1
)) . (77)

Therefore, the first inequality in (DP-2) becomes

𝜑 (𝑟)min {󵄨󵄨󵄨󵄨𝐽1ℎ1 (𝑥) − 𝐴ℎ1 (𝑥)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐽2ℎ2 (𝑥) − 𝐴ℎ2 (𝑥)

󵄨󵄨󵄨󵄨}

≤
󵄨󵄨󵄨󵄨𝐽1ℎ1 (𝑥) − 𝐽2ℎ2 (𝑥)

󵄨󵄨󵄨󵄨 ,

(78)

and this together with (75), (77), and (78) implies

𝐴ℎ
1
− 𝐴ℎ
2
< 𝐺 (𝑥, 𝑦

1
, ℎ
1
(𝑥
1
)) − 𝐺 (𝑥, 𝑦

1
, ℎ
2
(𝑥
1
)) + 𝜆

≤
󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦1, ℎ1 (𝑥1)) − 𝐺 (𝑥, 𝑦1, ℎ2 (𝑥1))

󵄨󵄨󵄨󵄨 + 𝜆

≤ 𝑟𝑀(𝐴; 𝐽
1
ℎ
1
, 𝐽
2
ℎ
2
) + 𝜆.

(79)

Similarly, (75), (76), and (78) imply

𝐴ℎ
2
(𝑥) − 𝐴ℎ

1
(𝑥) ≤ 𝑟𝑀 (𝐴; 𝐽

1
ℎ
1
, 𝐽
2
ℎ
2
) + 𝜆. (80)

So, from (79) and (80), we obtain
󵄨󵄨󵄨󵄨𝐴ℎ1 (𝑥) − 𝐴ℎ2 (𝑥)

󵄨󵄨󵄨󵄨 ≤ 𝑟𝑀 (𝐴; 𝐽
1
ℎ
1
, 𝐽
2
ℎ
2
) + 𝜆. (81)

As 𝜆 > 0 is arbitrary and (81) is true for any 𝑥 ∈ 𝑊, taking
supremum, we find from (78) and (81) that

𝜑 (𝑟)min {𝑑 (𝐽
1
ℎ
1
, 𝐴ℎ
1
) , 𝑑 (𝐽

2
ℎ
2
, 𝐴ℎ
2
)} ≤ 𝑑 (𝐽

1
ℎ
1
, 𝐽
2
ℎ
2
) ,

(82)

implies

𝑑 (𝐴ℎ
1
, 𝐴ℎ
2
) ≤ 𝑟𝑀 (𝐴; 𝐽

1
ℎ
1
, 𝐽
2
ℎ
2
) . (83)

Therefore, Corollary 10 applies, wherein 𝐴, 𝐽
1
and 𝐽
2
corre-

spond, respectively, to the maps 𝑃, 𝑓, and 𝑔. So (𝐴, 𝐽
1
) and

(𝐴, 𝐽
2
) have a unique common fixed point ℎ∗; that is, ℎ∗(𝑥)

is the unique bounded common solution of the functional
equations (68a) and (68b), 𝑖 = 1, 2.

Now we furnish an example in support of Theorem 17.
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Example 18. Let𝑋 = 𝑌 = 𝑅 be a Banach space endowed with
the standard norm ‖ ⋅ ‖ defined by ‖𝑥‖ = |𝑥|, for all 𝑥 ∈ 𝑋.

Suppose 𝑊 = [0, 1] ⊆ 𝑋 be the state space and 𝐷 =

[0,∞) ⊆ 𝑌 the decision space. Define 𝜏 : 𝑊 × 𝐷 → 𝑊

by

𝜏 (𝑥, 𝑦) =
𝑥

𝑦2 + 1
, 𝑥 ∈ 𝑊, 𝑦 ∈ 𝐷. (84)

For any ℎ, 𝑘 ∈ 𝐵(𝑊) and 𝑖 = 1, 2, define 𝑝, 𝑞
𝑖
: 𝑊 → 𝑅 by

𝑝 (𝑥) = 𝑞
𝑖
(𝑥) = 𝑥

2
+
1

2
. (85)

Define 𝐺, 𝐹
1
, 𝐹
2
, 𝑔, 𝑔
󸀠
: 𝑊 × 𝐷 × 𝑅 → 𝑅 by

𝐺 (𝑥, 𝑦, 𝑡) =
1

4
{

𝑥

(𝑥 + 1) (𝑦 + 1)
sin

𝑦

𝑦 + 1
+ 2} ,

𝐹
1
(𝑥, 𝑦, 𝑡) =

1

2𝑥 + 𝑦 + 1
+
1

2
sin 𝑡,

𝐹
2
(𝑥, 𝑦, 𝑡) =

1

2𝑥 + 3𝑦 + 1
+
1

2
sin 𝑡,

𝑔 (𝑥, 𝑦) =
𝑥
2
𝑦
2

𝑥 + 𝑦2
, 𝑔

󸀠
(𝑥, 𝑦) =

𝑥
2
𝑦
5

𝑥 + 𝑦5
.

(86)

Notice that 𝐺, 𝐹
1
, 𝐹
2
, 𝑔, and 𝑔󸀠 are bounded. Also

𝐽
1
ℎ (𝑥) = sup

𝑦∈𝐷

{𝑔
󸀠
(𝑥, 𝑦) + 𝐹

1
(𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))} ,

= 𝑥
2
+
1

2
= 𝑞
1
(𝑥) ;

𝑥 ∈ 𝑊, ℎ ∈ 𝐵 (𝑊) ,

𝐽
2
𝑘 (𝑥) = sup

𝑦∈𝐷

{𝑔
󸀠
(𝑥, 𝑦) + 𝐹

2
(𝑥, 𝑦, 𝑘 (𝜏 (𝑥, 𝑦)))} ,

= 𝑥
2
+
1

2
= 𝑞
2
(𝑥) ;

𝑥 ∈ 𝑊, ℎ ∈ 𝐵 (𝑊) ,

𝐴ℎ (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))} ,

= 𝑥
2
+
1

2
= 𝑝 (𝑥) ;

𝑥 ∈ 𝑊, ℎ ∈ 𝐵 (𝑊) ,

𝐴𝑘 (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑘 (𝜏 (𝑥, 𝑦)))} ,

= 𝑥
2
+
1

2
= 𝑝 (𝑥) ;

𝑥 ∈ 𝑊, ℎ ∈ 𝐵 (𝑊) .

(87)

Now

𝜑 (𝑟)min {󵄨󵄨󵄨󵄨𝐽1ℎ (𝑡) − 𝐴ℎ (𝑡)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐽2𝑘 (𝑡) − 𝐴𝑘 (𝑡)

󵄨󵄨󵄨󵄨}

= 𝜑 (𝑟)min {󵄨󵄨󵄨󵄨𝑞1 (𝑥) − 𝑝 (𝑥)
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑞2 (𝑥) − 𝑝 (𝑥)

󵄨󵄨󵄨󵄨}

= 0 =
󵄨󵄨󵄨󵄨𝐽1ℎ (𝑡) − 𝐽2𝑘 (𝑡)

󵄨󵄨󵄨󵄨 .

(88)

Thus,

𝜑 (𝑟)min {|𝐽ℎ (𝑡) − 𝐴ℎ (𝑡)| , |𝐽𝑘 (𝑡) − 𝐴𝑘 (𝑡)|}

= |𝐽ℎ (𝑡) − 𝐽𝑘 (𝑡)| ,

(89)

and this implies
󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦, ℎ (𝑡)) − 𝐺 (𝑥, 𝑦, 𝑘 (𝑡))

󵄨󵄨󵄨󵄨 = 0 ≤ 𝑟𝑀 (𝐴; 𝐽ℎ (𝑡) , 𝐽𝑘 (𝑡)) .

(90)

Finally, for any ℎ, 𝑘 ∈ 𝐵(𝑊) with 𝐴ℎ = 𝐽ℎ, we have

𝐴𝐽ℎ = 𝑝 (𝑥) = 𝑞 (𝑥) = 𝐽𝐽ℎ = 𝐽𝐴ℎ; (91)

that is, 𝐽𝐴ℎ = 𝐴𝐽ℎ, and with 𝐴𝑘 = 𝐽𝑘, we have 𝐴𝐽𝑘 = 𝑝(𝑥) =
𝑞(𝑥) = 𝐽𝐽𝑘 = 𝐽𝐴𝑘; that is, 𝐽𝐴𝑘 = 𝐴𝐽𝑘.

Thus, all the hypotheses ofTheorem 17 are satisfied. So the
system of (68a) and (68b) has a unique solution in 𝐵(𝑊).

Corollary 19. Suppose that the following conditions hold.
(i) 𝐺, 𝐹, 𝑔, and 𝑔󸀠 are bounded.
(ii) Assume there exists 𝑟 ∈ [0, 1) such that for every

(𝑥, 𝑦) ∈ 𝑊 × 𝐷, ℎ, 𝑘 ∈ 𝐵(𝑊) and 𝑡 ∈ 𝑊,

𝜑 (𝑟) |𝐽ℎ (𝑡) − 𝐴ℎ (𝑡)| ≤ |𝐽ℎ (𝑡) − 𝐽𝑘 (𝑡)| , (92)

implies
󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦, ℎ (𝑡)) − 𝐺 (𝑥, 𝑦, 𝑘 (𝑡))

󵄨󵄨󵄨󵄨

≤ 𝑟max{ |𝐽ℎ (𝑡) − 𝐽𝑘 (𝑡)| , |𝐽ℎ (𝑡) − 𝐴ℎ (𝑡)| ,

|𝐽𝑘 (𝑡) − 𝐴𝑘 (𝑡)| ,

|𝐽ℎ (𝑡) − 𝐴𝑘 (𝑡)| + |𝐽𝑘 (𝑡) − 𝐴ℎ (𝑡)|

2
} ,

(93)

where 𝐴 and 𝐽 are defined as follows:

𝐴ℎ (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))} ,

𝑥 ∈ 𝑊, ℎ ∈ 𝐵 (𝑊) ,

𝐽ℎ (𝑥) = 𝑞 = sup
𝑦∈𝐷

{𝑔
󸀠
(𝑥, 𝑦) + 𝐹 (𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))} ,

𝑥 ∈ 𝑊, ℎ ∈ 𝐵 (𝑊) .

(94)

(iii) For any ℎ, 𝑘 ∈ 𝐵(𝑊), there exists 𝑢, V ∈ 𝐵(𝑊) such
that

𝐴ℎ (𝑥) = 𝐽𝑢 (𝑥) , 𝐴𝑘 (𝑥) = 𝐽V (𝑥) , 𝑥 ∈ 𝑊. (95)
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(iv) There exists ℎ, 𝑘 ∈ 𝐵(𝑊) such that

𝐽ℎ (𝑥) = 𝐴ℎ (𝑥) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐽𝐴ℎ (𝑥) = 𝐴𝐽ℎ (𝑥) ,

𝐽𝑘 (𝑥) = 𝐴𝑘 (𝑥) 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝐽𝐴𝑘 (𝑥) = 𝐴𝐽𝑘 (𝑥) .

(96)

Then the functional equations (68a) and (68b) with 𝐹
1
= 𝐹
2
=

𝐹 possess a unique bounded common solution in𝑊.

Proof. It comes fromTheorem 17 when 𝐹
1
= 𝐹
2
= 𝐹.

Now we derive the the following result due to Dorić and
Lazović [25], which in turn extends certain results from [41,
42].

Corollary 20. Suppose that the following conditions hold.
(i) 𝐺 and 𝑔 are bounded.
(ii) There exists 𝑟 ∈ [0, 1) such that for every (𝑥, 𝑦) ∈ 𝑊 ×

𝐷, ℎ, 𝑘 ∈ 𝐵(𝑊) and 𝑡 ∈ 𝑊,

𝜑 (𝑟) |ℎ (𝑡) − 𝐾ℎ (𝑡)| ≤ |ℎ (𝑡) − 𝑘 (𝑡)| (97)

implies
󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦, ℎ (𝑡)) − 𝐺 (𝑥, 𝑦, 𝑘 (𝑡))

󵄨󵄨󵄨󵄨

≤ 𝑟max𝑀(𝐾,𝐾; ℎ (𝑡) , 𝑘 (𝑡)) ,

(98)

where𝐾 is defined as

𝐴ℎ (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, ℎ (𝜏 (𝑥, 𝑦)))} ,

𝑥 ∈ 𝑊, ℎ ∈ 𝐵 (𝑊) .

(99)

Then the functional equation (68a)with𝐺
1
= 𝐺
2
= 𝐺 possesses

a unique bounded solution in𝑊.

Proof. It comes from Corollary 19 when 𝑔󸀠 = 0, 𝜏(𝑥, 𝑦) =
𝑥 and 𝐹(𝑥; 𝑦; 𝑡) = 𝑡 as the assumption (DP-3) becomes
redundant in this context.
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