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The 𝑍-transform has played an important role in signal processing. In this paper the 𝑍-transform has been generalized by the
coupling of both the 𝑍-transform and the local fractional complex calculus. In the literature the local fractional 𝑍-transform is
applied to analyze signals, in the following it will be used to analyze signals on Cantor sets. Some examples are also given to show
the efficiency and accuracy for handling the signals on Cantor sets.

1. Introduction

Integral transforms [1, 2], such as Fourier, Laplace, Mellin,
Hilbert, and Hankel transforms, play important roles in
solving the mathematical problems arising in applied math-
ematics, mathematical physics, and engineering science. In
recent years, fractional calculus [3–11] was developed and
used to model also some anomalous behaviors of diffusion
[12–21] and transport [22–27]. Fractional integral transforms
are suitable generalizations of the classical ones and were
recently proposed by some researchers. For example, the
fractional Fourier transforms were considered in [28, 29].
In [30], the fractional Hilbert transform was presented. The
fractional Mellin transform [31, 32] was proposed to be used
in image encryption. The fractional wavelet transform was
presented and some applicationswere investigated in [33–35].
In [36], the fractionalHankel transformwas reported in order
to research the charge-amplitude state representations.

The 𝑍-transform method [1, 2, 37] was applied to handle
the linear time-invariant discrete-time systems (LTI discrete-
time systems) and difference equations in 𝑍-domain. How-
ever, the fractional derivative and integrals (the fractional
PDIs) were used to transfer the fractional LTI discrete-time
systems to 𝑍-domain [38]. There appear signals defined on

Cantor sets, which are the most striking properties of non-
differentiable functions. The classical 𝑍-transform method
and PDIs did not deal with them. In order to overcome
them, local fractional calculus [39–43] may be applied to
handle the function defined onCantor sets shown in Figure 1.
The local fractional integral transforms via local fractional
calculus theory were proposed in [44–51]. For example, local
fractional Fourier transforms reported in [40, 44] were used
to find nondifferentiable solutions for local fractional ODEs
and PDEs [45–47]. Laplace transforms via local fractional
calculus [40] were generalized and reported in order to solve
the local fractional ODEs and PDEs [48–50].

Fractal signal processing [51–59] is a hot topic for scien-
tists and engineers. Very recently, the concept of the𝑍-trans-
formmethod via local fractional calculuswas considered only
in [60]. However, there is no report on signal processing
by using the local fractional 𝑍-transforms. The main aim of
this paper is to investigate the properties of local fractional
𝑍-transforms and to present some examples for processing
signals defined on Cantor sets.

The paper is organized as follows. In Section 2, the con-
cepts of local fractional complex derivatives and integrals
are given. In Section 3, the notions and properties of local
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Figure 1: The chart of the signal 𝑦(𝑡) defined on Cantor sets.

fractional 𝑍-transform method are presented. In Section 4,
some examples and applications of this method are shown.
Finally, Section 5 is the conclusions.

2. Local Fractional Derivatives and Integrals of
Complex Functions and Recent Results

In this section, we introduce the concepts of local fraction
derivative and integrals of complex functions. Let us first give
the local fractional continuity of complex functions.

Definition 1 (see [40, 60]). The function 𝑓(𝑧) is said to be
local fractional continuous at 𝑧

0
if there exists

lim
𝑧→𝑧0

𝑓 (𝑧) = 𝑓 (𝑧
0
) . (1)

There is the local fractional continuous relation in the fol-
lowing form:

𝑓 (𝑧) ∈ 𝐶
𝛼
(R) , (2)

where

lim
𝑧→𝑧0

𝑓 (𝑧) = 𝑓 (𝑧
0
) , 𝑧, 𝑧

0
∈ R. (3)

Definition 2 (see [40, 60]). The local fractional derivative of
complex function 𝑓(𝑧) of order 𝛼 is defined as

𝑓
(𝛼)

(𝑧) =
𝑑
𝛼
𝑓 (𝑧)

𝑑𝛼𝑧
= lim
𝑧→𝑧0

Δ
𝛼
𝑓 (𝑧)

(𝑧 − 𝑧
0
)
𝛼
, 𝛼 ∈ (0, 1] , (4)

where

Δ
𝛼
𝑓 (𝑧) ≅ Γ (1 + 𝛼) (𝑓 (𝑧) − 𝑓 (𝑧

0
)) . (5)

If the limit of (4) exists for all 𝑧
0
in a region R, then the

complex function 𝑓(𝑧) is said to be local fractional analytic
in a regionR.

The properties of the local fractional derivatives of some
complex functions are presented as follows [40]:

𝑑
𝛼
𝑧
𝑘𝛼

𝑑𝑧𝛼
=

Γ (1 + 𝑘𝛼)

Γ (1 + (𝑘 − 1) 𝛼)
𝑧
(𝑘−1)𝛼

,

𝑑
𝛼
𝐸
𝛼
(𝑧
𝛼
)

𝑑𝑧𝛼
= 𝐸
𝛼
(𝑧
𝛼
) ,

𝑑
𝛼sin
𝛼
𝑧
𝛼

𝑑𝑧𝛼
= cos
𝛼
𝑧
𝛼
,

𝑑
𝛼cos
𝛼
𝑧
𝛼

𝑑𝑧𝛼
= −sin

𝛼
𝑧
𝛼
,

(6)

where

𝐸
𝛼
(𝑧
𝛼
) =

∞

∑

𝑘=0

𝑧
𝛼𝑘

Γ (1 + 𝑘𝛼)
,

sin
𝛼
𝑧
𝛼
=

∞

∑

𝑘=0

(−1)
𝑘
𝑧
𝛼(2𝑘+1)

Γ [1 + 𝛼 (2𝑘 + 1)]
,

cos
𝛼
𝑧
𝛼
=

∞

∑

𝑘=0

(−1)
𝑘
𝑧
2𝛼𝑘

Γ (1 + 2𝛼𝑘)
.

(7)

Definition 3 (see [40, 46–50, 60]). The local fractional inte-
gral of complex function 𝑓(𝑧) of order 𝛼 along the closed
contour 𝐶 is defined as

𝐼
𝛼

𝐶
𝑓 (𝑧) =

1

Γ (1 + 𝛼)
∮
𝐶

𝑓 (𝑧) (𝑑𝑧)
𝛼
, 𝛼 ∈ (0, 1] . (8)

The properties of the local fractional integrals of some
complex functions are suggested as follows [40]:

1

Γ (1 + 𝛼)
∫
𝐶

(𝑓 (𝑧) + 𝑔 (𝑧)) (𝑑𝑧)
𝛼

=
1

Γ (1 + 𝛼)
∫
𝐶

𝑓 (𝑧) (𝑑𝑧)
𝛼
+

1

Γ (1 + 𝛼)
∫
𝐶

𝑔 (𝑧) (𝑑𝑧)
𝛼
,

1

Γ (1 + 𝛼)
∫
𝐶1+𝐶2

𝑓 (𝑧) (𝑑𝑧)
𝛼

=
1

Γ (1 + 𝛼)
∫
𝐶1

𝑓 (𝑧) (𝑑𝑧)
𝛼
+

1

Γ (1 + 𝛼)
∫
𝐶2

𝑓 (𝑧) (𝑑𝑧)
𝛼
,

1

Γ (1 + 𝛼)
∫
𝐶1

𝑓 (𝑧) (𝑑𝑧)
𝛼
= −

1

Γ (1 + 𝛼)
∫
−𝐶1

𝑓 (𝑧) (𝑑𝑧)
𝛼
.

(9)

Theorem 4 (see [40]). If 𝑓(𝑧) is local fractional analytic
within and on a simple closed contour 𝐶 and 𝑎 is any point
interior to 𝐶, then we have

1

(2𝜋)
𝛼
𝑖𝛼

⋅ {
1

Γ (1 + 𝛼)
∮
𝐶

𝑓 (𝑧)

(𝑧 − 𝑧
0
)
𝛼 (𝑑𝑧)

𝛼
} =

𝑓 (𝑧
0
)

Γ (1 + 𝛼)
.

(10)

Proof. See [40].



Abstract and Applied Analysis 3

Definition 5 (see [40, 60]). If 𝑧
0
is an isolated singular point

of 𝑓(𝑧), then we have a local fractional Laurent series of 𝑓(𝑧)

at 𝐶 : |𝑧 − 𝑧
0
| < 𝑟 given by

𝑓 (𝑧) =

∞

∑

𝑖=−∞

𝑎
𝑘
(𝑧 − 𝑧

0
)
𝑘𝛼

. (11)

The coefficient 𝑎
−1

of (𝑧 − 𝑧
0
)
−𝛼 is called the local fractional

residue of 𝑓(𝑧) at 𝑧 = 𝑧
0
and is frequently written as

Re
𝑧=𝑧0

𝑠 {𝑓 (𝑧)} = 𝑎
−1

. (12)

Theorem 6 (see [40]). If 𝑓(𝑧) is local fractional analytic
within and on the boundary𝐶 of a regionR except at a number
of poles 𝑎 withinR, having a residue 𝑎

−1
, then

1

(2𝜋)
𝛼
𝑖𝛼

⋅ {
1

Γ (1 + 𝛼)
∮
𝐶

𝑓 (𝑧) (𝑑𝑧)
𝛼
} = Re

𝑧=𝑧0
𝑠 {𝑓 (𝑧)} .

(13)

Proof. See [40].

Theorem 7 (see [40]). If 𝑓(𝑧) is local fractional analytic
within and on the boundary𝐶 of a regionR except at a number
of poles 𝑎 withinR, having numbers of residues, then

1

(2𝜋)
𝛼
𝑖𝛼

⋅ {
1

Γ (1 + 𝛼)
∮
𝐶

𝑓 (𝑧) (𝑑𝑧)
𝛼
} =

𝑛

∑

𝑖=1

Re
𝑧=𝑧𝑘

𝑠 {𝑓 (𝑧)} .

(14)

Proof. See [40].

3. Local Fractional 𝑍-Transforms and
Their Properties

In this section, we give the local fractional 𝑍-transforms and
their properties.

Definition 8 (see [60]). Local fractional 𝑍-transform of 𝑓(𝑛)

of order 𝛼 is defined as

𝑍
𝛼
{𝑓 (𝑛)} = 𝐹

𝛼
(𝑧) =

∞

∑

𝑛=∞

𝑓 (𝑛) 𝑧
−𝑛𝛼

, (15)

where the above formula is convergent.

For a given sequence, the set R of values of 𝑧 for which
its local fractional𝑍-transform converges is called the region
of convergence (ROC), namely,

∞

∑

𝑛=∞

󵄨󵄨󵄨󵄨𝑓 (𝑛) 𝑧
−𝑛𝛼󵄨󵄨󵄨󵄨 < ∞. (16)

The inverse formula of local fractional 𝑍-transform of 𝑓(𝑛)

of order 𝛼 reads as follows (see [60]):

𝑍
−1

𝛼
{𝐹
𝛼 (𝑧)} = 𝑓 (𝑛)

=
1

(2𝜋𝑖)
𝛼
Γ (1 + 𝛼)

∮
𝐶

𝐹
𝛼 (𝑧) 𝑧

(𝑛−1)𝛼
(𝑑𝑧)
𝛼
,

(17)

where 𝐶 is a counterclockwise closed fractal path encircling
the origin and entirely in the region of convergence.

Let 𝑍
𝛼
{𝑓(𝑛)} = 𝐹

𝛼
(𝑧) within the region of convergence

R
1
and let 𝑍

𝛼
{𝑔(𝑛)} = 𝐺

𝛼
(𝑧) within the region of conver-

genceR
2
.

Property 1 (linearity). We have

𝑍
𝛼
{𝑓 (𝑛) + 𝑔 (𝑛)} = 𝐹

𝛼
(𝑧) + 𝐺

𝛼
(𝑧) (18)

within the region of convergenceR
1
∩ R
2
.

Proof. From (15) we have

𝑍
𝛼
{𝑓 (𝑛) + 𝑔 (𝑛)} =

∞

∑

𝑛=∞

(𝑓 (𝑛) + 𝑔 (𝑛)) 𝑧
−𝑛𝛼

= 𝑍
𝛼
{𝑓 (𝑛)} + 𝑍

𝛼
{𝑔 (𝑛)}

(19)

within the region of convergenceR
1
∩ R
2
.

Property 2 (time shifting). If the variable 𝑧 has a useful inter-
pretation in terms of time delay, then we have

𝑍
𝛼
{𝑓 (𝑛 − 𝑘)} = 𝑧

−𝑧𝛼
𝐹
𝛼
(𝑧) . (20)

Proof. From (15), we have

𝑍
𝛼
{𝑓 (𝑛 − 𝑘)} =

∞

∑

𝑛=∞

𝑓 (𝑛 − 𝑘) 𝑧
−𝑛𝛼

=

∞

∑

𝑛=∞

𝑓 (𝑛) 𝑧
−(𝑛+𝑘)𝛼

= 𝑧
−𝑘𝛼

∞

∑

𝑛=∞

𝑓 (𝑛) 𝑧
−𝑛𝛼

= 𝑧
−𝑘𝛼

𝑍
𝛼
{𝑓 (𝑛)} .

(21)

Property 3 (frequency modulation). We have

𝑍
𝛼
{𝑧
𝑛𝛼

0
𝑓 (𝑛)} = 𝐹

𝛼
(

𝑧

𝑧
0

) . (22)

Proof. From (15), we have

𝑍
𝛼
{𝑧
𝑛𝛼

0
𝑓 (𝑛)} =

∞

∑

𝑛=∞

𝑓 (𝑛) 𝑧
𝑛𝛼

0
𝑧
−𝑛𝛼

=

∞

∑

𝑛=∞

𝑓 (𝑛) (
𝑧

𝑧
0

)

−𝑛𝛼

= 𝐹
𝛼
(

𝑧

𝑧
0

) .

(23)

4. Some Illustrative Examples

In this section, we give some samples for nondifferentiable
signals defined on Cantor sets.

Example 1. Let us consider the following signal in the form:

𝑓 (𝑛) = 𝛿
𝛼 (𝑛) = {

1, 𝑛 = 0,

0, 𝑛 ̸= 0.
(24)
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Figure 2: The graph of Re
𝛼
𝜙(𝜔, 𝑘) with premasters 𝜔 = 1 and 𝛼 =

ln 2/ ln 3.

Taking local fractional 𝑍-transform, we have

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝛿
𝛼
(𝑛)} =

∞

∑

𝑛=∞

𝛿
𝛼
(𝑛) 𝑧
−𝑛𝛼

= 1. (25)

Example 2. We now suggest the following signal in the form:

𝑓 (𝑛) = 𝛿
𝛼 (𝑛 − 𝑘) = {

1, 𝑛 = 𝑘,

0, 𝑛 ̸= 𝑘.
(26)

Taking local fractional 𝑍-transform, we obtain

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝛿
𝛼
(𝑛 − 𝑘)} =

∞

∑

𝑛=∞

𝛿
𝛼
(𝑛 − 𝑘) 𝑧

−𝑛𝛼
= 𝑧
−𝑘𝛼

.

(27)

When 𝑧
𝛼
= 𝐸
𝛼
(𝑗
𝛼
𝜔
𝛼
)with the imaginary unit 𝑗𝛼 [40, 44–50],

we get

𝜙 (𝜔, 𝑘) = 𝑍
𝛼
{𝑓 (𝑛)} = 𝐸

𝛼
(−𝑗
𝛼
𝜔
𝛼
𝑘
𝛼
)

= cos
𝛼
(𝜔
𝛼
𝑘
𝛼
) − 𝑗
𝛼sin
𝛼
(𝜔
𝛼
𝑘
𝛼
) .

(28)

Hence, from (28), we get

Re
𝛼
𝜙 (𝜔, 𝑘) = cos

𝛼
(𝜔
𝛼
𝑘
𝛼
) ,

Im
𝛼
𝜙 (𝜔, 𝑘) = −sin

𝛼
(𝜔
𝛼
𝑘
𝛼
)

(29)

with the real part graph in Figure 2 and imaginary part graph
in Figure 3.

Example 3. There is the signal in the following form:

𝑓 (𝑛) = 𝛿
𝛼 (𝑛 − 𝑘) + 𝛿

𝛼 (𝑛 + 𝑘) = {
1, 𝑛 = ±𝑘,

0, 𝑛 ̸= ± 𝑘.
(30)

Taking local fractional 𝑍-transform, we have

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝛿
𝛼 (𝑛 − 𝑘) + 𝛿

𝛼 (𝑛 + 𝑘)}

=

∞

∑

𝑛=∞

(𝛿
𝛼 (𝑛 − 𝑘) + 𝛿

𝛼 (𝑛 + 𝑘)) 𝑧
−𝑛𝛼

= 𝑧
−𝑘𝛼

+ 𝑧
𝑘𝛼

.

(31)
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When 𝑧
𝛼
= 𝐸
𝛼
(𝑗
𝛼
𝜔
𝛼
), we get

𝜙 (𝜔, 𝑘) = 𝑍
𝛼
{𝑓 (𝑛)} = 𝐸

𝛼
(𝑗
𝛼
𝜔
𝛼
𝑘
𝛼
) = 2cos

𝛼
(𝜔
𝛼
𝑘
𝛼
)

(32)

with the graph of 𝜙(𝜔, 𝑘) shown in Figure 4.

Example 4. We have the following signal in the form:

𝑓 (𝑛) = {
𝑎
𝑛𝛼

, 𝑎 ≥ 0,

0, 𝑎 < 0.
(33)

Local fractional 𝑍-transform gives the following form:

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝑎
𝑛𝛼

} =

∞

∑

𝑛=0

𝑎
𝑛𝛼

𝑧
−𝑛𝛼

=

∞

∑

𝑛=0

(
𝑧

𝑎
)

−𝑛𝛼

(34)

with the region of convergence |𝑧| > |𝑎|.

Example 5. We consider the following signal in the form:

𝑓 (𝑛) = {
0, 𝑎 ≥ 0,

𝑎
𝑛𝛼

, 𝑎 < 0.
(35)
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Taking local fractional 𝑍-transform, we arrive at the follow-
ing form:

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝑎
𝑛𝛼

} =

0

∑

𝑛=∞

𝑎
𝑛𝛼

𝑧
−𝑛𝛼

=

0

∑

𝑛=∞

(
𝑧

𝑎
)

−𝑛𝛼

(36)

with the region of convergence |𝑧| < |𝑎|.

Example 6. We present the following signal in the form:

𝑓 (𝑛) = {
𝑏
𝑛𝛼

, 𝑎 ≥ 0,

𝑎
𝑛𝛼

, 𝑎 < 0.
(37)

Local fractional 𝑍-transform gives the following form:

𝑍
𝛼
{𝑓 (𝑛)} = 𝑍

𝛼
{𝑎
𝑛𝛼

+ 𝑎
𝑛𝛼

} =

∞

∑

𝑛=0

𝑏
𝑛𝛼

𝑧
−𝑛𝛼

+

0

∑

𝑛=∞

𝑎
𝑛𝛼

𝑧
−𝑛𝛼

=

∞

∑

𝑛=0

(
𝑧

𝑏
)

−𝑛𝛼

+

0

∑

𝑛=∞

(
𝑧

𝑎
)

−𝑛𝛼

(38)

with the region of convergence |𝑏| < |𝑧| < |𝑎|.

5. Conclusions

In this work, we investigated the local fractional 𝑍-trans-
forms based on the local fractional complex calculus and
some properties are also obtained. Some illustrative examples
were also given. The obtained results show the accuracy and
efficiency of the presented method.
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