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Weproposed a hybrid compact-CIP scheme to solve theKorteweg-deVries equation.The algorithm is based on classical constrained
interpolation profile (CIP)method,which is coupledwith high-order compact scheme for the third derivatives inKorteweg-deVries
equation. Several numerical examples are presented to confirm the high resolution of the proposed scheme.

1. Introduction

The Korteweg-de Vries (KdV) equation, developed by
Korteweg and de Vries [1] in 1895 to model weakly nonlinear
waves, has been used in many different fields to model
various physical phenomena of interest. In recent years, a
number of numerical methods are proposed for solving KdV
equations. In [2], Zabusky and Kruskal proposed a finite
difference method for KdV equations. A local discontinu-
ous Galerkin method was developed for solving KdV type
equations containing third derivative terms in one and two
space dimensions in [3]. Numerical solutions for general
KdV equation with Crank Nicolson method and B-spline
FEM were compared with those obtained with Adomian
decomposition method (ADM) in [4, 5]. Based on the multi-
symplectic theory, lots of numerical schemes were proposed
for KdV equations [6–8]. Ascher and McLachlan developed
a simplified 8-point box scheme [9]. By adding an artificial
numerical condition to the periodic boundary, Wang et al.
derived some new schemes and proved that they were more
efficient than the Preissman scheme in [10]. A completely
explicit 6-point multisymplectic scheme is derived in [11].
Recentlymany other numerical methods have been proposed
for solving KdV type equations in [12–18].

In recent years, the less diffusive CIP scheme developed
by Takewaki et al. [19] for solving hyperbolic equation has

become very popular. However, the original CIPmethod [19–
22] utilizing both the point values and its spatial gradients
needs auxiliary boundary conditions for the spatial gradient
information. Usually, it has to differentiate the equation
with spatial variable to get the values of derivation on the
node. For the simple case, where the velocity is constant,
the procedure is not difficult, but it is not easy for complex
equations. In 1992, Lele [23] developed high-order compact
(HOC) difference schemes based on implicit interpolations
for first and second derivatives.The implicit schemes are very
accurate in smooth regions and have spectral-like resolution
properties by using the global grid.High-order compact finite
difference schemes coupled with high-order low-pass filter
are applied to simulate KdV equations in [24].

In this paper, a new numerical scheme based on classical
CIP and HOC schemes is proposed to solve KdV type
equations.The new scheme is based on CIP scheme; as a new
ingredient, the classical high-order compact scheme [23] is
employed to obtain the derivatives rather than differentiate
the equation with spatial variable to construct CIP scheme.
By comparing with classical compact scheme for solving KdV
equations, no filter is used to formulate the present scheme.

The paper is organized as follows. In Section 2, we give
a brief description of CIP and high-order compact schemes.
The numerical arithmetic of the present scheme is also
discussed in the last part of this section. The implementation
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of our present method for KdV type equations is shown in
Section 3, and the capability of the method for nonlinear
dispersive equations can be observed from the comparison of
numerical solutions with exact solutions. A short discussion
for the present method is given in Section 4.

2. Descriptions of Methods

In this paper, we consider the following generalized KdV
equation [25]:

𝑢
𝑡
+ 𝑎 (𝑢) 𝑢

𝑥
+ 𝜀𝑢
𝑥𝑥𝑥

= 0. (1)

The equation can be split into two parts:

𝑢
𝑡
+ 𝑎 (𝑢) 𝑢

𝑥
= 0, (2)

𝑢
𝑡
= −𝜀𝑢

𝑥𝑥𝑥
, (3)

where 𝜀 are real constants. We only consider the advective
phase (2) to review CIP method.

2.1. The CIP Method. The CIP method in [21] uses cubic-
polynomial interpolation to get the values of a function
on nodes. The time evolution of spatial derivation is also
required (4). We differentiate the advective phase of (2) with
the spatial variable, and then the equation for derivatives of 𝑢
can be obtained [26]. Consider

𝜕𝑔

𝜕𝑡

+ 𝑎 (𝑢)

𝜕𝑔

𝜕𝑥

= −𝑔

𝜕𝑎 (𝑢)

𝜕𝑥

, (4)

where 𝑔 = 𝜕𝑢/𝜕𝑥 stands for the spatial derivatives of 𝑢. The
computational domain [𝑎, 𝑏] can be divided into𝑁 cells, and
the cells are denoted by 𝐼

𝑖
= [𝑥
𝑖
, 𝑥
𝑖+1
]. We only consider a

uniform grid and the size of the cell by Δ𝑥 = (𝑏 − 𝑎)/𝑁. The
cubic polynomial and the first-order derivative at the 𝑛th step
can be written as

𝑈
𝑛

𝑖
(𝑥) = 𝑎

𝑖
𝑋
3
+ 𝑏
𝑖
𝑋
2
+ 𝑐
𝑖
𝑋 + 𝑑

𝑖
,

𝑈
󸀠𝑛

𝑖
(𝑥) = 3𝑎

𝑖
𝑋
2
+ 2𝑏
𝑖
𝑋 + 𝑐
𝑖
,

(5)

where 𝑋 = 𝑥 − 𝑥
𝑖
, and coefficients 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and 𝑑

𝑖
will be

obtained with the following constrains:

𝑈
𝑛

𝑖
(𝑥
𝑖
) = 𝑢
𝑛

𝑖
, 𝑈

𝑛

𝑖
(𝑥
𝑖𝑢𝑝
) = 𝑢
𝑛

𝑖𝑢𝑝
,

𝑈
󸀠𝑛

𝑖
(𝑥
𝑖
) = 𝑔
𝑛

𝑖
, 𝑈

󸀠𝑛

𝑖
(𝑥
𝑖𝑢𝑝
) = 𝑔
𝑛

𝑖𝑢𝑝
,

(6)

where 𝑖𝑢𝑝 = 𝑖 − sgn(𝑎(𝑢
𝑖
)), the sign sgn(𝑎(𝑢

𝑖
)) stands for the

sign of 𝑎(𝑢
𝑖
). Then, the coefficients of the cubic polynomial

are given as follows:

𝑎
𝑖
=

𝑔
𝑛

𝑖
+ 𝑔
𝑛

𝑖𝑢𝑝

Δ𝑥
2

𝑖

+

2 (𝑢
𝑛

𝑖
− 𝑢
𝑛

𝑖𝑢𝑝
)

Δ𝑥
3

𝑖

,

𝑏
𝑖
=

3 (𝑢
𝑛

𝑖𝑢𝑝
− 𝑢
𝑛

𝑖
)

Δ𝑥
2

𝑖

−

2𝑔
𝑛

𝑖
+ 𝑔
𝑛

𝑖𝑢𝑝

Δ𝑥
𝑖

,

𝑐
𝑖
= 𝑔
𝑛

𝑖
, 𝑑

𝑖
= 𝑢
𝑛

𝑖
,

(7)

where Δ𝑥
𝑖
= 𝑥
𝑖𝑢𝑝

− 𝑥
𝑖
. Thus, the values of 𝑢 and 𝑔 at the

(𝑛 + 1)th step can be obtained as follows:

𝑢
𝑛+1

𝑖
= 𝑈
𝑛

𝑖
(𝑥
𝑖
− 𝑎 (𝑢

𝑖
) Δ𝑡) ,

𝑔
𝑛+1

𝑖
= 𝑈
󸀠𝑛

𝑖
(𝑥
𝑖
− 𝑎 (𝑢

𝑖
) Δ𝑡) .

(8)

We define 𝜉
𝑖
= −𝑎(𝑢

𝑖
)Δ𝑡, and then the formulas are rewritten

as

𝑢
𝑛+1

𝑖
= 𝑎
𝑖
𝜉
3

𝑖
+ 𝑏
𝑖
𝜉
2

𝑖
+ 𝑔
𝑛

𝑖
𝜉
𝑖
+ 𝑢
𝑛

𝑖
,

𝑔
𝑛+1

𝑖
= 3𝑎
𝑖
𝜉
𝑛

𝑖
+ 2𝑏
𝑖
𝜉
𝑛

𝑖
+ 𝑔
𝑛

𝑖
.

(9)

It can be seen that only two points are used in CIP
schemes to get 𝑢𝑛+1

𝑖
. Then, the advantages of this method

can be shown while the computational boundary is complex
since less boundary points need to be handled. The CIP
method uses only two neighboring stencils but maintains
third-order accuracy. In this sense, high order accuracy is
obtained though less computational stencils are used. More
details for advantages of the CIP schemes can be found in
[26].

2.2. High-Order Compact Scheme. A series finite difference
scheme to evaluate the spatial derivatives is presented in [23].
The finite difference approximation to the derivative of the
function is expressed as a linear combination of the given
function values, and then the derivatives of the function are
obtained by solving a tridiagonal or pentadiagonal system.
Formulas for the first-order and the third-order derivatives
are reviewed as below. More results for the approximation to
derivatives can be found in [23, 27].

2.2.1. The Derivatives at Interior Nodes. In this paper, we
consider the KdV equation on a uniform mesh, the spatial
variable at the nodes is 𝑥

𝑖
= 𝑖 × ℎ for 0 ≤ 𝑖 ≤ 𝑁 and the

functions and the derivatives are denoted by 𝑢
𝑖
, 𝑢󸀠
𝑖
. The first-

order derivatives for interior nodes are derived by writing
approximations of the form [23]. Consider

𝑢
󸀠

𝑖
+ 𝛼 (𝑢

󸀠

𝑖−1
+ 𝑢
󸀠

𝑖+1
) + 𝛽 (𝑢

󸀠

𝑖−2
+ 𝑢
󸀠

𝑖+2
)

= 𝑐

𝑢
𝑖+3

− 𝑢
𝑖−3

6ℎ

+ 𝑏

𝑢
𝑖+2

− 𝑢
𝑖−2

4ℎ

+ 𝑎

𝑢
𝑖+1

− 𝑢
𝑖−1

2ℎ

.

(10)

If the schemes are restricted to 𝛽 ≥ 0 and 𝑐 = 0, a one-
parameter 𝛼-family of fourth-order tridiagonal scheme is
obtained. Consider

𝛽 = 0, 𝑐 = 0, 𝑎 =

2

3

(𝛼 + 2) ,

𝑏 =

1

3

(4𝛼 − 1) .

(11)

A simple sixth-order tridiagonal scheme for first-order
derivatives is given with 𝛼 = 1/3, 𝛽 = 0, 𝑐 = 0, 𝑎 = 14/9,
and 𝑏 = 1/9:

𝑢
󸀠

𝑖
+

1

3

(𝑢
󸀠

𝑖−1
+ 𝑢
󸀠

𝑖+1
) =

14

9

𝑢
𝑖+1

− 𝑢
𝑖−1

2ℎ

+

1

9

𝑢
𝑖+2

− 𝑢
𝑖−2

2ℎ

. (12)
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For the third derivatives at interior nodes, the following
formula is given in [23]:

𝛼 (𝑢
󸀠󸀠󸀠

𝑖−1
+ 𝑢
󸀠󸀠󸀠

𝑖+1
) + 𝑢
󸀠󸀠󸀠

𝑖
= 𝑏

𝑢
𝑖+3

− 3𝑢
𝑖+1

+ 3𝑢
𝑖−1

− 𝑢
𝑖−3

8ℎ
3

+ 𝑎

𝑢
𝑖+2

− 2𝑢
𝑖+1

+ 2𝑢
𝑖−1

− 𝑢
𝑖−2

2ℎ
3

.

(13)

The fourth-order tridiagonal schemes can be obtained with
the coefficients 𝑎 = 2 and 𝑏 = 2𝛼−1.The compact tridiagonal
scheme is givenwith𝛼 = 1/2, 𝑎 = 2, and 𝑏 = 0. And the sixth-
order tridiagonal scheme is given with 𝛼 = 7/16, 𝑎 = 2, and
𝑏 = −1/8.

2.2.2. Nonperiodic Boundaries. For those near boundary
nodes, approximation formulas for the first-order derivatives
of nonperiodic boundary problems are given by one-side
formulation as follows [23]:

𝑢
󸀠

1
+ 𝛼𝑢
󸀠

2
=

1

ℎ

(𝑎𝑢
1
+ 𝑏𝑢
2
+ 𝑐𝑢
3
+ 𝑑𝑢
4
) ,

𝑢
󸀠

𝑁
+ 𝛼𝑢
󸀠

𝑁−1
= −

1

ℎ

(𝑎𝑢
𝑁
+ 𝑏𝑢
𝑁−1

+ 𝑐𝑢
𝑁−2

+ 𝑑𝑢
𝑁−3

) .

(14)

The coefficients for schemes of the third and fourth order are
given by

Third order:

𝑎 = −

11 + 2𝛼

6

, 𝑏 =

6 − 𝛼

2

,

𝑐 =

2𝛼 − 3

2

, 𝑑 =

2 − 𝛼

6

,

Fourth order:

𝛼 = 3, 𝑎 = −

17

6

, 𝑏 =

3

2

,

𝑐 =

3

2

, 𝑑 = −

1

6

.

(15)

The sixth-order scheme also be given, for those near bound-
ary nodes, six order approximation formulas for the first-
order derivatives can be written as follows:

𝑢
󸀠

1
+ 𝛼𝑢
󸀠

2

=

1

ℎ

(𝑎
1
𝑢
1
+ 𝑎
2
𝑢
2
+ 𝑎
3
𝑢
3
+ 𝑎
4
𝑢
4
+ 𝑎
5
𝑢
5
+ 𝑎
6
𝑢
6
) ,

(16)

where

𝛼 = 5, 𝑎
1
= −

197

60

, 𝑎
2
= −

12

5

, 𝑎
3
= 5,

𝑎
4
= −

5

3

, 𝑎
5
=

5

12

, 𝑎
6
= −

1

20

.

(17)

For the second point, the formula is

𝛼𝑢
󸀠

1
+ 𝑢
󸀠

2
+ 𝛼𝑢
󸀠

3

=

1

ℎ

(𝑏
1
𝑢
1
+ 𝑏
2
𝑢
2
+ 𝑏
3
𝑢
3
+ 𝑏
4
𝑢
4
+ 𝑏
5
𝑢
5
+ 𝑏
6
𝑢
6
) ,

(18)

where

𝛼 =

2

11

, 𝑏
1
= −

20

33

, 𝑏
2
= −

35

132

, 𝑏
3
=

34

33

,

𝑏
4
= −

7

33

, 𝑏
5
=

2

33

, 𝑏
6
= −

1

132

.

(19)

The dissymmetry condition is used for the𝑁th and (𝑁−1)th
points.

2.3. The Present Compact-Type CIP Method. In this section,
a new compact-type CIP scheme is proposed for (1). For
simplicity, the following equation is considered to introduce
the method. Consider

𝑢
𝑡
+ 𝛼𝑢𝑢

𝑥
− 𝛿𝑢
𝑥𝑥𝑥

= 0, (20)

where 𝛼 and 𝛿 are constants.We split the solution of equation
into two phases:

𝜕𝑢

𝜕𝑡

+ 𝛼𝑢

𝜕𝑢

𝜕𝑥

= 0, (21)

𝜕𝑢

𝜕𝑡

= 𝛿𝑢
𝑥𝑥𝑥

. (22)

We consider a 1D mesh, consisting of (𝑁 + 1) points: 𝑥
0
,

𝑥
1
, 𝑥
2
, . . ., 𝑥

𝑁−1
, 𝑥
𝑁
; the values of 𝑢 on these nodes at the

𝑛th step are denoted by 𝑢𝑛
0
, 𝑢𝑛
1
. . ., 𝑢𝑛
𝑁−1

, 𝑢𝑛
𝑁
. At first, (21) is

considered and CIP method is applied to the equation. The
cubic polynomial at the 𝑛th time stage is

𝑈
𝑛

𝑖
(𝑋) = 𝑎

𝑛

𝑖
𝑋
3
+ 𝑏
𝑛

𝑖
𝑋
2
+ 𝑐
𝑛

𝑖
𝑋 + 𝑢

𝑛

𝑖
, (23)

where 𝑋 = 𝑥
𝑖
− 𝑥 and the coefficient 𝑎𝑛

𝑖
, 𝑏𝑛
𝑖
, and 𝑐𝑛

𝑖
are given

by (7), where 𝑎(𝑢) = 𝛼𝑢 and 𝑢󸀠𝑛
𝑖
denote the derivative of 𝑢𝑛

𝑖
at

the 𝑖th node. The predictor-corrector scheme is employed to
calculate the value 𝑢∗.

In the present method, the values 𝑢󸀠𝑛
𝑖
, 0 ≤ 𝑖 ≤ 𝑁 are

expressed as a linear combination of the given values 𝑢𝑛
𝑖
,

0 ≤ 𝑖 ≤ 𝑁. On the other hand, the HOCmethod is employed
to evaluate the derivatives 𝑢󸀠𝑛

𝑖
, 0 ≤ 𝑖 ≤ 𝑁. A simple sixth-

order tridiagonal scheme for interior points and boundary
points is used in this paper.

Temporal discretization for (22) can be solved by using
third-order Runge-Kutta method:

𝑢
(1)
= 𝑢
𝑛
+ 𝛿𝑡𝑢
∗

𝑥𝑥𝑥
,

𝑢
(2)
=

3

4

𝑢
𝑛
+

1

4

𝑢
(1)
+

1

4

𝛿𝑡𝑢
(1)

𝑥𝑥𝑥
,

𝑢
𝑛+1

=

1

3

𝑢
𝑛
+

2

3

𝑢
(2)
+

2

3

𝛿𝑡𝑢
(2)

𝑥𝑥𝑥
.

(24)

TheHOC scheme (13) is used to solve the third derivatives
𝑢
𝑥𝑥𝑥

in (24). The sixth-order tridiagonal scheme with the
periodic boundary condition is used in this paper.

The essential ingredients of the computational algorithm
for (20) are presented below. Suppose we have got the values
𝑢
𝑛

𝑖
. The values 𝑢𝑛+1

𝑖
are given as follows.
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Table 1: Numerical errors and orders of CIP-HOC method for the KdV equation (29).

𝑁 𝐿
∞
error 𝐿

∞
order 𝐿

2
error 𝐿

2
order 𝐼

1
𝐼
2

𝐼
3

Cost(s)
20 5.72𝐸 − 03 9.94𝐸 − 03 1.9968246 0.6627258 0.5745942 6.25𝐸 − 05

40 1.32𝐸 − 03 2.12 1.89𝐸 − 03 2.39 1.9996543 0.6663460 0.5774709 2.50𝐸 − 04

80 2.11𝐸 − 04 2.65 2.85𝐸 − 04 2.73 1.9999840 0.6666518 0.5777566 2.50𝐸 − 03

160 2.77𝐸 − 05 2.93 3.61𝐸 − 05 2.98 1.9999984 0.6666662 0.5777761 3.13𝐸 − 02

320 3.49𝐸 − 06 2.99 4.54𝐸 − 06 2.99 1.9999988 0.6666667 0.5777776 6.09𝐸 − 01

Table 2: Numerical errors and invariants with𝑁 = 100 at different times.

Time 𝐿
∞
error 𝐿

2
error 𝐼

1
𝐼
2

𝐼
3

0.10 1.09𝐸 − 04 1.47𝐸 − 04 1.9999939 0.6666616 0.5777688
0.20 1.65𝐸 − 04 2.47𝐸 − 04 1.9999888 0.6666565 0.5777615
0.30 1.98𝐸 − 04 3.14𝐸 − 04 1.9999830 0.6666515 0.5777556
0.40 2.14𝐸 − 04 3.61𝐸 − 04 1.9999775 0.6666464 0.5777505
0.50 2.28𝐸 − 04 3.94𝐸 − 04 1.9999760 0.6666413 0.5777461
0.60 2.41𝐸 − 04 4.18𝐸 − 04 1.9999660 0.6666363 0.5777421
0.70 2.46𝐸 − 04 4.37𝐸 − 04 1.9999590 0.6666312 0.5777383
0.80 2.42𝐸 − 04 4.52𝐸 − 04 1.9999651 0.6666262 0.5777347
0.90 2.51𝐸 − 04 4.63𝐸 − 04 1.9999605 0.6666211 0.5777312
1.00 2.59𝐸 − 04 4.73𝐸 − 04 1.9999441 0.6666161 0.5777277

x

u

0 10 20 30 40
0

2

4

6

8

10

12 t = 1 t = 3 t = 5

Figure 1: Numerical and analytical solutions for equation 𝑢
𝑡
+𝑢𝑢
𝑥
+

𝑢
𝑥𝑥𝑥

= 0 of Example 2 at various time stages.

(1) CIP method is used to obtain 𝑢∗.

(a) The values of the first derivative on the all nodes
are obtained by using the HOC scheme (12).

(b) Predictor-corrector CIP scheme is as follows:

(i) predictor step:

𝑢
∗∗

𝑖
= 𝑈
𝑛

𝑖
(𝑥
𝑖
− 𝛼𝑢
𝑛

𝑖
Δ𝑡)

= 𝑎
𝑛

𝑖
𝜉
3

𝑖
+ 𝑏
𝑛

𝑖
𝜉
2

𝑖
+ 𝑐
𝑛

𝑖
𝜉
𝑖
+ 𝑢
𝑛

𝑖
,

(25)

where 𝜉
𝑖
= −𝛼𝑢

𝑛

𝑖
Δ𝑡. We also get 𝑢∗∗∗ at

the (𝑛 + 1/2)th time stage by using linear
interpolation or QUICK scheme based on
the value 𝑢𝑛

𝑖
;

(ii) corrector step (CIP method):

𝑢̂
∗

𝑖
= 𝑈
𝑛

𝑖
(𝑥
𝑖
− 𝛼𝑢
⬦

𝑖
Δ𝑡)

= 𝑎
𝑛

𝑖
𝜉
3

𝑖
+ 𝑏
𝑛

𝑖
𝜉
2

𝑖
+ 𝑐
𝑛

𝑖
𝜉
𝑖
+ 𝑢
𝑛

𝑖
,

(26)

where 𝑢⬦ = (1/2)(𝑢∗∗ + 𝑢∗∗∗);
(iii) the predictor and corrector step are

employed again to get 𝑢∗.

(2) HOC scheme and Runge-Kuttamethod for (22) are as
follows.

(a) The HOC scheme (13) is used to obtain third-
order derivatives.

(b) Temporal discretization for (22) can be solved
by using third-order Runge-Kutta method.

The predictor-corrector scheme is an important step in
the present method. Periodic boundary condition is applied
to (22).
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Figure 2: Numerical and analytical solutions (line) for equation 𝑢
𝑡
+ 6𝑢
2
𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0 of Example 3 at various time stages and the absolute
error for 𝑡 = 1.

3. Numerical Results

In this section, some numerical tests for KdV and general
KdV equations are carried out. The discrete 𝐿

2
and 𝐿

∞
error

norms are defined as follows:

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩𝐿
∞

= max
0≤𝑗≤𝑁

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗
− 𝑢̃
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩𝐿
2

= (

𝑁

∑

𝑗 = 0

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑗
− 𝑢̃
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

2

Δ𝑥)

1/2

,

(27)

where 𝑢 and 𝑢̃ are exact and numerical solution, respectively.
For KdV equations, there are an infinite number of conser-
vation laws [28]. We will focus our analysis on the following
three conservation laws:

𝐼
1
= ∫

𝑏

𝑎

𝑢 (𝑥, 𝑡) 𝑑𝑥, 𝐼
2
= ∫

𝑏

𝑎

𝑢(𝑥, 𝑡)
2
𝑑𝑥,

𝐼
3
= ∫

𝑏

𝑎

(𝑢(𝑥, 𝑡)
2
−

1

3

𝑢(𝑥, 𝑡)
3
)𝑑𝑥,

(28)

where 𝐼
1
, 𝐼
2
, and 𝐼

3
represent mass, momentum, and energy.

The nonperiodic boundary formulation is applied to (21)
(HOC approximation formulas for the third-order deriva-
tives are used) and periodic boundary conditions for third-
order derivatives are used in the following examples.

Example 1. In this example, we consider the following classi-
cal KdV equation:

𝑢
𝑡
+ 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0, −15 ≤ 𝑥 ≤ 15. (29)

Table 3: Error norms at different time stages for equation 𝑢
𝑡
+

6𝑢
2
𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0, with 𝑢(𝑥, 0) = √𝑐sech(√𝑐𝑥), −10 ≤ 𝑥 ≤ 12, 𝑐 =

0.5. 𝑑𝑥 = 0.01, and 𝑑𝑡 = 0.05 × 𝑑𝑥3.

𝑇 𝐿
∞

𝐿
2

0.1 5.354322207020701𝐸 − 004 4.972071746712235𝐸 − 004

0.5 6.080056468253936𝐸 − 004 7.277368149932270𝐸 − 004

1.0 2.970167786819244𝐸 − 003 3.320246422392297𝐸 − 003

The analytical solution for (29) is

𝑢 (𝑥, 𝑡) = 0.5sech2 (0.5 (𝑥 − 𝑡)) . (30)

The time-steps are set by the relation Δ𝑡 = 𝐶(Δ𝑥)
3. The

𝐿
2
and 𝐿

∞
errors, orders, invariants, and time costs at time

𝑇 = 0.1 are illustrated in Table 2. It can be observed that
the proposed scheme is third-order accurate in the spatial
dimension. It is well known that high-order TVD Runge-
Kutta methods suffer from small time-step restrictions. In
this case, we observe that numerical errors are still not
dominated by the spatial discretization with the relation Δ𝑡 =
𝐶(Δ𝑥)

3.
Table 1 indicates 𝐿

2
and 𝐿

∞
errors and invariants with

𝑁 = 100 at time 𝑇 = 0.1, 0.2, . . . , 0.9. The present method
can also be shown to have the conservative property.

Example 2. In this example, we consider the following classi-
cal KdV equation:

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0, 0 ≤ 𝑥 ≤ 40, (31)
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Table 4: Error norms at different time stages for equation 𝑢
𝑡
+ 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0, with 𝑢(𝑥, 0) = (𝑐/2)sech2((√𝑐/2)𝑥 − 7), 𝑐 = 0.5. 𝑑𝑥 = 0.2,
and 𝑑𝑡 = 0.1 × 𝑑𝑥3.

𝑇

Present Dehghan and Shokri [14]
𝐿
∞

𝐿
2

𝐿
∞

𝐿
2

1.0 1.9363𝐸 − 005 2.7752𝐸 − 005 1.8048𝐸 − 005 6.2366𝐸 − 005

2.0 2.8040𝐸 − 005 4.4840𝐸 − 005 3.0373𝐸 − 005 1.1264𝐸 − 005

3.0 3.5184𝐸 − 005 6.2377𝐸 − 005 4.0088𝐸 − 005 1.5537𝐸 − 005

4.0 4.2136𝐸 − 005 8.2619𝐸 − 005 4.8347𝐸 − 005 1.9400𝐸 − 005

5.0 5.3128𝐸 − 005 1.0617𝐸 − 004 5.6090𝐸 − 005 2.2943𝐸 − 004
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Figure 3: Numerical and analytical solutions for equation 𝑢
𝑡
+ 6𝑢𝑢

𝑥
+ 𝑢
𝑥𝑥𝑥

= 0 with initial condition 𝑢(𝑥, 0) = (𝑐/2)sech2((√𝑐/2)𝑥 − 7), 0 ≤
𝑥 ≤ 40, 𝑐 = 0.5 of Example 3 at various time stages and the absolute error for 𝑡 = 3.

with initial condition

𝑢 (𝑥, 0) =

12

cosh (𝑥 − 15)2
, 0 ≤ 𝑥 ≤ 40. (32)

The numerical solutions are obtained with 𝑑𝑥 = 0.2 and
𝑑𝑡 = 0.0001; numerical and exact solutions at times 𝑡 = 1, 3, 5
are presented in Figure 1; the figure shows that the numerical
dissipation of soliton is very small.

Example 3. The general KdV equation is presented by the
following equation [29]:

𝑢
𝑡
+ 6𝑢
𝑝
𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0. (33)

Consider the initial value problem associated with (33) using
the initial condition for 𝑝 = 2:

𝑢 (𝑥, 0) = √𝑐sech (√𝑐𝑥) , −10 ≤ 𝑥 ≤ 12, (34)

where 𝑐 = 4. The numerical solutions for 𝑝 = 2 are obtained
with 𝑑𝑥 = 0.1 and 𝑑𝑡 = 0.05 × 𝑑𝑥

3 for 𝑝 = 2. The progress
of the numerical and analytical solutions at times 𝑡 = 1, 2 and
the absolute error at 𝑡 = 1 are shown in Figure 2.The 𝐿

∞
and

𝐿
2
error estimates for the case 𝑝 = 2 are given in Table 3.
For the case 𝑝 = 1 with the initial condition [14]

𝑢 (𝑥, 0) =

𝑐

2

sech2 (√𝑐
2

𝑥 − 7) , 0 ≤ 𝑥 ≤ 40, (35)

and the analytical solution is

𝑢 (𝑥, 𝑡) =

𝑐

2

sech2 (√𝑐
2

(𝑥 − 𝑐𝑡) − 7) . (36)

The 𝐿
∞

and 𝐿
2
error estimates with 𝑑𝑥 = 0.2 are given in

Table 4 for 𝑡 = 1, 2, 3, 4, 5, from which it is not difficult to see
that the present results are comparable with those present in
[14]. The numerical and the analytical solutions at times 𝑡 =
1, 3, 5 and the absolute error for 𝑡 = 3 are shown in Figure 3.
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Figure 4: Numerical and analytical solutions for equation 𝑢
𝑡
+𝑢
2
𝑢
𝑥
+𝜀𝑢
𝑥𝑥𝑥

= 0 and 𝑢
𝑡
+𝑢
2
𝑢
𝑥
+𝜀𝑢
𝑥𝑥𝑥

= 0 of Example 4 at various time stages.

Table 5: Error norms at different time stages for equation 𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝜀𝑢
𝑥𝑥𝑥

= 0, with initial condition (38) for 𝑛 = 1, 𝑑𝑥 = 0.02, and
𝑑𝑡 = 0.25 × 𝑑𝑥

2.

𝑇

Present Dehghan and Shokri [14]
𝐿
∞

𝐿
2

𝐿
∞

𝐿
2

0.5 1.7139𝐸 − 004 5.4536𝐸 − 005 7.2329𝐸 − 004 2.5286𝐸 − 003

1.0 1.6824𝐸 − 004 5.3897𝐸 − 005 1.7957𝐸 − 004 6.2172𝐸 − 003

1.5 1.9094𝐸 − 004 6.9749𝐸 − 005 3.8906𝐸 − 003 1.3010𝐸 − 002

2.0 3.8605𝐸 − 004 1.3214𝐸 − 004 6.6701𝐸 − 003 2.2965𝐸 − 002

Table 6: Error norms at different time stages for equation 𝑢
𝑡
+𝑢
2
𝑢
𝑥
+

𝜀𝑢
𝑥𝑥𝑥

= 0, with initial condition (38) for 𝑛 = 2, 𝑑𝑥 = 0.01, and
𝑑𝑡 = 0.5 × 𝑑𝑥

2.

𝑇 𝐿
∞

𝐿
2

0.5 3.252960639366087𝐸 − 004 9.332884478549439𝐸 − 005

1.0 3.962848426597443𝐸 − 004 1.333167429458641𝐸 − 004

1.5 1.160144038488964𝐸 − 003 3.754080717733928𝐸 − 004

2.0 2.442770975886521𝐸 − 003 7.776565570880883𝐸 − 004

Example 4. In this example, another type of general KdV
equation is considered:

𝑢
𝑡
+ 𝑢
𝑛
𝑢
𝑥
+ 𝜀𝑢
𝑥𝑥𝑥

= 0, (37)

with the initial value problem [30]

𝑢 (𝑥, 0) = (

𝑐 (𝑛 + 1) (𝑛 + 2)

2

)

1/𝑛

sech2/𝑛 (𝑛
2

√

𝑐

𝜀

(𝑥 − 𝑥
0
)) ,

(38)

where 𝑐 = 0.3, 𝜀 = 0.000484. The single soliton solutions for
𝑛 = 1 are computed in 𝑥 ∈ [0, 2] with space step 𝑑𝑥 = 0.02

and time step 𝑑𝑡 = 0.25 × 𝑑𝑥2 and are shown in Figure 4.The
numerical and analytical solutions for 𝑛 = 2 with 𝑑𝑥 = 0.01

and 𝑑𝑡 = 0.5 × 𝑑𝑥
2 are shown in Figure 4. The 𝐿

∞
and 𝐿

2

error estimates for 𝑛 = 1 at times 𝑡 = 0.5, 1, 1.5, 2 are given
in Table 5. We can observe that the present results are slightly
more accurate than those present in [14]. Table 6 shows the
𝐿
∞

and 𝐿
2
error estimates for the case of 𝑛 = 2.

Example 5. We also consider the equation [3]

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝜀𝑢
𝑥𝑥𝑥

= 0, 0 ≤ 𝑥 ≤ 2. (39)

The double soliton collision case has the initial condition

𝑢 (𝑥, 0) = 3𝑐
1
sech2 (𝑘

1
(𝑥 − 𝑥

1
))

+ 3𝑐
2
sech2 (𝑘

2
(𝑥 − 𝑥

2
)) ,

(40)

where 𝑐
1
= 0.3, 𝑐

2
= 0.1, 𝑥

1
= 0.4, 𝑥

2
= 0.8, 𝑘

𝑖
= 0.5√𝑐

𝑖
/𝜀,

and 𝜀 = 4.84 × 10
−4. The solution is computed in 𝑥 ∈ [0, 2]

and is shown in Figure 5. We can observe that nonoscillate
numerical solutions can be obtained by using the present
method.
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Figure 5: Double soliton solutions for equation 𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝜀𝑢
𝑥𝑥𝑥

= 0 of Example 5 at various time stages.
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Figure 6: Triple soliton solutions for equation 𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝜀𝑢
𝑥𝑥𝑥

= 0 of Example 3 at various time stages.

The triple soliton collision case has the initial condition

𝑢 (𝑥, 0) =

2

3

sech2 ( 𝑥 − 1

√108𝜀

) , (41)

with 𝜀 = 10
−4 [3]. The numerical solution is computed

in 𝑥 ∈ [0, 3] and is shown in Figure 6. From the figure
we can conclude that the numerical algorithm captures the
numerical solutions without oscillations.

4. Conclusions

In this paper, we have presented a new scheme based on
the traditional CIP and HOC scheme. A conclusion can be
drawn from the comparison between the numerical and the
exact solutions that the present compact-type CIP method
provides highly accurate numerical solutions of KdV type
equations. The numerical results also show that the present
method works well for some nonlinear problems.
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