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We study the set of all strongly irregular points of a Brouwer homeomorphism 𝑓 which is embeddable in a flow. We prove that this
set is equal to the first prolongational limit set of any flow containing 𝑓. We also give a sufficient condition for a class of flows of
Brouwer homeomorphisms to be topologically conjugate.

1. Introduction

In this part we recall the requisite definitions and results
concerning Brouwer homeomorphisms and flows of such
homeomorphisms.

By a Brouwer homeomorphism we mean an orientation
preserving homeomorphism of the plane onto itself which
has no fixed points. By a flowwemean a group of homeomor-
phisms of the plane onto itself {𝑓𝑡 : 𝑡 ∈ R} under the operation
of composition which satisfies the following conditions:

(1) the function 𝐹 : R2 × R → R2, 𝐹(𝑥, 𝑡) = 𝑓𝑡(𝑥) is
continuous,

(2) 𝑓0(𝑥) = 𝑥 for 𝑥 ∈ R2,

(3) 𝑓𝑡(𝑓𝑠(𝑥)) = 𝑓𝑡+𝑠(𝑥) for 𝑥 ∈ R2, 𝑡, 𝑠 ∈ R.

We say that a Brouwer homeomorphism𝑓 is embeddable in a
flow if there exists a flow {𝑓𝑡 : 𝑡 ∈ R} such that 𝑓 = 𝑓1. Then
for each 𝑡 ∈ R \ {0}, 𝑓𝑡 is a Brouwer homeomorphism.

For any sequence of subsets (𝐴
𝑛
)
𝑛∈Z
+

of the plane we
define limes superior lim sup

𝑛→∞
𝐴

𝑛
as the set of all points

𝑝 ∈ R2 such that any neighbourhood of𝑝has commonpoints
with infinitely many elements of the sequence (𝐴

𝑛
)
𝑛∈Z
+

. For
any subset 𝐵 of the plane we define the positive limit set
𝜔
𝑓
(𝐵) as the limes superior of the sequence of its iterates

(𝑓𝑛(𝐵))
𝑛∈Z
+

and negative limit set 𝛼
𝑓
(𝐵) as the limes superior

of the sequence (𝑓−𝑛(𝐵))
𝑛∈Z
+

. Under the assumption that 𝐵 is
compact, Nakayama [1] proved that

𝜔
𝑓

(𝐵)

= {𝑞 ∈ R
2 : there exist sequences (𝑝

𝑗
)
𝑗∈Z
+

,

(𝑛
𝑗
)
𝑗∈Z
+

such that 𝑝
𝑗

∈ 𝐵, 𝑛
𝑗

∈ Z
+
, 𝑛

𝑗
→ +∞,

𝑓𝑛
𝑗 (𝑝

𝑗
) → 𝑞 as 𝑗 → +∞} ,

𝛼
𝑓

(𝐵)

= {𝑞 ∈ R
2 : there exist sequences (𝑝

𝑗
)
𝑗∈Z
+

,

(𝑛
𝑗
)
𝑗∈Z
+

such that 𝑝
𝑗

∈ 𝐵, 𝑛
𝑗

∈ Z
+
, 𝑛

𝑗
→ +∞,

𝑓−𝑛
𝑗(𝑝

𝑗
) → 𝑞 as 𝑗 → +∞} .

(1)

A point𝑝 is called positively irregular if𝜔
𝑓
(𝐵) ̸= 0 for each

Jordan domain 𝐵 containing 𝑝 in its interior and negatively
irregular if 𝛼

𝑓
(𝐵) ̸= 0 for each Jordan domain 𝐵 containing 𝑝

in its interior, where by a Jordan domain we mean the union
of a Jordan curve 𝐽 and the Jordan region determined by 𝐽

(i.e., the bounded component ofR2 \ 𝐽). A point which is not
positively irregular is said to be positively regular. Similarly,
a point which is not negatively irregular is called negatively
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regular. A point which is positively or negatively irregular is
called irregular, otherwise it is regular.

We say that a set𝑈 ⊂ R2 is invariant under𝑓 if𝑓(𝑈) = 𝑈.
An invariant simply connected region 𝑈 ⊂ R2 is said to be
parallelizable if there exists a homeomorphism 𝜑

𝑈
mapping

𝑈 onto R2 such that

𝑓 (𝑥) = 𝜑−1

𝑈
(𝜑

𝑈
(𝑥) + (1, 0)) for 𝑥 ∈ 𝑈. (2)

The homeomorphism 𝜑
𝑈
occurring in this equality is called

a parallelizing homeomorphism of 𝑓|
𝑈
. On account of the

Brouwer Translation Theorem, for each 𝑝 ∈ R2 there exists
a parallelizable region 𝑈 containing 𝑝 (see [2]).

Homma and Terasaka [3] proved a theorem describing
the structure of an arbitrary Brouwer homeomorphism. The
theorem can be formulated in the following way.

Theorem 1 (see [3], First Structure Theorem). Let 𝑓 be a
Brouwer homeomorphism. Then the plane is divided into at
most three kinds of pairwise disjoint sets: {𝑂

𝑖
: 𝑖 ∈ 𝐼}, where 𝐼 =

Z
+
or 𝐼 = {1, . . . , 𝑛} for a positive integer 𝑛, {𝑂

𝑖
: 𝑖 ∈ Z

+
}, and

𝐹. The sets {𝑂
𝑖
: 𝑖 ∈ 𝐼} and {𝑂

𝑖
: 𝑖 ∈ Z

+
} are the components of

the set of all regular points such that each 𝑂
𝑖
is a parallelizable

unbounded simply connected region and each 𝑂

𝑖
is a simply

connected region satisfying the condition 𝑂

𝑖
∩ 𝑓𝑛(𝑂

𝑖
) = 0 for

𝑛 ∈ Z \ {0}. The set 𝐹 is invariant and closed and consists of all
irregular points.

For an irregular point 𝑝 of a Brouwer homeomorphism𝑓
the set𝑃+(𝑝) is defined as the intersection of all𝜔

𝑓
(𝐵) and the

set 𝑃−(𝑝) as the intersection of all 𝛼
𝑓
(𝐵), where 𝐵 is a Jordan

domain containing 𝑝 in its interior. An irregular point 𝑝 is
strongly positively irregular if𝑃+(𝑝) ̸= 0, otherwise it isweakly
positively irregular. Similarly, 𝑝 is strongly negatively irregular
if𝑃−(𝑝) ̸= 0, otherwise it isweakly negatively irregular.We say
that 𝑝 is strongly irregular if it is strongly positively irregular
or strongly negatively irregular. Otherwise, an irregular point
𝑝 is said to be weakly irregular.

Homma and Terasaka [3] proved that for all 𝑝, 𝑞 ∈ R2

𝑞 ∈ 𝑃+ (𝑝) ⇐⇒ 𝑝 ∈ 𝑃− (𝑞) . (3)

Nakayama [4] showed that for any Brouwer homeomorphism
the set of strongly irregular points has no interior points.The
set of weakly irregular points consists of all cluster points
of the set of strongly irregular points which are not strongly
irregular points (see [3]).

A counterpart of Theorem 1 for a Brouwer homeomor-
phism embeddable in a flow has been given in [5]. Namely,
if a Brouwer homeomorphism is embeddable in a flow, then
the set of regular points is a union of pairwise disjoint
parallelizable unbounded simply connected regions.

2. Strongly Irregular Points

In this section we study the structure of the set of all irregular
points for Brouwer homeomorphisms embeddable in a flow.

Let 𝑓 be a Brouwer homeomorphism. Assume that there
exists a flow {𝑓𝑡 : 𝑡 ∈ R} such that 𝑓1 = 𝑓. Let 𝑈 ⊂ R2 be a

simply connected region such that 𝑓𝑡(𝑈) = 𝑈 for 𝑡 ∈ R. We
say that 𝑈 is a parallelizable region of the flow if there exists a
homeomorphism 𝜑

𝑈
mapping 𝑈 onto R2 such that

𝑓𝑡
(𝑥) = 𝜑−1

𝑈
(𝜑

𝑈
(𝑥) + (𝑡, 0)) for 𝑥 ∈ 𝑈, 𝑡 ∈ R. (4)

Such a homeomorphism 𝜑
𝑈

will be called a parallelizing
homeomorphism of the flow {𝑓𝑡|

𝑈
: 𝑡 ∈ R}. It is known

that for any simply connected region 𝑈 which is invariant
under the flow {𝑓𝑡 : 𝑡 ∈ R} the existence of a parallelizing
homeomorphism of 𝑓|

𝑈
is equivalent to the existence of a

parallelizing homeomorphism of {𝑓𝑡|
𝑈

: 𝑡 ∈ R} (see [6]).
By the trajectory of a point 𝑝 ∈ R2 we mean the set

𝐶
𝑝

:= {𝑓𝑡(𝑝) : 𝑡 ∈ R}. It is known that a region 𝑈 is
parallelizable if and only if there exists a topological line𝐾 in𝑈
(i.e., a homeomorphic image of a straight line that is a closed
set in 𝑈) such that 𝐾 has exactly one common point with
every trajectory of {𝑓𝑡 : 𝑡 ∈ R} contained in 𝑈 (see [7], page
49). Such a set𝐾wewill call a section in𝑈 (or a local section of
{𝑓𝑡 : 𝑡 ∈ R}). On account of the Whitney-Bebutov Theorem
(see [7], page 52), for each 𝑝 ∈ R2 there exists a parallelizable
region 𝑈

𝑝
containing 𝑝. Without loss of generality we can

assume that the parallelizing homeomorphism 𝜑
𝑈
𝑝

satisfies
the condition 𝜑

𝑈
𝑝

(𝑝) = (0, 0). Then 𝐾
𝜑
𝑈𝑝

:= 𝜑−1

𝑈
𝑝

({0} × R) is a
local section containing 𝑝.

For a flow {𝑓𝑡 : 𝑡 ∈ R} and a point 𝑝 ∈ R2 we define
the first positive prolongational limit set and the first negative
prolongational limit set of 𝑝 by

𝐽+ (𝑝) := {𝑞 ∈ R
2 : there exist sequences (𝑝

𝑛
)
𝑛∈Z
+

,

(𝑡
𝑛
)
𝑛∈Z
+

such that 𝑝
𝑛

→ 𝑝, 𝑡
𝑛

→ +∞,

𝑓𝑡
𝑛(𝑝

𝑛
) → 𝑞 as 𝑛 → +∞} ,

𝐽− (𝑝) := {𝑞 ∈ R
2 : there exist sequences (𝑝

𝑛
)
𝑛∈Z
+

,

(𝑡
𝑛
)
𝑛∈Z
+

such that 𝑝
𝑛

→ 𝑝, 𝑡
𝑛

→ −∞,

𝑓𝑡
𝑛(𝑝

𝑛
) → 𝑞 as 𝑛 → +∞} .

(5)

The set 𝐽(𝑝) := 𝐽+(𝑝) ∪ 𝐽−(𝑝) is called the first
prolongational limit set of 𝑝. For a subset 𝐻 ⊂ R2 we define

𝐽 (𝐻) := ⋃
𝑝∈𝐻

𝐽 (𝑝) . (6)

The set 𝐽(R2) will be called the first prolongational limit set of
the flow {𝑓𝑡 : 𝑡 ∈ R}. For all 𝑝, 𝑞 ∈ R2 we have

𝑞 ∈ 𝐽+ (𝑝) ⇐⇒ 𝑝 ∈ 𝐽− (𝑞) . (7)

In [5] it has been proven that for each point 𝑝 ∈ R2 the
set 𝑃+(𝑝) is contained in 𝐽+(𝑝). Now we prove the converse
inclusion.

Theorem 2. Let 𝑓 be a Brouwer homeomorphism which is
embeddable in a flow {𝑓𝑡 : 𝑡 ∈ R} and let 𝑝 ∈ R2. Then
𝐽+(𝑝) ⊂ 𝑃+(𝑝).
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Proof. Let 𝑞 ∈ 𝐽+(𝑝). Denote by 𝑆
𝑝𝑞

the strip between
trajectories 𝐶

𝑝
and 𝐶

𝑞
of points 𝑝 and 𝑞, respectively. Then

for each 𝑧 ∈ 𝑆
𝑝𝑞

the trajectory 𝐶
𝑝
is contained in the

strip 𝑆
𝑞𝑧

between trajectories 𝐶
𝑞
and 𝐶

𝑧
of points 𝑞 and 𝑧,

respectively, and the trajectories 𝐶
𝑞
and 𝐶

𝑧
are subsets of the

same component of 𝑆
𝑞𝑧

\ 𝐶
𝑝
(see [8]). Let 𝐾

0
and 𝐿

0
be local

sections of {𝑓𝑡 : 𝑡 ∈ R} such that 𝑝 ∈ 𝐾
0
and 𝑞 ∈ 𝐿

0
.

Let 𝐵 be a Jordan domain containing 𝑝 in its interior. If
𝐾
0

∩ bd𝐵 ̸= 0, then by compactness of bd𝐵, there exists a
𝑝
0

∈ 𝐾
0

∩ 𝑆
𝑝𝑞

such that 𝑝
0
is the only common point of bd𝐵

with the subarc 𝐾 of 𝐾
0
having 𝑝 and 𝑝

0
as its endpoints. If

𝐾
0
∩bd𝐵 = 0, thenwe put𝐾 := 𝐾

0
∩(𝑆

𝑝𝑞
∪𝐶

𝑝
). Take an 𝑟

𝐵
> 0

such that 𝐵(𝑝, 𝑟
𝐵
) ⊂ int 𝐵 and 𝐵(𝑝, 𝑟

𝐵
) ∩ 𝑆

𝑝𝑞
is contained in

the union of all trajectories having a common point with 𝐾,
where 𝐵(𝑝, 𝑟

𝐵
) denotes the ball with centre 𝑝 and radius 𝑟

𝐵
.

Fix a 𝑇 > 0 and an 𝑟
𝑞

> 0. Without loss of generality we can
assume that 𝐵(𝑞, 𝑟

𝑞
) ∩ 𝐵(𝑝, 𝑟

𝐵
) = 0.

Now we take an 𝑟 ∈ (0, 𝑟
𝑞
) for which there exists a 𝑦 ∈

𝐿
0

∩ 𝑆
𝑝𝑞

such that dist(𝑞, 𝑦) > 𝑟, where dist denotes the
Euclidean metric on the plane.Then bd𝐵(𝑞, 𝑟) ∩ 𝐿

0
∩ 𝑆

𝑝𝑞
̸= 0.

By compactness of bd𝐵(𝑞, 𝑟), there exists a 𝑞
0

∈ 𝐿
0

∩ 𝑆
𝑝𝑞

such that 𝑞
0
is the only common point of bd𝐵(𝑞, 𝑟) with the

subarc 𝐿 of 𝐿
0
having 𝑞 and 𝑞

0
as its endpoints. Denote by

𝑊 the union of all trajectories having a common point with
the arc 𝐿. Since 𝑞

0
∈ 𝑆

𝑝𝑞
, each trajectory contained in 𝑊 is a

subset of the component of cl 𝑆
𝑞𝑞
0

\𝐶
𝑝
which contains 𝐶

𝑞
and

𝐶
𝑞
0

, where 𝑆
𝑞𝑞
0

denotes the strip between trajectories 𝐶
𝑞
and

𝐶
𝑞
0

of points 𝑞 and 𝑞
0
.

By the assumption that 𝑞 ∈ 𝐽+(𝑝), there exist sequences
(𝑝

𝑛
)
𝑛∈Z
+

and (𝑡
𝑛
)
𝑛∈Z
+

such that 𝑝
𝑛

→ 𝑝, 𝑡
𝑛

→ +∞,
𝑓𝑡
𝑛(𝑝

𝑛
) → 𝑞 as 𝑛 → +∞. Thus there exists an 𝑛

0
∈ Z

+

such that for all 𝑛 > 𝑛
0
we have 𝑡

𝑛
> 𝑇, 𝑝

𝑛
∈ 𝐵(𝑝, 𝑟

𝐵
) and

𝑓𝑡
𝑛(𝑝

𝑛
) ∈ 𝐵(𝑞, 𝑟) ∩ 𝑊. Then, for every 𝑛 > 𝑛

0
there exists

𝛼
𝑛

∈ R such that 𝑓𝑡
𝑛
+𝛼
𝑛(𝑝

𝑛
) ∈ 𝐿. Moreover, by the definition

of 𝑟
𝐵
, for every 𝑛 > 𝑛

0
there exists 𝑥

𝑛
∈ 𝐾 and 𝛽

𝑛
∈ R such

that 𝑓𝛽
𝑛(𝑥

𝑛
) = 𝑝

𝑛
. Thus 𝑓𝑡

𝑛
+𝛼
𝑛
+𝛽
𝑛(𝑥

𝑛
) ∈ 𝐿 for 𝑛 > 𝑛

0
.

Fix any 𝑛 > 𝑛
0
and take a positive integer 𝑘

𝑛
such that

𝑘
𝑛

> 𝑡
𝑛

+ 𝛼
𝑛

+ 𝛽
𝑛
and 𝑘

𝑛
> 𝑇. Then 𝑥

𝑛
and 𝑓𝑘

𝑛(𝑥
𝑛
) belong

to different components of 𝑊 \ 𝐿, since 𝐿 is a section in 𝑊.
By continuity of 𝑓𝑘

𝑛 at 𝑝 there exists a 𝑦
𝑛

∈ 𝑓𝑘
𝑛(𝐾) such

that 𝑥
𝑛
and 𝑦

𝑛
belong to the same component of 𝑊 \ 𝐿,

since any neighbourhood of𝑓𝑘
𝑛(𝑝)must contain a point from

𝑓𝑘
𝑛(𝐾). Thus 𝑓𝑘

𝑛(𝐾) has a common point 𝑤
𝑛
with 𝐿. Then

𝑤
𝑛

∈ 𝐵(𝑞, 𝑟) and hence 𝑤
𝑛

∈ 𝐵(𝑞, 𝑟
𝑞
). Taking 𝑧

𝑛
= 𝑓−𝑘

𝑛(𝑤
𝑛
)

we have 𝑧
𝑛

∈ 𝐵, since 𝐾 ⊂ 𝐵. Consequently, for each 𝑛 > 𝑛
0

we have 𝑘
𝑛

> 𝑇 and 𝑓𝑘
𝑛(𝑧

𝑛
) ∈ 𝐵(𝑞, 𝑟). Hence 𝑘

𝑛
→ +∞ and

𝑓𝑘
𝑛(𝑧

𝑛
) → 𝑞 as 𝑛 → +∞, which implies that 𝑞 ∈ 𝜔

𝑓
(𝐵).

Consequently 𝑞 ∈ 𝑃+(𝑝).

Since an analogous reasoning can be applied to the set of
strongly negatively irregular points and the first negative pro-
longational limit set, our considerations can be summarized
in the following way.

Corollary 3. Let 𝑓 be a Brouwer homeomorphism which is
embeddable in a flow {𝑓𝑡 : 𝑡 ∈ R} and let 𝑝 ∈ R2. Then
𝑃+(𝑝) = 𝐽+(𝑝) and 𝑃−(𝑝) = 𝐽−(𝑝), and consequently the

set of all strongly irregular points of 𝑓 is equal to the first
prolongational limit set of the flow {𝑓𝑡 : 𝑡 ∈ R}.

Corollary 4. Let 𝑓 be a Brouwer homeomorphism which is
embeddable in a flow.Then, for each flow containing𝑓, the first
prolongational limit set is the same.

After a reparametrization of the flow {𝑓𝑡 : 𝑡 ∈ R}
containing 𝑓 each element 𝑓𝑡 of the flow, for 𝑡 ∈ R \ {0} or
𝑡 > 0, respectively, can be treated as 𝑓.

Corollary 5. Let 𝑓 be a Brouwer homeomorphism which is
embeddable in a flow {𝑓𝑡 : 𝑡 ∈ R}. Then the set of all strongly
irregular points of 𝑓𝑡 is the same for all 𝑡 ∈ R \ {0}. Moreover,
the set of all strongly positive irregular points of 𝑓𝑡 and the set
of all strongly negative irregular points of𝑓𝑡 are the same for all
𝑡 > 0.

3. Flows of Brouwer Homeomorphisms

In this section we describe the form of any flow of Brouwer
homeomorphisms. To give a sufficient condition for the
topological conjugacy of flows of Brouwer homeomorphisms
one can use covers of the plane by maximal parallelizable
regions. We will study the functions which express the
relations between parallelizing homeomorphisms of such
regions.

It is known that a simply connected region 𝑈 is par-
allelizable if and only if 𝐽(𝑈) ∩ 𝑈 = 0. Hence for every
parallelizable region𝑈wehave 𝐽(𝑈) ⊂ bd𝑈. In the casewhere
𝑈 is a maximal parallelizable region (i.e., 𝑈 is not contained
properly in any parallelizable region), the boundary of 𝑈
consists of strongly irregular points. It follows from the fact
that for each maximal parallelizable region 𝑈 the equality
𝐽(𝑈) = bd𝑈 holds. The proof of this fact can be found in
[9]. For the convenience of the reader, we outline the essential
ideas in that proof.

Let 𝑈 be a parallelizable region. Assume that there exists
a point 𝑝 ∈ bd𝑈 such that 𝑝 ∉ 𝐽(𝑈). Denote by 𝐷

1
the

component ofR2 \𝐶
𝑝
which has a common point with𝑈 and

by𝐷
2
the other component ofR2\𝐶

𝑝
. Let𝑉 be a parallelizable

region which contains 𝑝 and put 𝑉
1

:= 𝑉 ∩ 𝐷
2
. Let 𝑈

1
:=

𝑈 ∪ 𝐶
𝑝

∪ 𝑉
1
. We show that 𝐽(𝑞) ∩ 𝑈

1
= 0 for each 𝑞 ∈ 𝑈

1
,

which means that 𝑈
1
is a parallelizable region. To see this we

consider three cases. First, let us consider the case where 𝑞 ∈
𝑈. Then 𝐽(𝑞) ⊂ cl𝐷

1
, since 𝑞 ∈ 𝐷

1
. Hence by parallelizability

of 𝑈, we have 𝐽(𝑞) ∩ 𝑈 = 0 and by the assumption that
𝑝 ∉ 𝐽(𝑈), we get 𝐽(𝑞) ∩ 𝐶

𝑝
= 0. Thus 𝐽(𝑞) ∩ 𝑈

1
= 0. Now,

let 𝑞 ∈ 𝑉
1
. Then 𝐽(𝑞) ⊂ cl𝐷

2
. Hence 𝐽(𝑞) ∩ 𝑈

1
= 0, since by

parallelizability of 𝑉 we have 𝐽(𝑞) ∩ (𝐶
𝑝

∪ 𝑉
1
) = 0. Finally, let

𝑞 ∈ 𝐶
𝑝
. Then, as in the previous case, 𝐽(𝑞) ∩ (𝐶

𝑝
∪ 𝑉

1
) = 0,

and by the assumption that 𝑝 ∉ 𝐽(𝑈), we get 𝐽(𝑞) ∩ 𝑈 = 0.
Thus we proved that 𝐽(𝑈

1
) ∩ 𝑈

1
= 0, which means that 𝑈

1
is

parallelizable. Since 𝑈 is contained properly in 𝑈
1
, we obtain

that 𝑈 cannot be a maximal parallelizable region.
For any distinct trajectories 𝐶

𝑝
1

, 𝐶
𝑝
2

, and 𝐶
𝑝
3

of {𝑓𝑡 : 𝑡 ∈
R} one of the following two possibilities must be satisfied:
exactly one of the trajectories 𝐶

𝑝
1

, 𝐶
𝑝
2

, and 𝐶
𝑝
3

is contained
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in the strip between the other two or each of the trajectories
𝐶
𝑝
1

, 𝐶
𝑝
2

, and 𝐶
𝑝
3

is contained in the strip between the other
two. In the first case if 𝐶

𝑝
𝑗

is the trajectory which lies in the
strip between 𝐶

𝑝
𝑖

and 𝐶
𝑝
𝑘

we will write 𝐶
𝑝
𝑖

|𝐶
𝑝
𝑗

|𝐶
𝑝
𝑘

(𝑖, 𝑗,
𝑘 ∈ {1, 2, 3} and 𝑖, 𝑗, 𝑘 are different). In the second case we
will write |𝐶

𝑝
𝑖

, 𝐶
𝑝
𝑗

, 𝐶
𝑝
𝑘

| (cf. [10]).
Let 𝑋 be a nonempty set. Denote by 𝑋<𝜔 the set of all

finite sequences of elements of 𝑋. A subset 𝑇 of 𝑋<𝜔 is called
a tree on 𝑋 if it is closed under initial segments; that is, for all
positive integers𝑚, 𝑛 such that 𝑛 > 𝑚 if (𝑥

1
, . . . , 𝑥

𝑚
, . . . , 𝑥

𝑛
) ∈

𝑇, then (𝑥
1
, . . . , 𝑥

𝑚
) ∈ 𝑇. Let 𝛼 = (𝑥

1
, . . . , 𝑥

𝑛
) ∈ 𝑋<𝜔. Then,

for any 𝑥 ∈ 𝑋 by 𝛼̂𝑥 we denote the sequence (𝑥
1
, . . . , 𝑥

𝑛
, 𝑥).

A node 𝛼 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑇 of a tree 𝑇 is said to be terminal

if there is no node of properly extending it; that is, there is no
element 𝑥 ∈ 𝑋 such that 𝛼̂𝑥 ∈ 𝑇.

A tree𝐴+ ⊂ Z<𝜔

+
will be termed admissible if the following

conditions hold:
(i) 𝐴+ contains the sequence 1 and no other one-element

sequence;
(ii) if 𝛼̂𝑘 is in 𝐴+ and 𝑘 > 1, then so also is 𝛼̂(𝑘 − 1).

A tree 𝐴− ⊂ Z<𝜔

−
will be termed admissible if the

following conditions hold:
(iii) 𝐴− contains the sequence −1 and no other one-

element sequence;
(iv) if 𝛼̂𝑘 is in 𝐴− and 𝑘 < −1, then so also is 𝛼̂(𝑘 + 1).
The set 𝐴 := 𝐴+ ∪ 𝐴− will be said to be admissible class

of finite sequences, where 𝐴+ and 𝐴− are some admissible
classes of finite sequences of positive and negative integers,
respectively.

Now we recall results describing the flows of Brouwer
homeomorphisms.

Theorem 6 (see [11]). Let {𝑓𝑡 : 𝑡 ∈ R} be a flow of Brouwer
homeomorphisms. Then there exists a family of trajectories
{𝐶

𝛼
: 𝛼 ∈ 𝐴} and a family of maximal parallelizable regions

{𝑈
𝛼

: 𝛼 ∈ 𝐴}, where 𝐴 = 𝐴+ ∪ 𝐴− is an admissible class of
finite sequences, such that 𝑈

1
= 𝑈

−1
, 𝐶

1
= 𝐶

−1
, and

𝐶
𝛼

⊂ 𝑈
𝛼

𝑓𝑜𝑟 𝛼 ∈ 𝐴,

⋃
𝛼∈𝐴

𝑈
𝛼

= R
2,

𝑈
𝛼

∩ 𝑈
𝛼̂𝑖

̸= 0 𝑓𝑜𝑟 𝛼̂𝑖 ∈ 𝐴,

𝐶
𝛼̂𝑖

⊂ bd𝑈
𝛼

𝑓𝑜𝑟 𝛼̂𝑖 ∈ 𝐴,

𝐶𝛼
, 𝐶

𝛼̂𝑖
1

, 𝐶
𝛼̂𝑖
2

 𝑓𝑜𝑟 𝛼̂𝑖
1
, 𝛼̂𝑖

2
∈ 𝐴, 𝑖

1
̸= 𝑖
2
,

𝐶
𝛼

𝐶𝛼̂𝑖

 𝐶
𝛼̂𝑖̂𝑗

𝑓𝑜𝑟 𝛼̂𝑖̂𝑗 ∈ 𝐴.

(8)

Proposition 7 (see [11]). Let {𝑓𝑡 : 𝑡 ∈ R} be a flow of Brouwer
homeomorphisms.Then there exists a family of the parallelizing
homeomorphisms {𝜑

𝛼
: 𝛼 ∈ 𝐴+}, where 𝜑

𝛼
: 𝑈

𝛼
→ R2, 𝑈

𝛼

are those occurring in Theorem 6, and for each 𝛼̂𝑖 ∈ 𝐴+

𝜑
𝛼̂𝑖

(𝑈
𝛼

∩ 𝑈
𝛼̂𝑖

) = R × (𝑐
𝛼̂𝑖

, 0) ,

𝜑
𝛼

(𝑈
𝛼

∩ 𝑈
𝛼̂𝑖

) = R × (𝑐
𝛼
, 𝑑

𝛼
) ,

(9)

where 𝑐
𝛼

∈ R ∪ {−∞}, 𝑑
𝛼

∈ R ∪ {+∞}, and 𝑐
𝛼̂𝑖

∈ [−∞, 0)
are some constants such that 𝑐

𝛼
< 𝑑

𝛼
and at least one of the

constants 𝑐
𝛼
, 𝑑

𝛼
is finite. Moreover, there exists a continuous

function 𝜇
𝛼̂𝑖

: (𝑐
𝛼
, 𝑑

𝛼
) → R and a homeomorphism ]

𝛼̂𝑖
:

(𝑐
𝛼
, 𝑑

𝛼
) → (𝑐

𝛼̂𝑖
, 0) such that the homeomorphism

ℎ
𝛼̂𝑖

: R × (𝑐
𝛼
, 𝑑

𝛼
) → R × (𝑐

𝛼̂𝑖
, 0) (10)

given by the relation ℎ
𝛼̂𝑖

:= 𝜑
𝛼̂𝑖

∘ (𝜑
𝛼|
𝑈𝛼∩𝑈𝛼̂𝑖

)−1 has the form

ℎ
𝛼̂𝑖

(𝑡, 𝑠) = (𝜇
𝛼̂𝑖

(𝑠) + 𝑡, ]
𝛼̂𝑖

(𝑠)) , 𝑡 ∈ R, 𝑠 ∈ (𝑐
𝛼
, 𝑑

𝛼
) .
(11)

The above proposition is formulated for 𝛼 ∈ 𝐴+, but the
analogous result holds for 𝛼 ∈ 𝐴−. The admissible class of
finite sequences occurring in Theorem 6 is not unique for a
given flow, so we can usually choose a convenient 𝐴 when
solving a problem of topological conjugacy.

The homeomorphisms ]
𝛼̂𝑖

occurring in Proposition 7
can be either increasing or decreasing. For each 𝛼̂𝑖 ∈ 𝐴
denote by 𝐶𝛼

𝛼̂𝑖
the unique trajectory contained in 𝑈

𝛼
∩

𝐽(𝐶
𝛼̂𝑖

) (the uniqueness has been proven in [8]). From the
construction of the families {𝐶

𝛼
: 𝛼 ∈ 𝐴} and {𝑈

𝛼
:

𝛼 ∈ 𝐴} occurring in Theorem 6 we obtain that, in case
𝐶
𝛼
|𝐶𝛼

𝛼̂𝑖
|𝐶

𝛼̂𝑖
or 𝐶

𝛼
= 𝐶𝛼

𝛼̂𝑖
, the homeomorphism ]

𝛼̂𝑖
is

decreasing and 𝑐
𝛼

> 0 or 𝑐
𝛼

= 0, respectively. However, in
case |𝐶

𝛼
, 𝐶𝛼

𝛼̂𝑖
, 𝐶

𝛼̂𝑖
|, the homeomorphism ]

𝛼̂𝑖
is increasing

and 𝑑
𝛼

> 0 (see [11]).
The continuous functions 𝜇

𝛼̂𝑖
describe the time needed

for the flow {𝑓𝑡 : 𝑡 ∈ R} to move from the point with
coordinates (0, ]

𝛼̂𝑖
(𝑠)) in the chart 𝜑

𝛼̂𝑖
until it reaches the

point with coordinates (0, 𝑠) in the chart 𝜑
𝛼
. In other words,

𝜇
𝛼̂𝑖

describe the time needed for the flow to move from
a point from the section 𝐾

𝜑
𝛼̂𝑖

in 𝑈
𝛼̂𝑖

to a point from the
section 𝐾

𝜑
𝛼

in 𝑈
𝛼
.

Proposition 8. The functions 𝜇
𝛼̂𝑖

occurring in Proposition 7
satisfy the condition

lim
𝑠→ 𝑐
𝛼

𝜇
𝛼̂𝑖

(𝑠) = {
−∞ 𝑖𝑓 𝐶

𝛼̂𝑖
⊂ 𝐽+ (𝐶𝛼

𝛼̂𝑖
) ,

+∞ 𝑖𝑓 𝐶
𝛼̂𝑖

⊂ 𝐽− (𝐶
𝛼̂𝑖

)
(12)

in the case where 𝐶
𝛼
|𝐶𝛼

𝛼̂𝑖
|𝐶

𝛼̂𝑖
or 𝐶

𝛼
= 𝐶𝛼

𝛼̂𝑖
or the condition

lim
𝑠→𝑑
𝛼

𝜇
𝛼̂𝑖

(𝑠) = {
−∞ 𝑖𝑓 𝐶

𝛼̂𝑖
⊂ 𝐽+ (𝐶𝛼

𝛼̂𝑖
) ,

+∞ 𝑖𝑓 𝐶
𝛼̂𝑖

⊂ 𝐽− (𝐶
𝛼̂𝑖

)
(13)

in the case where |𝐶
𝛼
, 𝐶𝛼

𝛼̂𝑖
, 𝐶

𝛼̂𝑖
|.

Proof. Let us consider the case where 𝐶
𝛼
|𝐶𝛼

𝛼̂𝑖
|𝐶

𝛼̂𝑖
or 𝐶

𝛼
=

𝐶𝛼

𝛼̂𝑖
and assume that 𝐶

𝛼̂𝑖
⊂ 𝐽+(𝐶𝛼

𝛼̂𝑖
). The other cases are

similar.Denote by𝑝 and 𝑞 the points forwhich𝜑
𝛼
(𝑝) = (0, 𝑐

𝛼
)

and 𝜑
𝛼̂𝑖

(𝑞) = (0, 0); that is, 𝑝 ∈ 𝐾
𝜑
𝛼

∩ 𝐶𝛼

𝛼̂𝑖
and 𝑞 ∈ 𝐾

𝜑
𝛼̂𝑖

∩

𝐶
𝛼̂𝑖

.Then 𝑞 ∈ 𝐽+(𝑝).Thus there exist sequences (𝑝
𝑛
)
𝑛∈Z
+

and
(𝑡
𝑛
)
𝑛∈Z
+

such that 𝑝
𝑛

→ 𝑝, 𝑡
𝑛

→ +∞, and 𝑓𝑡
𝑛(𝑝

𝑛
) → 𝑞

as 𝑛 → +∞. This means that there exist sequences (𝑢
𝑛
)
𝑛∈Z
+

,
(𝑠
𝑛
)
𝑛∈Z
+

such that 𝑢
𝑛

→ 0, 𝑠
𝑛

→ 𝑐
𝛼
, where 𝜑

𝛼
(𝑝

𝑛
) = (𝑢

𝑛
, 𝑠

𝑛
).

Hence 𝜑
𝛼
(𝑓𝑡
𝑛(𝑝

𝑛
)) = 𝜑

𝛼
(𝑝

𝑛
) + (𝑡

𝑛
, 0) = (𝑡

𝑛
+ 𝑢

𝑛
, 𝑠

𝑛
) and by

(11)

ℎ
𝛼̂𝑖

(𝑡
𝑛

+ 𝑢
𝑛
, 𝑠

𝑛
) = (𝜇

𝛼̂𝑖
(𝑠

𝑛
) + 𝑡

𝑛
+ 𝑢

𝑛
, ]

𝛼̂𝑖
(𝑠

𝑛
)) . (14)
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Thus 𝜇
𝛼̂𝑖

(𝑠
𝑛
) + 𝑡

𝑛
+ 𝑢

𝑛
→ 0 as 𝑛 → +∞, since 𝑓𝑡

𝑛(𝑝
𝑛
) → 𝑞

as 𝑛 → +∞. Hence 𝜇
𝛼̂𝑖

(𝑠
𝑛
) → −∞, since 𝑡

𝑛
→ +∞ and

𝑢
𝑛

→ 0. Consequently, lim inf
𝑠→ 𝑐
𝛼

𝜇
𝛼̂𝑖

(𝑠) = −∞.
Suppose, on the contrary, that there exists a sequence

(𝑠
𝑛
)
𝑛∈Z
+

such that 𝑠
𝑛

→ 𝑐
𝛼
and 𝜇

𝛼̂𝑖
(𝑠
𝑛
) → 𝑐 for some 𝑐 ∈ R.

Consider the sequence (𝑝
𝑛
)
𝑛∈Z
+

such that 𝜑
𝛼
(𝑝

𝑛
) = (0, 𝑠

𝑛
).

Then each element of the sequence (𝑝
𝑛
)
𝑛∈Z
+

belongs to 𝐾
𝜑
𝛼

.
Moreover, the sequence (𝑝

𝑛
)
𝑛∈Z
+

tends to the point 𝑝 such
that 𝜑

𝛼
(𝑝) = (0, 𝑐

𝛼
). Hence 𝑝 ∈ 𝐾

𝜑
𝛼

∩ 𝐶𝛼

𝛼̂𝑖
. On the other

hand, by (11)

𝜑
𝛼̂𝑖

(𝑝
𝑛
) = ℎ

𝛼̂𝑖
(0, 𝑠

𝑛
) = (𝜇

𝛼̂𝑖
(𝑠

𝑛
) , ]

𝛼̂𝑖
(𝑠

𝑛
)) . (15)

Hence lim
𝑛→+∞

𝜑
𝛼̂𝑖

(𝑝
𝑛
) = (𝑐, 0). Consequently lim

𝑛→+∞
𝑝
𝑛

= 𝑞, where 𝑞 is a point such that 𝜑
𝛼̂𝑖

(𝑞) = (𝑐, 0); that is, 𝑞 ∈
𝐶
𝛼̂𝑖

. But this is impossible, since 𝐶
𝛼̂𝑖

∩ 𝐶𝛼

𝛼̂𝑖
= 0.

By the fact that ]
𝛼̂𝑖

: (𝑐
𝛼
, 𝑑

𝛼
) → (𝑐

𝛼̂𝑖
, 0) is a

homeomorphism, the function ℎ̃
𝛼̂𝑖

: R × (𝑐
𝛼̂𝑖

, 0) → R ×
(𝑐
𝛼̂𝑖

, 0) defined by

ℎ̃
𝛼̂𝑖

(𝑡, 𝑠) := ((𝜇
𝛼̂𝑖

∘ ]−1
𝛼̂𝑖

) (V) + 𝑡, V) , 𝑡 ∈ R, V ∈ (𝑐
𝛼̂𝑖

, 0)

(16)

is continuous.Moreover, putting 𝑠 := ]−1
𝛼̂𝑖

(V) in Proposition 8
we obtain the following result.

Corollary 9. The functions 𝜂
𝛼̂𝑖

: (𝑐
𝛼̂𝑖

, 0) → R given by

𝜂
𝛼̂𝑖

:= 𝜇
𝛼̂𝑖

∘ ]−1
𝛼̂𝑖

, (17)

where𝜇
𝛼̂𝑖

and ]
𝛼̂𝑖

are those occurring in Proposition 7, satisfy
the condition

lim
V→0

𝜂
𝛼̂𝑖

(V) = {
−∞ 𝑖𝑓 𝐶

𝛼̂𝑖
⊂ 𝐽+ (𝐶𝛼

𝛼̂𝑖
) ,

+∞ 𝑖𝑓 𝐶
𝛼̂𝑖

⊂ 𝐽− (𝐶
𝛼̂𝑖

) .
(18)

4. Topological Conjugacy of
Generalized Reeb Flows

In this section we consider the problem of topological
conjugacy of a class of flows of Brouwer homeomorphisms.
To prove our result we use the form of such flows.

We say that flows {𝑓𝑡 : 𝑡 ∈ R} and {𝑔𝑡 : 𝑡 ∈ R}, where
𝑓𝑡, 𝑔𝑡 : R2 → R2, are topologically conjugate if there exists a
homeomorphism Φ of the plane onto itself such that

𝑔𝑡 = Φ−1 ∘ 𝑓𝑡 ∘ Φ, 𝑡 ∈ R. (19)

In [12] a lemma can be found which says that the set of
strongly irregular points (called the set of singular pairs there)
is invariant with respect to topological conjugacy of flows.
Thus, by Corollary 3, we have the following result.

Proposition 10. Let {𝑓𝑡 : 𝑡 ∈ R} and {𝑔𝑡 : 𝑡 ∈ R} be
topologically conjugate flows of Brouwer homeomorphisms and
let Φ : R2 → R2 be a homeomorphism which conjugates
the flows. Then Φ(𝐽

{𝑓
𝑡
}
(R2)) = 𝐽

{𝑔
𝑡
}
(R2), where 𝐽

{𝑓
𝑡
}
(R2) and

𝐽
{𝑔
𝑡
}
(R2) denote the first prolongational limit set of {𝑓𝑡 : 𝑡 ∈ R}

and {𝑔𝑡 : 𝑡 ∈ R}, respectively.

Put

𝑃
0

:= {(𝑥, 𝑦) ∈ R
2 : 𝑥 > 0, 𝑦 > 0} ,

𝑃
1

:= {(𝑥, 𝑦) ∈ R
2 : 𝑥 < 0, 𝑦 > 0} ,

𝑃
2

:= {(𝑥, 𝑦) ∈ R
2 : 𝑥 > 0, 𝑦 < 0} ,

𝐿
𝑥

:= {(𝑥, 0) ∈ R
2 : 𝑥 > 0} ,

𝐿
𝑦

:= {(0, 𝑦) ∈ R
2 : 𝑦 > 0}

(20)

and𝑈 := 𝑃
0
∪𝑃

1
∪𝑃

2
∪𝐿

𝑥
∪𝐿

𝑦
. Consider the flow {𝑔𝑡 : 𝑡 ∈ R},

where for each 𝑡 ∈ R the homeomorphism 𝑔𝑡 : 𝑈 → 𝑈 is
defined by

𝑔𝑡 (𝑥, 𝑦) :=
{{
{{
{

(2𝑡𝑥, 2−𝑡𝑦) if (𝑥, 𝑦) ∈ 𝑃
0

∪ 𝐿
𝑥

∪ 𝐿
𝑦
,

(𝑥, 2−𝑡𝑦) if (𝑥, 𝑦) ∈ 𝑃
1
,

(2𝑡𝑥, 𝑦) if (𝑥, 𝑦) ∈ 𝑃
2
.

(21)

Then 𝐽+(𝑈) = 𝐿
𝑥
and 𝐽−(𝑈) = 𝐿

𝑦
.

Put 𝐴+ := {1, (1, 1)}, 𝑈
1

:= 𝑃
1

∪ 𝐿
𝑦

∪ 𝑃
0
, 𝑈

(1,1)
:= 𝑃

0
∪

𝐿
𝑥

∪ 𝑃
2
, 𝐶

1
:= 𝐿

𝑦
, 𝐶

(1,1)
:= 𝐿

𝑥
and 𝐴− := {−1}, 𝑈

−1
:= 𝑈

1
,

𝐶
−1

:= 𝐶
1
. Then 𝐶1

(1,1)
:= 𝐶

1
and 𝐶

(1,1)
⊂ 𝐽+(𝐶

1
). Let

𝐾
𝜑
1

:= {(𝑠, 1) : 𝑠 ∈ R} , 𝐾
𝜑
(1,1)

:= {(1, 𝑠) : 𝑠 ∈ R} . (22)

Note that the trajectories of {𝑔𝑡 : 𝑡 ∈ R} contained in 𝑃
0
are

given by the equation 𝑥𝑦 = 𝑠 for 𝑠 ∈ (0, +∞). Hence

𝜇
(1,1)

: (0, +∞) → R, 𝜇
(1,1)

(𝑠) = log
2
𝑠, (23)

since 𝑔log
2
𝑠(1, 𝑠) = (2log2𝑠, 2−log2𝑠𝑠) = (𝑠, 1). Moreover,

]
(1,1)

: (0, +∞) → (−∞, 0) , ]
(1,1)

(𝑠) = −𝑠. (24)

For each flow {𝑓𝑡 : 𝑡 ∈ R}, where 𝑓𝑡 : 𝑈 → 𝑈 for 𝑡 ∈ R,
having the same trajectories (including the orientation) as the
flow {𝑔𝑡 : 𝑡 ∈ R} given by (21), one can consider the function
𝜇
{𝑓
𝑡
},(1,1)

: (0, +∞) → R occurring in Proposition 7 which
describes the time needed to move from each point 𝑝 ∈ 𝑃

0
∩

𝐾
𝜑
(1,1)

to the point of 𝐾
𝜑
1

belonging to the trajectory of 𝑝, that
is, from the point of the form (1, 𝑠) to the point of the form
(𝑠, 1) for some 𝑠 ∈ (0, +∞). Then by Proposition 8

lim
𝑠→0

𝜇
{𝑓
𝑡
},(1,1)

(𝑠) = −∞. (25)

Consider a constant 𝜎(𝜇
{𝑓
𝑡
},(1,1)

) ∈ [0, +∞] defined by

𝜎 (𝜇
{𝑓
𝑡
},(1,1)

) := lim sup
V→0

𝜇∗

{𝑓
𝑡
},(1,1)

(V) , (26)

where 𝜇∗

{𝑓
𝑡
},(1,1)

: (0, 1] → [0, +∞) is given by

𝜇∗

{𝑓
𝑡
},(1,1)

(V) := 𝜇
{𝑓
𝑡
},(1,1)

(V) − min {𝜇
{𝑓
𝑡
},(1,1)

(𝑠) : 𝑠 ∈ [V, 1]}

(27)

(cf. [13, 14]). Then the flow {𝑓𝑡 : 𝑡 ∈ R} is topologically
conjugate to the flow {𝑔𝑡 : 𝑡 ∈ R} given by (21) if and only if
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𝜎(𝜇
{𝑓
𝑡
},(1,1)

) = 0 (see [13]). In particular, this condition holds
in the case where 𝜇

{𝑓
𝑡
},(1,1)

is increasing.
Now we introduce a class of flows of Brouwer homeo-

morphisms. Put 𝛼
1

:= 1 and 𝛼
𝑛+1

:= 𝛼
𝑛
̂1 for 𝑛 ∈ Z

+
. For

any positive integer 𝑘 we define 𝐴
𝑘

:= {𝛼
𝑛

: 1 ≤ 𝑛 ≤ 𝑘}
and 𝐴

+∞
:= {𝛼

𝑛
: 𝑛 ∈ Z

+
}. Similarly, put 𝛼

−1
:= −1,

𝛼
𝑛−1

:= 𝛼
𝑛
̂ − 1 for 𝑛 ∈ Z

−
and for any negative integer 𝑘

let 𝐴
𝑘

:= {𝛼
𝑛

: 𝑘 ≤ 𝑛 ≤ −1} and 𝐴
−∞

:= {𝛼
𝑛

: 𝑛 ∈ Z
−
}.

Consider a flow {ℎ𝑡 : 𝑡 ∈ R} of Brouwer homeomor-
phisms ℎ𝑡 : R2 → R2 such that 𝐴 = 𝐴+ ∪ 𝐴− can be given in
one of the following forms:

(a) 𝐴− = {−1} and 𝐴+ = 𝐴
𝑘
for some 𝑘 ∈ Z

+
,

(b) 𝐴− = {−1} and 𝐴+ = 𝐴
+∞

,

(c) 𝐴− = 𝐴
−∞

and 𝐴+ = 𝐴
+∞

.

We assume that 𝑈
𝛼
𝑛

∩ 𝐽(R2) = 𝐶
𝛼
𝑛

for each 𝛼
𝑛

∈ 𝐴, where
{𝑈

𝛼
𝑛

: 𝛼
𝑛

∈ 𝐴} and {𝐶
𝛼
𝑛

: 𝛼
𝑛

∈ 𝐴} are whose occurring in
Theorem 6. Then 𝐶𝛼

𝑛

𝛼
𝑛+1

= 𝐶
𝛼
𝑛

, since 𝐶𝛼
𝑛

𝛼
𝑛+1

⊂ 𝑈
𝛼
𝑛

∩ 𝐽(R2) for
every 𝛼

𝑛+1
∈ 𝐴+. Similarly, 𝐶𝛼

𝑛

𝛼
𝑛−1

= 𝐶
𝛼
𝑛

for every 𝛼
𝑛−1

∈ 𝐴−.
Fix an 𝛼

𝑛+1
∈ 𝐴+. Denote by 𝑉

𝛼
𝑛+1

the strip between
𝐶
𝛼
𝑛

and 𝐶
𝛼
𝑛+1

. Then 𝑉
𝛼
𝑛+1

⊂ 𝑈
𝛼
𝑛

and |𝐶, 𝐶
𝛼
𝑛

, 𝐶
𝛼
𝑛+1

| for every
trajectory 𝐶 ⊂ 𝑉

𝛼
𝑛+1

(see [8]). In particular, if 𝐶
𝛼
𝑛

is equal to
the vertical line {(𝑛 − 1, 𝑦) : 𝑦 ∈ R} for each 𝛼

𝑛
∈ 𝐴+, then

𝑉
𝛼
𝑛+1

is a vertical strip for each 𝛼
𝑛+1

∈ 𝐴+. In a similar way we
define the strip 𝑉

𝛼
𝑛−1

for 𝛼
𝑛−1

∈ 𝐴−.
Let us assume that for each 𝛼

𝑛
∈ 𝐴 \ {1, −1} there exists a

homeomorphism 𝜓
𝛼
𝑛

: cl𝑉
𝛼
𝑛

→ 𝑃
0

∪ 𝐿
𝑥

∪ 𝐿
𝑦
such that

ℎ𝑡 = 𝜓−1

𝛼
𝑛

∘ 𝑔𝑡 ∘ 𝜓
𝛼
𝑛

, 𝑡 ∈ R, (28)

where {𝑔𝑡 : 𝑡 ∈ R} is given by (21). If 𝐶
𝛼
𝑛

⊂ 𝐽+(𝐶
𝛼
𝑛−1

), then
𝜓
𝛼
𝑛

(𝐶
𝛼
𝑛−1

) = 𝐿
𝑦
and 𝜓

𝛼
𝑛

(𝐶
𝛼
𝑛

) = 𝐿
𝑥
. In case 𝐶

𝛼
𝑛

⊂ 𝐽−(𝐶
𝛼
𝑛−1

)

we have 𝜓
𝛼
𝑛

(𝐶
𝛼
𝑛−1

) = 𝐿
𝑥
and 𝜓

𝛼
𝑛

(𝐶
𝛼
𝑛

) = 𝐿
𝑦
. The flow {ℎ𝑡 : 𝑡 ∈

R} described above will be called a standard generalized Reeb
flow.

A standard generalized Reeb flow can have either a
finite number of maximal parallelizable regions or an infinite
number of such regions. The first case holds if the set of
indices 𝐴 of the flow is of the form (a). However, the second
case holds if this set is of the form (b) or (c). The trajectories
of a standard generalized Reeb flow with an infinite number
of maximal parallelizable regions are shown in Figures 1 and
2 for the set 𝐴 of the forms (b) and (c), respectively.

Consider a flow {𝑓𝑡 : 𝑡 ∈ R} of Brouwer homeomorphisms
which has the same trajectories as a standard generalized
Reeb flow. For 𝛼

𝑛
∈ 𝐴 \ {1, −1} and 𝑠 ∈ (0, +∞) denote by

𝐶𝛼
𝑛

𝑠
the image of the trajectory {(𝑥, 𝑦) ∈ 𝑃

0
: 𝑥𝑦 = 𝑠} of

{𝑔𝑡 : 𝑡 ∈ R} under 𝜓−1

𝛼
𝑛

. For each 𝛼
𝑛

∈ 𝐴 \ {1, −1} consider
the function 𝜇

{𝑓
𝑡
},𝛼
𝑛

: (0, +∞) → R taking as 𝜇
{𝑓
𝑡
},𝛼
𝑛

(𝑠)
the time needed to move from the unique point of the set
𝐶𝛼
𝑛

𝑠
∩𝜓−1

𝛼
𝑛

(𝐾
𝜑
(1,1)

) to the unique point of𝐶𝛼
𝑛

𝑠
∩𝜓−1

𝛼
𝑛

(𝐾
𝜑
1

). Define
𝜇∗

{𝑓
𝑡
},𝛼
𝑛

: (0, 1] → [0, +∞) by

𝜇∗

{𝑓
𝑡
},𝛼
𝑛

(V) := 𝜇
{𝑓
𝑡
},𝛼
𝑛

(V) − min {𝜇
{𝑓
𝑡
},𝛼
𝑛

(𝑠) : 𝑠 ∈ [V, 1]} (29)

· · ·· · ·

C

1

= C

−1
C

2

C

3

C

4

C

5

Figure 1: A generalized Reeb flow with 𝐴− = {−1} and 𝐴+ = 𝐴
+∞

.

· · ·· · ·

C

1

= C

−1
C

−2

C

−3

C

2

C

3

Figure 2: A generalized Reeb flow with 𝐴− = 𝐴
−∞

and 𝐴+ = 𝐴
+∞

.

in case 𝐶
𝛼
𝑛+1

⊂ 𝐽+(𝐶
𝛼
𝑛

), and by

𝜇∗

{𝑓
𝑡
},𝛼
𝑛

(V) := max {𝜇
{𝑓
𝑡
},𝛼
𝑛

(𝑠) : 𝑠 ∈ [V, 1]} − 𝜇
{𝑓
𝑡
},𝛼
𝑛

(V) (30)

in case 𝐶
𝛼
𝑛+1

⊂ 𝐽−(𝐶
𝛼
𝑛

). Put

𝜎 (𝜇
{𝑓
𝑡
},𝛼
𝑛

) := lim sup
V→0

𝜇∗

{𝑓
𝑡
},𝛼
𝑛

(V) . (31)

Now we can prove the following conjugacy result.

Theorem 11. Let {ℎ𝑡 : 𝑡 ∈ R} be a standard generalized Reeb
flow. Let 𝐴 be an admissible class of finite sequences satisfying
one of the conditions (a)–(c). Assume that {𝑓𝑡 : 𝑡 ∈ R} is a
flow of Brouwer homeomorphisms having the same trajectories
including orientation as {ℎ𝑡 : 𝑡 ∈ R}. If 𝜎(𝜇

{𝑓
𝑡
},𝛼
𝑛

) = 0 for all
𝛼
𝑛

∈ 𝐴 \ {1, −1}, then the flows {𝑓𝑡 : 𝑡 ∈ R} and {ℎ𝑡 : 𝑡 ∈ R}
are topologically conjugate.

Proof. Assume that one of the conditions (a) and (b) holds.
First, let us note that there exists a topological conjugacy Φ

1
:

𝑈
1

→ 𝑈
1
of flows {𝑓𝑡|

𝑈
1

: 𝑡 ∈ R} and {ℎ𝑡|
𝑈
1

: 𝑡 ∈ R}, since 𝑈
1

is a parallelizable region of each of these flows.More precisely,
if 𝜑

{𝑓
𝑡
},1

: 𝑈
1

→ R2 and 𝜑
{ℎ
𝑡
},1

: 𝑈
1

→ R2 are parallelizing
homeomorphisms for {𝑓𝑡|

𝑈
1

: 𝑡 ∈ R} and {ℎ𝑡|
𝑈
1

: 𝑡 ∈ R},
respectively, then for every 𝑝 ∈ 𝑈

1
we put Φ

1
(𝑝) := (𝜑−1

{ℎ
𝑡
},1

∘

𝜑
{𝑓
𝑡
},1

)(𝑝).
Fix an 𝛼

𝑛+1
∈ 𝐴+. Assume that we have defined a

homeomorphism Φ
𝑛
which conjugates {𝑓𝑡 : 𝑡 ∈ R} and

{ℎ𝑡 : 𝑡 ∈ R} on the set ⋃
𝑛

𝑖=1
𝑈
𝛼
𝑖

. Define 𝐹𝑡 : 𝑃
0

∪ 𝐿
𝑥

∪ 𝐿
𝑦

→
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𝑃
0

∪ 𝐿
𝑥

∪ 𝐿
𝑦
by 𝐹𝑡 := 𝜓

𝛼
𝑛+1

∘ 𝑓𝑡 ∘ 𝜓−1

𝛼
𝑛+1

for 𝑡 ∈ R, where
𝜓
𝛼
𝑛+1

satisfies (28). Then 𝜎(𝜇
{𝐹
𝑡
},(1,1)

) = 𝜎(𝜇
{𝑓
𝑡
},𝛼
𝑛

). Hence
𝜎(𝜇

{𝐹
𝑡
},(1,1)

) = 0, since by the assumption 𝜎(𝜇
{𝑓
𝑡
},𝛼
𝑛

) = 0. Thus
{𝐹𝑡 : 𝑡 ∈ R} and {𝑔𝑡|

𝑃
0
∪𝐿
𝑥
∪𝐿
𝑦

: 𝑡 ∈ R} are topologically
conjugate. Consequently {𝑓𝑡|

𝑊
𝛼
𝑛+1

: 𝑡 ∈ R} and {ℎ𝑡|
𝑊
𝛼
𝑛+1

:

𝑡 ∈ R} are topologically conjugate, where 𝑊
𝛼
𝑛+1

:= cl𝑉
𝛼
𝑛+1

.
Denote by 𝜙

𝛼
𝑛+1

the homeomorphism which conjugates these
flows.

Fix any 𝑝
0

∈ 𝐶
𝛼
𝑛

and put 𝑞
1

:= Φ
𝑛
(𝑝

0
), 𝑞

2
:= 𝜙

𝛼
𝑛+1

(𝑝
0
).

Take 𝑡
0

∈ R such that ℎ𝑡0(𝑞
2
) = 𝑞

1
and define Φ

𝛼
𝑛+1

:=

ℎ𝑡0 |
𝑊
𝛼
𝑛+1

∘ 𝜙
𝛼
𝑛+1

. Then Φ
𝛼
𝑛+1

conjugates the flows {𝑓𝑡|
𝑊
𝛼
𝑛+1

: 𝑡 ∈

R} and {ℎ𝑡|
𝑊
𝛼
𝑛+1

: 𝑡 ∈ R}, since

Φ
𝛼
𝑛+1

∘ 𝑓𝑡|
𝑊
𝛼
𝑛+1

= ℎ𝑡0 |
𝑊
𝛼
𝑛+1

∘ 𝜙
𝛼
𝑛+1

∘ 𝑓𝑡|
𝑊
𝛼
𝑛+1

= ℎ𝑡0 |
𝑊
𝛼
𝑛+1

∘ ℎ𝑡|
𝑊
𝛼
𝑛+1

∘ 𝜙
𝛼
𝑛+1

= ℎ𝑡|
𝑊
𝛼
𝑛+1

∘ ℎ𝑡0 |
𝑊
𝛼
𝑛+1

∘ 𝜙
𝛼
𝑛+1

= ℎ𝑡|
𝑊
𝛼
𝑛+1

∘ Φ
𝛼
𝑛+1

.

(32)

Moreover Φ
𝛼
𝑛+1

(𝑝
0
) = 𝑞

1
, since

Φ
𝛼
𝑛+1

(𝑝
0
) = ℎ𝑡0 (𝜙

𝛼
𝑛+1

(𝑝
0
)) = ℎ𝑡0 (𝑞

2
) = 𝑞

1
. (33)

Hence Φ
𝛼
𝑛+1

|
𝐶
𝛼𝑛

= Φ
𝑛
|
𝐶
𝛼𝑛

. Thus we can define Φ
𝑛+1

by

Φ
𝑛+1

(𝑝) :=
{{
{{
{

Φ
𝑛

(𝑝) , 𝑝 ∈
𝑛

⋃
𝑖=1

𝑈
𝛼
𝑖

\ 𝑉
𝛼
𝑛+1

,

Φ
𝛼
𝑛+1

(𝑝) , 𝑝 ∈ 𝑉
𝛼
𝑛+1

.

(34)

Then Φ
𝑛+1

conjugates {𝑓𝑡 : 𝑡 ∈ R} and {ℎ𝑡 : 𝑡 ∈ R} on
the set ⋃

𝑛

𝑖=1
𝑈
𝛼
𝑖

∪ 𝐶
𝛼
𝑛+1

. Since {𝑓𝑡 : 𝑡 ∈ R} and {ℎ𝑡 : 𝑡 ∈
R} are parallelizable on 𝑈

𝛼
𝑛+1

we can extend the topological
conjugacy Φ

𝑛+1
on the component of 𝑈

𝛼
𝑛+1

\ 𝐶
𝛼
𝑛+1

which do
not contain 𝐶

𝛼
𝑛

(see [12]). Such an extension is really needed
in case of (a) to obtain the conjugacy on the whole plane. In
case of (c), for any 𝛼

𝑛−1
∈ 𝐴− we extend Φ

𝑛
from ⋃

𝑛

𝑖=−1
𝑈
𝛼
𝑖

to
Φ

𝑛−1
defined on ⋃

𝑛

𝑖=−1
𝑈
𝛼
𝑖

∪ 𝐶
𝛼
𝑛−1

in a similar way.
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