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This paper addresses the problem of robust𝐻
∞
control design via the proportional-spatial derivative (P-sD) control approach for

a class of nonlinear distributed parameter systems modeled by semilinear parabolic partial differential equations (PDEs). By using
the Lyapunov directmethod and the technique of integration by parts, a simple linearmatrix inequality (LMI) based designmethod
of the robust𝐻

∞
P-sD controller is developed such that the closed-loop PDE system is exponentially stable with a given decay rate

and a prescribed 𝐻
∞

performance of disturbance attenuation. Moreover, a suboptimal 𝐻
∞

controller is proposed to minimize
the attenuation level for a given decay rate. The proposed method is successfully employed to address the control problem of the
FitzHugh-Nagumo (FHN) equation, and the achieved simulation results show its effectiveness.

1. Introduction

A significant research area that has received a lot of attention
over the past few decades is the control design for distributed
parameter systems (DPSs) modeled by parabolic partial
differential equations (PDEs). These DPSs can be applied to
describemany industrial processes, such as thermal diffusion
processes, fluid, andheat exchangers [1–4].Thekey character-
istic of DPSs is space distribution, which causes their outputs,
inputs, process states, and parameters to be spatially varying.
On the other hand, external disturbances and nonlinear
phenomena appear in most real systems. In this situation, the
study of robust 𝐻

∞
control design for nonlinear parabolic

PDE systems is of theoretical and practical importance.
Significant research results have been reported in the

past few decades for DPSs [1–3, 5–18]. The most interesting
results within these research activities are those developed
on the basis of PDE model [9–18]. For example, Krstic
and Smyshlyaev have developed nonadaptive and adaptive
kernel-based backstepping methods for linear boundary

control PDE systems [9–11]. Fridman and Orlov [12] have
presented exponential stabilization with 𝐻

∞
performance

in terms of linear matrix inequalities (LMIs) for uncertain
semilinear parabolic and hyperbolic systems via a robust
collocated static output feedback boundary controller. These
results [9–12] are only applicable for boundary control
PDE systems. Motivated by significant recent advances in
actuation and sensing technology, particularly the advances
of microelectromechanical systems, it is possible to man-
ufacture large arrays of microsensors and actuators with
integrated control circuitry (for control applications of such
devices, see [13] and the references therein). Hence, the
problems on distributed control theory and design for PDE
systems have received a great deal of attention [1–3, 14–
18]. For example, Orlov et al. have developed state feedback
tracking control design [3] for an uncertain heat diffusion
process and exponential stabilization [14] for an uncertain
wave equation via distributed dynamic input extension.
Wang, Wu, and Li have established sufficient conditions
of distributed exponential stabilization via simple fuzzy
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proportional state feedback controllers for first-order hyper-
bolic PDE systems [15–17] and via a fuzzy proportional-
spatial derivative (P-sD) for semi-linear parabolic PDE sys-
tem [18]. Wu, Wang, and Li [19] have proposed a Lyapunov-
based distributed𝐻

∞
fuzzy controller design with constraint

for semi-linear first-order hyperbolic PDE systems. Notice
that the results reported in [15–19] are presented in terms of
spatial differential linearmatrix inequalities (SDLMIs), which
can be only approximately solved on the basis of standard
finite differencemethod and the existing convex optimization
techniques [20, 21]. Despite these efforts, to the best of the
authors’ knowledge, there are still few results on the robust
𝐻
∞
control design via the original PDEmodel of semi-linear

parabolic PDE systems with external disturbances, which
motivates this study.

In this study, we will deal with the problem of robust
𝐻
∞

control design for a class of semi-linear parabolic
PDE systems with external disturbances via P-sD control
approach. Based on the Lyapunov direct method and inte-
gration by parts, a sufficient condition for the exponential
stabilization with a given decay rate and a prescribed 𝐻

∞

performance of disturbance attenuation is presented in terms
of standard LMIs. Moreover, a suboptimal 𝐻

∞
controller

is proposed to minimize the attenuation level for a given
decay rate. Finally, the simulation study on the robust 𝐻

∞

control of a semi-linear parabolic PDE system represented by
FitzHugh-Nagumo (FHN) equation is provided to show the
effectiveness of the proposed method.

The remainder of this paper is organized as follows.
The problem formulation and preliminaries are given in
Section 2. The robust 𝐻

∞
P-sD control design is provided

in Section 3. Section 4 presents an example to illustrate the
effectiveness of the proposedmethod. Finally, Section 5 offers
some conclusions.

Notations. The notations used throughout the paper are
given as follows. R, R𝑛, and R𝑚×𝑛 denote the set of all
real numbers, 𝑛-dimensional Euclidean space, and the set
of all real 𝑚 × 𝑛 matrices, respectively. Identity matrix, of
appropriate dimension, will be denoted by I. For a symmetric
matrix M, M > (≥, <, ≤) 0 means that it is positive definite
(semipositive definite, negative definite, and seminegative
definite, resp.).H𝑛 ≜ L

2
([𝑙
1
, 𝑙
2
];R𝑛) is a Hilbert space of 𝑛-

dimensional square integrable vector functions 𝜗(𝑥, 𝑡) ∈ R𝑛,
𝑥 ∈ [𝑙
1
, 𝑙
2
] ⊂ R, ∀𝑡 ≥ 0 with the inner product and norm:

⟨𝜗
1
(⋅, 𝑡) , 𝜗

2
(⋅, 𝑡)⟩ = ∫

𝑙
2

𝑙
1

𝜗
𝑇

1
(𝑥, 𝑡) 𝜗

2
(𝑥, 𝑡) 𝑑𝑥,

󵄩
󵄩
󵄩
󵄩
𝜗
1
(⋅, 𝑡)

󵄩
󵄩
󵄩
󵄩2
= ⟨𝜗
1
(⋅, 𝑡) , 𝜗

1
(⋅, 𝑡)⟩
1/2

,

(1)

where 𝜗
1
(⋅, 𝑡) ∈ H𝑛 and 𝜗

2
(⋅, 𝑡) ∈ H𝑛. The superscript “𝑇” is

used for the transpose of a vector or a matrix.The symbol “∗”
is used as an ellipsis in matrix expressions that are induced by
symmetry; for example,

[

S + [M + N + ∗] X
∗ Y] ≜ [

S + [M + N +M𝑇 + N𝑇] X
X𝑇 Y

] .

(2)

2. Preliminaries and Problem Formulation

Consider the following nonlinear DPSs modeled by semi-
linear parabolic PDEs:

y
𝑡
(𝑥, 𝑡) = Θ

1
y
𝑥𝑥
(𝑥, 𝑡) +Θ

2
y
𝑥
(𝑥, 𝑡) + Ay (𝑥, 𝑡)

+ f (y (𝑥, 𝑡) , 𝑥, 𝑡) + G
𝑢
u (𝑥, 𝑡) + G

𝑤
w (𝑥, 𝑡) ,

(3)

z (𝑥, 𝑡) = Cy (𝑥, 𝑡) +Du (𝑥, 𝑡) (4)
subject to the homogeneous Neumann boundary conditions:

y
𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨𝑥=𝑙
1

= y
𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨𝑥=𝑙
2

= 0 (5)
and the initial condition:

y (𝑥, 0) = y
0
(𝑥) , (6)

where y(𝑥, 𝑡) ≜ [𝑦
1
(𝑥, 𝑡) ⋅ ⋅ ⋅ 𝑦

𝑛
(𝑥, 𝑡)] ∈ R𝑛 is the

state, the subscripts 𝑥 and 𝑡 stand for the partial derivatives
with respect to 𝑥, 𝑡, respectively, 𝑥 ∈ [𝑙

1
, 𝑙
2
] ⊂ R and

𝑡 ∈ [0,∞) denote the position and time, respectively, and
u(𝑥, 𝑡) ≜ [𝑢

1
(𝑥, 𝑡) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑥, 𝑡)] ∈ R𝑚 is the control input.

z(𝑥, 𝑡) ∈ R𝑞 is the controlled output. w(𝑥, 𝑡) ∈ R𝑝 is
the exogenous disturbance satisfying ∫∞

0

‖w(⋅, 𝑡)‖2
2
𝑑𝑡 < ∞.

f(y(𝑥, 𝑡), 𝑥, 𝑡) ∈ R𝑛 is the nonlinear part in the system,
which is a locally Lipschitz continuous function on y(𝑥, 𝑡) and
satisfies f(0, 𝑥, 𝑡) = 0 for all 𝑥 ∈ [𝑙

1
, 𝑙
2
] and 𝑡 ≥ 0. Θ

1
, Θ
2
, A,

G
𝑢
, G
𝑤
, C, and D are real-known matrices with appropriate

dimensions.
This study considers the following P-sD state feedback

controller:
u (𝑥, 𝑡) = K

1
y (𝑥, 𝑡) + K

2
y
𝑥
(𝑥, 𝑡) , (7)

whereK
1
∈ R𝑚×𝑛 andK

2
∈ R𝑚×𝑛 are control gainmatrices to

be determined. The controller structure is shown in Figure 1,
in which the notation “𝜕/𝜕𝑥” means a first-order spatial
differentiator.

Remark 1. It must be stressed that the implementation of
the controller (7) requires distributed sensing and actuation.
Although this is normally recognized as a critical draw-
back, with recent advances in technological developments
of microelectromechanical systems, it becomes feasible to
manufacture large arrays of microsensors and actuators
with integrated control circuitry, which can be used for
the implementation of distributed feedback control loops
in some practical applications (see [13] and the references
therein). The signal y

𝑥
(𝑥, 𝑡) can be obtained using the finite

differencemethod. In addition, it has been pointed out in [18]
that the controller (7) can provide more convenient spatial
performance.

Substituting (7) into (3) and (4) leads to the following
PDE:
y
𝑡
(𝑥, 𝑡) = Θ

1
y
𝑥𝑥
(𝑥, 𝑡) + [Θ

2
+ G
𝑢
K
2
] y
𝑥
(𝑥, 𝑡) + A

𝑐
y (𝑥, 𝑡)

+ f (y (𝑥, 𝑡) , 𝑥, 𝑡) + G
𝑤
w (𝑥, 𝑡) ,

z (𝑥, 𝑡) = C
𝑐
y (𝑥, 𝑡) +DK

2
y
𝑥
(𝑥, 𝑡) ,

(8)
where A

𝑐
≜ A + G

𝑢
K
1
and C

𝑐
≜ C +DK

1
.
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Figure 1: The structure of distributed P-sD state-feedback con-
troller.

In order to attenuate the effect of w(𝑥, 𝑡), robust 𝐻
∞

control will be employed in this paper to deal with the dis-
turbance attenuation problem. Let us consider the following
𝐻
∞

control performance for the closed-loop PDE system of
the form (5), (6), and (8):

∫

∞

0

‖z (⋅, 𝑡)‖2
2
𝑑𝑡 ≤ ⟨y

0
(⋅) ,Py

0
(⋅)⟩ + 𝛾

2

∫

∞

0

‖w (⋅, 𝑡)‖
2

2
𝑑𝑡, (9)

where P > 0 is a real 𝑛 × 𝑛 matrix and 𝛾 > 0 is a prescribed
level of disturbance attenuation. In general, it is desirable to
make the attenuation level as small as possible to achieve the
optimal disturbance attenuation performance.

For simplicity, when u(𝑥, 𝑡) ≡ 0, the PDE system (3)–
(6) is referred to as an unforced PDE system, while when
w(𝑥, 𝑡) ≡ 0, it is referred to as a disturbance-free PDE system.
We introduce the following definitions.

Definition 2. Given a constant 𝜌 > 0, the unforced
disturbance-free PDE systemof (5), (6), and (8) (i.e.,u(𝑥, 𝑡) ≡
0 and w(𝑥, 𝑡) ≡ 0) is said to be exponentially stable with a
given decay rate 𝜌, if there exists a constant 𝜎 > 0 such that
the following inequality holds:

󵄩
󵄩
󵄩
󵄩
y (⋅, 𝑡)󵄩󵄩󵄩

󵄩

2

2
≤ 𝜎 exp (−2𝜌𝑡) 󵄩󵄩󵄩

󵄩
y
0
(⋅)
󵄩
󵄩
󵄩
󵄩

2

2
, ∀𝑡 ≥ 0. (10)

Definition 3. Given constants 𝜌 > 0 and 𝛾 > 0, the unforced
PDE system of (5), (6), and (8) is said to be exponentially
stable with a given decay rate 𝜌 and 𝛾-disturbance attenuation
if the response z(𝑥, 𝑡) satisfies (9) and the disturbance-free
system is exponentially stable with a given decay rate 𝜌.

Therefore, the objective of this study is to find a robust
P-sD controller of the form (7) such that the resulting closed-
loop system is exponentially stable and the𝐻

∞
performance

is ensured for a prescribed disturbance attenuation level 𝛾 >
0. To do this, the following assumption and lemma are useful
for the development of the main results.

Assumption 4. There exists a scalar 𝜒 > 0 such that the
following inequality holds for any y(𝑥, 𝑡) ∈ Ω:

∫

𝑙
2

𝑙
1

f𝑇 (y (𝑥, 𝑡) , 𝑥, 𝑡) f (y (𝑥, 𝑡) , 𝑥, 𝑡) 𝑑𝑥

≤ 𝜒∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡) y (𝑥, 𝑡) 𝑑𝑥,
(11)

where Ω ≜ {y(𝑥, 𝑡) | 𝜎
1
(𝑥) ≤ y(𝑥, 𝑡) ≤ 𝜎

2
(𝑥), 𝑥 ∈ [𝑙

1
, 𝑙
2
], 𝑡 ≥

0}.

Lemma 5. For any two square integrable vector functions
a(𝑥) ∈ R𝑛, b(𝑥) ∈ R𝑛, 𝑥 ∈ [𝑙

1
, 𝑙
2
], the following inequality

holds for any positive scalar 𝛼 ∈ R, 𝑥 ∈ [𝑙
1
, 𝑙
2
]:

2 ⟨a, b⟩ ≤ ⟨a, 𝛼a⟩ + ⟨b, 𝛼−1b⟩ . (12)

Proof. It is easily verified that [𝛼a(𝑥)−b(𝑥)]𝑇[𝛼a(𝑥)−b(𝑥)] ≥
0 holds for any 𝑥 ∈ [𝑙

1
, 𝑙
2
] and any positive scalar 𝛼.

Therefore,

0 ≤ [𝛼a (𝑥) − b (𝑥)]𝑇 [𝛼a (𝑥) − b (𝑥)]

= 𝛼
2a𝑇 (𝑥) a (𝑥) − 2𝛼a𝑇 (𝑥) b (𝑥) + b𝑇 (𝑥) b (𝑥) ,

(13)

which implies

2aT (𝑥) b (𝑥) ≤ 𝛼a𝑇 (𝑥) a (𝑥)

+ 𝛼
−1b𝑇 (𝑥) b (𝑥) , 𝑥 ∈ [𝑙

1
, 𝑙
2
] .

(14)

Integrating both sides of (14) from 𝑙
1
to 𝑙
2
, we can obtain

that

2∫

𝑙
2

𝑙
1

a𝑇 (𝑥) b (𝑥) 𝑑𝑥 ≤ ∫

𝑙
2

𝑙
1

𝛼a𝑇 (𝑥) a (𝑥) 𝑑𝑥

+ ∫

𝑙
2

𝑙
1

𝛼
−1b𝑇 (𝑥) b (𝑥) 𝑑𝑥,

(15)

which implies that the inequality (12) holds. The proof is
complete.

3. Robust 𝐻
∞

P-sD Control Design

The aim of this section is to develop a robust 𝐻
∞

P-sD state
feedback controller to not only exponentially stabilize the
semi-linear PDE system (3)–(6) but also achieve the 𝐻

∞

performance with a prescribed disturbance attenuation level
𝛾 > 0.

Consider the following Lyapunov functional for the
system (5), (6), and (8):

𝑉 (𝑡) = ∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)Py (𝑥, 𝑡) 𝑑𝑥, (16)
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where P > 0 is a real 𝑛 × 𝑛 gain matrix to be determined. The
time derivative of 𝑉(𝑡) along the solution of the system (5),
(6), and (8) is given by

𝑉̇ (𝑡) = 2∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)Py
𝑡
(𝑥, 𝑡) 𝑑𝑥

= 2∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)PΘ
1
y
𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)P [Θ
2
+ G
𝑢
K
2
] y
𝑥
(𝑥, 𝑡) 𝑑𝑥

+ ∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡) [PA
𝑐
+ ∗] y (𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)Pf (y (𝑥, 𝑡) , 𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)PG
𝑤
w (𝑥, 𝑡) 𝑑𝑥.

(17)

Integrating by parts and taking into account (5) yield

∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)PΘ
1
y
𝑥𝑥
(𝑥, 𝑡) 𝑑𝑥

= y𝑇 (𝑥, 𝑡)PΘ
1
y
𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑥=𝑙
2

𝑥=𝑙
1

− ∫

𝑙
2

𝑙
1

y𝑇
𝑥
(𝑥, 𝑡)PΘ

1
y
𝑥
(𝑥, 𝑡) 𝑑𝑥

= −∫

𝑙
2

𝑙
1

y𝑇
𝑥
(𝑥, 𝑡)PΘ

1
y
𝑥
(𝑥, 𝑡) 𝑑𝑥.

(18)

Applying Assumption 4, for any scalar 𝛼 > 0,

2∫

𝑧
2

𝑧
1

y𝑇 (𝑥, 𝑡)Pf (y (𝑥, 𝑡) , 𝑥, 𝑡) 𝑑𝑥

≤ 𝛼∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)PPy (𝑥, 𝑡) 𝑑𝑥

+ 𝛼
−1

∫

𝑙
2

𝑙
1

f𝑇 (y (𝑥, 𝑡) , 𝑥, 𝑡) f (y (𝑥, 𝑡) , 𝑥, 𝑡) 𝑑𝑥

≤ 𝛼∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)PPy (𝑥, 𝑡) 𝑑𝑥

+ 𝛼
−1

𝜒∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡) y (𝑥, 𝑡) 𝑑𝑥

= ∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡) [𝛼PP + 𝛼−1𝜒I] y (𝑥, 𝑡) 𝑑𝑥.

(19)

Substitution of (18) and (19) into (17) implies

𝑉̇ (𝑡) + 2𝜌𝑉 (𝑡)

≤ ∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡) [[PA
𝑐
+ ∗] + 𝛼PP + 𝛼−1𝜒I + 2𝜌P] y (𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)P [Θ
2
+ G
𝑢
K
2
] y
𝑥
(𝑥, 𝑡) 𝑑𝑥

− ∫

𝑙
2

𝑙
1

y𝑇
𝑥
(𝑥, 𝑡) [PΘ

1
+ ∗] y

𝑥
(𝑥, 𝑡) 𝑑𝑥

≤ ∫

𝑙
2

𝑙
1

ỹ𝑇 (𝑥, 𝑡) Ψỹ (𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)PG
𝑤
w (𝑥, 𝑡) 𝑑𝑥,

(20)

where ỹ(𝑥, 𝑡) ≜ [y𝑇(𝑥, 𝑡) y𝑇
𝑥
(𝑥, 𝑡)]

𝑇 and

Ψ ≜
[

[

[PA
𝑐
+ ∗] + 𝛼PP + 𝛼−1𝜒I + 2𝜌P P [Θ

2
+ G
𝑢
K
2
]

∗ − [PΘ
1
+ ∗]

]

]

.

(21)

Combining (4) and (20) gives

𝑉̇ (𝑡) + 2𝜌𝑉 (𝑡) + ‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2

≤ ∫

𝑙
2

𝑙
1

ỹ𝑇 (𝑥, 𝑡) [Ψ + [C
𝑐
DK
2
]

𝑇

[C
𝑐
DK
2
]] ỹ (𝑥, 𝑡) 𝑑𝑥

+ 2∫

𝑙
2

𝑙
1

y𝑇 (𝑥, 𝑡)PG
𝑤
w (𝑥, 𝑡) 𝑑𝑥

− 𝛾
2

∫

𝑙
2

𝑙
1

w𝑇 (𝑥, 𝑡)w (𝑥, 𝑡) 𝑑𝑥

= ∫

𝑙
2

𝑙
1

ŷ𝑇 (𝑥, 𝑡) Ψ̂ŷ (𝑥, 𝑡) 𝑑𝑥,

(22)

where ŷ(𝑥, 𝑡) ≜ [ỹ𝑇(𝑥, 𝑡) w𝑇(𝑥, 𝑡)]𝑇 and

Ψ̂

≜

[

[

[

[

[

[

[

[PA
𝑐
+ ∗] + 𝛼PP + 𝛼−1𝜒I + 2𝜌P P [Θ

2
+ G
𝑢
K
2
]

PG
𝑤

∗ − [PΘ
1
+ ∗] 0

∗ ∗ −𝛾
2I

]

]

]

]

]

]

]

+

[

[

[

[

C𝑇
𝑐

K𝑇
2
D𝑇
0

]

]

]

]

[

[

C𝑇
𝑐

K𝑇
2
D𝑇
0

]

]

𝑇

.

(23)

From the above analysis, we have the following theorem.
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Theorem6. Consider the semi-linear PDE system (3)–(6)with
the P-sD controller (7). For some given scalar 𝜌 > 0 and 𝛾 > 0,
the closed-loop PDE system is exponentially stable with a decay
rate 𝜌 and the 𝛾-disturbance attenuation, if there exist a 𝑛 × 𝑛
matrixQ > 0,𝑚×𝑛matricesZ

𝑖
, 𝑖 ∈ {1, 2}, and a positive scalar

𝛼 satisfying the following LMI:

Ξ ≜

[

[

[

[

[

[

Ξ
11
Θ
2
Q + G

𝑢
Z
2

G
𝑤

Q ̃C𝑇
∗ − [Θ

1
Q + ∗] 0 0 Z𝑇

2
D𝑇

∗ ∗ −𝛾
2I 0 0

∗ ∗ ∗ −𝛼𝜒
−1I 0

∗ ∗ ∗ ∗ −I

]

]

]

]

]

]

< 0, (24)

where Ξ
11
≜ [AQ+G

𝑢
Z
1
+∗]+2𝜌Q+𝛼I and C̃ ≜ CQ+DZ

1
.

In this case, the gain matrices K
𝑖
, 𝑖 ∈ {1, 2} can be constructed

as

K
𝑖
= Z
𝑖
Q−1, 𝑖 ∈ {1, 2} . (25)

Proof. Set

Q = P−1 > 0, Z
𝑖
= K
𝑖
Q, 𝑖 ∈ {1, 2} . (26)

By pre- and post-multiplying the matrix Ψ̂ by the matrix
diag{Q,Q, I}, respectively, we get

Ξ ≜

[

[

[

[

[

Ξ
11
+ 𝛼
−1

𝜒QQ Θ
2
Q + G

𝑢
Z
2

G
𝑤

∗ − [Θ
1
Q + ∗] 0

∗ ∗ −𝛾
2I

]

]

]

]

]

+
[

[

C̃𝑇
Z𝑇
2
D𝑇
0

]

]

[

[

C̃𝑇
Z𝑇
2
D𝑇
0

]

]

𝑇

.

(27)

Using the Schur complement two times, LMI (24) is equiva-
lent to the inequalityΞ < 0. Since diag{Q,Q, I} > 0 andΞ < 0,
we can get the inequality Ψ̂ < 0.

From the inequality Ψ̂ < 0 and (22), we can drive

𝑉̇ (𝑡) + 2𝜌𝑉 (𝑡) + ‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2
≤ 0. (28)

Since 𝜌𝑉(𝑡) ≥ 0, we can obtain from (28) that

𝑉̇ (𝑡) + ‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2
≤ 0. (29)

Integrating (29) from 𝑡 = 0 to 𝑡 = ∞ yields

∫

∞

0

𝑉̇ (𝑡) 𝑑𝑡 + ∫

∞

0

(‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2
) 𝑑𝑡 ≤ 0, (30)

which implies

𝑉 (∞) − 𝑉 (0) + ∫

∞

0

(‖z (⋅, 𝑡)‖2
2
− 𝛾
2

‖w (⋅, 𝑡)‖
2

2
) 𝑑𝑡 ≤ 0. (31)

Since 𝑉(∞) ≥ 0, we obtain (9) from (31).
Next, we will show the exponential stability with a given

decay rate 𝜌 of the disturbance-free system of (5), (6), and (8).
When w(𝑥, 𝑡) = 0, inequality (20) can be rewritten as

𝑉̇ (𝑡) + 2𝜌𝑉 (𝑡) ≤ ∫

𝑙
2

𝑙
1

ỹ𝑇 (𝑥, 𝑡) Ψỹ (𝑥, 𝑡) 𝑑𝑥. (32)

We can easily deriveΨ < 0 from Ψ̂ < 0. Hence, the inequality
(32) can be further written as

𝑉̇ (𝑡) + 2𝜌𝑉 (𝑡) ≤ 0. (33)

Integration of (33) from 0 to 𝑡 yields

𝑉 (𝑡) ≤ 𝑉 (0) exp (−2𝜌𝑡) . (34)

Since P > 0, it is easily observed that 𝑉(𝑡) given by (16)
satisfies the following inequality:

𝑝
𝑚

󵄩
󵄩
󵄩
󵄩
y (⋅, 𝑡)󵄩󵄩󵄩

󵄩

2

2
≤ 𝑉 (𝑡) ≤ 𝑝

𝑀

󵄩
󵄩
󵄩
󵄩
y (⋅, 𝑡)󵄩󵄩󵄩

󵄩

2

2
, (35)

where 𝑝
𝑚

≜ 𝜆min(P) and 𝑝
𝑀

≜ 𝜆max(P) are two positive
scalars. Inequalities (34) and (35) imply

󵄩
󵄩
󵄩
󵄩
y (⋅, 𝑡)󵄩󵄩󵄩

󵄩

2

2
≤ 𝑝
−1

𝑚
𝑝
𝑀

󵄩
󵄩
󵄩
󵄩
y (⋅, 0)󵄩󵄩󵄩

󵄩

2

2
exp (−2𝜌𝑡) . (36)

Thus, fromDefinition 2 and (36), the disturbance-free system
of (5), (6), and (8) is exponentially stable with a given decay
rate 𝜌. FromDefinition 3, the closed-loop system (5), (6), and
(8) is exponentially stable with a given decay rate 𝜌 and 𝛾-
disturbance attenuation. Moreover, from (26), we have (25).
The proof is complete.

FromTheorem 6, since the controller (7) has been shown
to be an effective control which can attenuate the effect of
uncertain external disturbances, it is appealing to eliminate
the influence brought by external disturbances as possible,
that is, making the attenuation level as small as possible. To
achieve this goal, for a given decay rate 𝜌, setting 𝜗 = 𝛾

2, we
consider the following minimization optimization problem:

min
{𝜗,Q>0,Z1 ,Z2,𝛼>0}

𝜗 (37)

subject to the following LMI

[

[

[

[

[

[

Ξ
11
Θ
2
Q + G

𝑢
Z
2

G
𝑤

Q ̃C𝑇
∗ − [Θ

1
Q + ∗] 0 0 Z𝑇

2
D𝑇

∗ ∗ −𝜗I 0 0

∗ ∗ ∗ −𝛼𝜒
−1I 0

∗ ∗ ∗ ∗ −I

]

]

]

]

]

]

< 0. (38)

Remark 7. Notice that the control design proposed in this
paper is different from the results reported in [18, 19]. The
result in [18] only considers simple exponential stabilization
for a class of semi-linear parabolic PDE systems. The main
difference between the result in this study and [19] is that
the system under consideration in the latter one is a class
of semi-linear first-order hyperbolic PDE systems, whereas
the system addressed in this study is a class of semi-linear
parabolic PDE systems. On the other hand, different from
the SDLMI-based control designs in [18, 19], the main result
of this study is presented in terms of standard LMI, which
can be directly verified via the existing convex optimization
techniques [20, 21].
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4. Simulation Study on the FHN Equation

To illustrate the effectiveness of the proposed methods, the
control problem of the FHN equation is considered, which is
a wavy behaviormodel extensively applied to excitable media
in biology [22] and chemistry [23].The FHN equation has the
following closed-form description:

𝑦
1,𝑡
(𝑥, 𝑡) = 𝑦

1,𝑥𝑥
(𝑥, 𝑡) − 0.5𝑦

1,𝑥
(𝑥, 𝑡) + 𝑦

1
(𝑥, 𝑡)

− 0.9𝑦
2
(𝑥, 𝑡) − 0.1𝑦

3

1
(𝑥, 𝑡)

+ 𝑢 (𝑥, 𝑡) + 0.5𝑤 (𝑥, 𝑡) ,

𝑦
2,𝑡
(𝑥, 𝑡) = 4𝑦

2,𝑥𝑥
(𝑥, 𝑡) − 0.5𝑦

2,𝑥
(𝑥, 𝑡) + 0.2𝑦

1
(𝑥, 𝑡)

− 𝑦
2
(𝑥, 𝑡) + 0.2𝑤 (𝑥, 𝑡)

(39)

subject to the boundary conditions

𝑦
1,𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨𝑥=0

= 𝑦
1,𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨𝑥=𝐿

= 0,

𝑦
2,𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨𝑥=0

= 𝑦
2,𝑥
(𝑥, 𝑡)

󵄨
󵄨
󵄨
󵄨𝑥=𝐿

= 0

(40)

and the initial conditions

𝑦
1
(𝑥, 0) = 𝑦

1,0
(𝑥) , 𝑦

2
(𝑥, 0) = 𝑦

2,0
(𝑥) , (41)

where 𝑦
1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡) are the state variables and 𝑢(𝑥, 𝑡)

is the manipulated input. 𝑡, 𝑥, and 𝐿 denote the independent
time, space variables, and the length of the spatial domain,
respectively. 𝑦

1,0
(𝑥) and 𝑦

2,0
(𝑥) are the initial conditions.

To more intuitively illustrate the effectiveness of the
proposed design method, for the above values, we first verify
through simulation that the operating steady states 𝑦

1
(𝑥, 𝑡) =

0 and 𝑦
2
(𝑥, 𝑡) = 0 of the system (39)–(41) are unstable ones.

The initial conditions in (41) are assumed to be 𝑦
1,0
(𝑥) =

0.6 cos(𝜋𝑥/𝐿) and 𝑦
2,0
(𝑥) = 0.1. The length of spatial domain

is set to be 20; that is, 𝐿 = 20. The disturbance input is chosen
as 𝑤(𝑥, 𝑡) = cos(𝑥) exp(−0.5𝑡). Figure 2 shows the open-loop
profiles of the evolution of 𝑦

1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡) starting from

the initial conditions. It is easily observed from Figure 2 that
the equilibria 𝑦

1
(𝑥, 𝑡) = 0 and 𝑦

2
(𝑥, 𝑡) = 0 of the system (39)–

(41) are unstable ones and −1 ≤ 𝑦
𝑖
(𝑥, 𝑡) ≤ 1, 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0,

𝑖 ∈ {1, 2}.
Equations (39) can be rewritten as the form of PDE (3)

with the following parameters:

Θ
1
= [

1 0

0 4
] , Θ

2
= [

−0.1 0

0 −0.1
] , A = [

1 5

0.2 −1
] ,

Gu = [
1

0
] , Gw = [

0.5

0.2
] ,

f (y (𝑥, 𝑡) , 𝑥, 𝑡) = [−0.3𝑦3
1
(𝑥, 𝑡) 0]

𝑇

,

(42)

where y(𝑥, 𝑡) ≜ [𝑦
1
(𝑥, 𝑡) 𝑦

2
(𝑥, 𝑡)]

𝑇 and𝑦3
1
(𝑥, 𝑡) is a nonlinear

term. The controlled output z(𝑥, 𝑡) is chosen as z(𝑥, 𝑡) =

𝑦
1
(𝑥, 𝑡). Hence, the parameter matrices in (4) are chosen as

C = [1 0] andD = 0.
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0

2

y
1

x t

(a)

0 5 10 15 20 0 10 20 30
−0.5

0

0.5

y
2

x t

(b)

Figure 2: Open-loop profiles of evolution of 𝑦
1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡).

From Figure 2, we can easily observe that −1 ≤ 𝑦
𝑖
(𝑥, 𝑡) ≤

1, 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0, 𝑖 ∈ {1, 2}. Let Ω ≜ {y(𝑥, 𝑡) | −1.0 ≤

𝑦
𝑖
(𝑥, 𝑡) ≤ 1.0, 𝑥 ∈ [0, 𝐿], 𝑡 ≥ 0, 𝑖 ∈ {1, 2}}. The parameter 𝜒

satisfying Assumption 4 is chosen as

𝜒 ≜ max
y(𝑥,𝑡)

{

{

{

2

∑

𝑖=1

2

∑

𝑗=1

𝜕𝑓
𝑖
(y (𝑥, 𝑡))

𝜕𝑦
𝑗
(𝑥, 𝑡)

}

}

}

= 0.09max
y(𝑥,𝑡)

{9𝑦
4

1
(𝑥, 𝑡)} = 0.81.

(43)

We first show the effectiveness of the proposed design
method. Set 𝜌 = 0.04. Solving the optimization problem (37),
we can get the optimized level of attenuation 𝛾 as 𝛾∗ = √𝜗 =

4.3435 × 10
−5. Setting 𝛾 = 0.8 and solving LMI (24), the

control gain matrices in (7) can be derived as follows:

K
1
= [−5.2143 −5.2365]

𝑇

,

K
2
= [0.0999 −0.0002]

𝑇

.

(44)

Applying the P-sD controller (7) with the control gain matri-
ces given in (44) to the semi-linear PDE system (39)–(41),
the closed-loop profiles of evolution of 𝑦

1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡)

are shown in Figure 3, which implies that the proposed P-
sD controller (7) with the control gain matrices given in (44)
can stabilize the semi-linear PDE system (39)–(41).Moreover,
profile of evolution of u(𝑥, 𝑡) is shown in Figure 4.

Define the function 𝜂(𝑡) as

𝜂 (𝑡) ≜ ∫

𝑡

0

‖z (⋅, 𝜏)‖2
2
𝑑𝜏 − ⟨y

0
(⋅) ,Py

0
(⋅)⟩

− 0.64∫

𝑡

0

‖w (⋅, 𝜏)‖
2

2
𝑑𝜏.

(45)

Figure 5 shows the value of 𝜂(𝑡). From this figure, we can see
that 𝜂(𝑡) < 0 for all time 𝑡 ≥ 0, which implies that the 𝐻

∞

control performance in (9) is ensured.
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Figure 3: Closed-loop profiles of evolution of 𝑦
1
(𝑥, 𝑡) and 𝑦

2
(𝑥, 𝑡).
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Figure 4: Profile of evolution of 𝑢(𝑥, 𝑡).

5. Conclusions

In this paper, we have addressed the problem of robust 𝐻
∞

P-sD state-feedback controller design for a class of semi-
linear parabolic PDE systems with external disturbances.
Based on the Lyapunov technique, the robust𝐻

∞
P-sD state-

feedback controller design is formulated as a standard LMI
optimization problem. The proposed controller can not only
exponentially stabilize the semi-linear PDE system but also
satisfy the 𝐻

∞
performance in (9). The influence caused

by external disturbances is eliminated as possible by the
minimization optimization problem. Finally, the developed
design method is successfully applied to the control of the
FHN equation, and the achieved simulation results illustrate
its effectiveness. Compared to one node in the paper, it is
interesting to study the collective control in a coupled net-
work with multiple nodes described by nonlinear parabolic
PDEs in the future work.

0 5 10 15 20
−6.4

−4.8

−3.2

−1.6

t (s)

𝜂
(t
)

Figure 5: Trajectory of 𝜂(𝑡).
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