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A calmness condition for a general multiobjective optimization problem with equilibrium constraints is proposed. Some exact
penalization properties for two classes of multiobjective penalty problems are established and shown to be equivalent to the
calmness condition. Subsequently, a Mordukhovich stationary necessary optimality condition based on the exact penalization
results is obtained. Moreover, some applications to a multiobjective optimization problem with complementarity constraints and a
multiobjective optimization problem with weak vector variational inequality constraints are given.

1. Introduction

In this paper, we consider a general multiobjective optimiza-
tion problem with equilibrium constraints as follows:

(MOPEC)

min 𝑓 (𝑥)

s.t. 𝑔 (𝑥) ∈ −R
𝑟

+
,

ℎ (𝑥) = 0R𝑠 ,

0R𝑚 ∈ 𝑞 (𝑥) + 𝑄 (𝑥) , 𝑥 ∈ Θ,

(1)

where 𝑓 : R𝑛 → R𝑝, 𝑓(𝑥) = (𝑓
1
(𝑥), 𝑓

2
(𝑥), . . . , 𝑓

𝑝
(𝑥)),

𝑔 : R𝑛 → R𝑟, 𝑔(𝑥) = (𝑔
1
(𝑥), 𝑔

2
(𝑥), . . . , 𝑔

𝑟
(𝑥)) ℎ : R𝑛 →

R𝑠, ℎ(𝑥) = (ℎ
1
(𝑥), ℎ

2
(𝑥), . . . , ℎ

𝑠
(𝑥)), 𝑞 : R𝑛 → R𝑚, and

𝑞(𝑥) = (𝑞
1
(𝑥), 𝑞

2
(𝑥), . . . , 𝑞

𝑚
(𝑥)) are vector-valued maps, 𝑄 :

R𝑛 󴁂󴀱 R𝑚 is a set-valued map, and Θ is a nonempty and
closed subset ofR𝑛. As usual, we denote by int Θ the interior
of Θ and by gph𝑄 := {(𝑥, 𝑦) ∈ R𝑛 × R𝑚 | 𝑦 ∈ 𝑄(𝑥)} the
graph of 𝑄. Moreover, R𝑟

+
denotes the nonnegative quadrant

inR
𝑟
, and 0R𝑠 and 0R𝑚 denote, respectively, the origins of R

𝑠

and R𝑚. Throughout this paper, we assume that 𝑓 is locally
Lipschitz, 𝑔, ℎ, and 𝑞 are continuously Fréchet differentiable,

𝑄 is closed (i.e., gph𝑄 is closed inR𝑛 ×R𝑚), and the feasible
set 𝑆 := {𝑥 ∈ R𝑛 | 𝑔(𝑥) ∈ −R𝑟

+
, ℎ(𝑥) = 0R𝑠 , 0R𝑚 ∈

𝑞(𝑥) + 𝑄(𝑥), 𝑥 ∈ Θ} of (MOPEC) is nonempty. Obviously,
𝑆 is a closed subset of R𝑛. Recall that a point 𝑥 ∈ 𝑆 is said to
be an efficient (resp. weak efficient) solution for (MOPEC) if
and only if

𝑓 (𝑥) − 𝑓 (𝑥) ∉ −R
𝑝

+
\ {0R𝑝} (resp. − intR𝑝

+
) , ∀𝑥 ∈ 𝑆.

(2)

A point 𝑥 ∈ 𝑆 is said to be a local efficient (resp. local weak
efficient) solution for (MOPEC) if and only if there exists a
neighborhood 𝑈 of 𝑥 such that

𝑓 (𝑥) − 𝑓 (𝑥) ∉ −R
𝑝

+
\ {0R𝑝} (resp. − intR𝑝

+
) , ∀𝑥 ∈ 𝑆 ∩ 𝑈.

(3)

During the past few decades, there have been a lot of
papers devoted to study the scalar optimization problem (i.e.,
the case 𝑝 = 1) with equilibrium constraints, which plays an
important role in engineering design, economic equilibria,
operations research, and so on. It is well recognized that
the scalar optimization problemwith equilibrium constraints
covers various classes of optimization-related problems and
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models arisen in practical applications, such as mathematical
programs with geometric constraints, mathematical pro-
grams with complementarity constraints, and mathematical
programs with variational inequality constraints. For more
details, we refer to [1–4]. It is worth noting that when 𝑄 is
a general closed set-valued map, even if𝑄(𝑥) is a fixed closed
subset of R𝑚 for all 𝑥 ∈ R𝑛, the general constraint system
(1) fails to satisfy the standard linear independence constraint
qualification and Mangasarian-Fromovitz constraint qualifi-
cation at any feasible point [5].Thus, it is a hardwork to estab-
lish Karush-Kuhn-Tucker (in short, KKT) necessary optimal-
ity conditions for (MOPEC). Recently, by virtue of advanced
tools of variational analysis and various coderivatives for
set-valued maps developed in [6–8] and references therein,
some necessary optimality conditions including the strong,
Mordukhovich, Clarke, and Bouligand stationary conditions
are obtained by using different reformulations under some
generalized constraint qualifications. Simultaneously, Ye and
Zhu [3] claimed that the Mordukhovich stationary (in short,
M-stationary) condition is the strongest stationary condition
except the strong stationary condition which is equivalent
to the classical KKT condition, and proposed some new
constraint qualifications for M-stationary conditions to hold.

It is well known that the penalization method is a very
important and effective tool for dealing with optimization
theories and numerical algorithms of constrained extremum
problems. In scalar optimization with equality and inequality
constraints, the classical exact penalty function with order 1
was extensively used to investigate optimality conditions and
convergence analysis; see [6, 9, 10] and references therein.
Clarke [6] derived some Fritz-John necessary optimality
conditions for a constrained mathematical programming
problem on a Banach space by virtue of exact penalty
functions with order 1. Moreover, Burke [9] showed that the
existence of an exact penalization function is equivalent to a
calmness condition involving with the objective function and
the equality and inequality constrained system. Subsequently,
Flegel and Kanzow [4] demonstrated that the corresponding
relationships still held in a generalized bilevel programming
problem and a mathematical programming problem with
complementarity constraints, respectively. Simultaneously,
they obtained some KKT necessary optimality conditions
by using exact penalty formulations and nonsmooth anal-
ysis. Recently, the classical penalization theory has been
widely generalized by various kinds of Lagrangian functions,
especially the augmented Lagrangian function, introduced
by Rockafellar and Wets [7], and the nonlinear Lagrangian
function, proposed by Rubinov et al. [11]. It has also been
proved that the exactness of these types of penalty functions
is equivalent to some generalized calmness conditions; see
more details in [11, 12].

However, to the best of our knowledge, there are only
a few papers devoted to study the penalty method for con-
strainedmultiobjective optimization problems, especially, for
(MOPEC). Huang and Yang [13] first introduced a vector-
valued nonlinear Lagrangian and penalty functions formulti-
objective optimization problems with equality and inequality
constraints and obtained some relationships between the
exact penalization property and a generalized calmness-type

condition. Moreover, Mordukhovich [8] and Bao et al. [14]
investigated some more general optimization problems with
equilibrium constraints by methods of modern variational
analysis. It is worth noting that the standard Mangasarian-
Fromovitz constraint qualification and error bound condition
for a nonlinear programming problem with equality and
inequality constraints implies the calmness condition; see
[6, 15] for details. Taking into account this fact, it is neces-
sary to further investigate the calmness condition and the
penalty method for constrained multiobjective optimization
problems.

The main motivation of this work is that there has
been no study on the penalization method and M-stationary
condition for (MOPEC) by using an appropriate calmness
condition associated with the objective function and the
constraint system. Although there have been many papers
dealing with constrained multiobjective optimization prob-
lems, for example, [3, 8] and references therein, the KKT
necessary optimality conditions are obtained under some
generalized qualification conditions only involved with the
constraint system. Inspired by the ideas reported in [3, 4, 6, 8,
13], we introduce a so-called (MOPEC-) calmness condition
with order 𝜎 > 0 at a local efficient (weak efficient) solution
associated with the objective function and the constraint
system for (MOPEC) and show that the (MOPEC-) calmness
condition can be implied by an error bound condition of the
constraint system. Moreover, we establish some equivalent
relationships between the exact penalization property with
order 𝜎 and the (MOPEC-) calmness condition. Simultane-
ously, we apply a nonlinear scalar technical to obtain a KKT
necessary optimality condition for (MOPEC) by using Mor-
dukhovich generalized differentiation and the (MOPEC-)
calmness condition with order 1.

The organization of this paper is as follows. In Section 2,
we recall some basic concepts and tools generally used in
variational analysis and set-valued analysis. In Section 3, we
introduce a (MOPEC-) calmness condition for (MOPEC)
and establish some relationships between the exact penal-
ization property and the (MOPEC-) calmness condition.
Moreover, we obtain a KKT necessary optimality condition
under the (MOPEC-) calmness condition with order 1. In
Section 4, we apply the obtained results to a multiobjective
optimization problem with complementarity constraints and
a multiobjective optimization problem with weak vector
variational inequality constraints, respectively.

2. Notations and Preliminaries

Throughout this paper, all vectors are viewed as column
vectors. Since all the norms on finite dimensional spaces are
equivalent, we take specially the sum norm on R𝑛 and the
product space R𝑛 × R𝑚 for simplicity; that is, for all 𝑥 =

(𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛, ‖𝑥‖ = |𝑥
1
| + |𝑥

2
| + ⋅ ⋅ ⋅ + |𝑥

𝑛
|, and,

for all (𝑥, 𝑦) ∈ R𝑛 × R𝑚, ‖(𝑥, 𝑦)‖ = ‖𝑥‖ + ‖𝑦‖. As usual, we
denote by 𝑥𝑇 the transposition of 𝑥 and by ⟨𝑥, 𝑦⟩ := 𝑥𝑇𝑦 the
inner product of vectors 𝑥 and 𝑦, respectively. For a given
map 𝑓 : R𝑛 → R𝑝 and a vector 𝜆 ∈ R𝑝, the function
⟨𝜆, 𝑓⟩ : R𝑛 → R is defined by ⟨𝜆, 𝑓⟩(𝑥) := ⟨𝜆, 𝑓(𝑥)⟩ for
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all 𝑥 ∈ R𝑛. In general, we denote byBR𝑛 the closed unit ball
inR𝑛 and by B(𝑥, 𝑟) the open ball with center at 𝑥 and radius
𝑟 > 0 for any 𝑥 ∈ R𝑛.

The main tools for our study in this paper are the
Mordukhovich generalized differentiation notions which are
generally used in variational analysis and set-valued analysis;
see more details in [6–8, 16] and references therein. Recall
that 𝑓 : R𝑛

→ R𝑝 is said to be Fréchet differentiable at 𝑥
if and only if there exists a matrix 𝐴 ∈ R𝑝×𝑛 such that

lim
𝑥→𝑥

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑥) − 𝐴 (𝑥 − 𝑥)
󵄩󵄩󵄩󵄩

‖𝑥 − 𝑥‖
= 0. (4)

Obviously, 𝐴 is uniquely determined by 𝑥. As usual, 𝐴 is
called the Fréchet derivative of 𝑓 at 𝑥 and denoted by ∇𝑓(𝑥).
If 𝑓 is Fréchet differentiable at every 𝑥 ∈ R𝑛, then 𝑓 is said to
be Fréchet differentiable on R𝑛. 𝑓 is said to be continuously
Fréchet differentiable at 𝑥 if and only if the map ∇𝑓(∙) :
R𝑛 → R𝑝×𝑛 is continuous at 𝑥. Specially, we denote by
(∇𝑓(𝑥))

∗

: R𝑝 → R𝑛 the adjoint operator of ∇𝑓(𝑥); that is,
⟨∇𝑓(𝑥)(𝑥), 𝑦⟩ = ⟨𝑥, (∇𝑓(𝑥))

∗

(𝑦)⟩ for all 𝑥 ∈ R𝑛 and 𝑦 ∈ R𝑝.
Moreover,𝑓 is said to be strictly differentiable at 𝑥 if and only
if

lim
𝑥→𝑥,𝑢→𝑥,𝑥 ̸= 𝑢

󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝑓 (𝑢) − ∇𝑓 (𝑥) (𝑥 − 𝑢)
󵄩󵄩󵄩󵄩

‖𝑥 − 𝑢‖
= 0. (5)

Obviously, if 𝑓 is continuously Fréchet differentiable at 𝑥,
then 𝑓 is strictly differentiable at 𝑥.

For a nonempty subset 𝑆 ⊂ R𝑛, the indicator function
𝜓(∙, 𝑆) : R𝑛 → R ∪ {+∞} is defined by 𝜓(𝑥, 𝑆) := 0,
∀𝑥 ∈ 𝑆 and 𝜓(𝑥, 𝑆) := +∞, ∀𝑥 ∉ 𝑆, and the distance function
𝑑(∙, 𝑆) : R𝑛 → R is defined by 𝑑(𝑥, 𝑆) := inf

𝑦∈𝑆
‖𝑥 − 𝑦‖

for all 𝑥 ∈ R𝑛, respectively. Given a point 𝑥 ∈ 𝑆, recall that
the Fréchet normal cone 𝑁̂(𝑆, 𝑥) of 𝑆 at 𝑥, which is a convex,
closed subset of R𝑛 and consisted of all the Fréchet normals,
has the form

𝑁̂ (𝑆, 𝑥) :=
{

{

{

𝑥
∗

∈ R
𝑛

| lim sup
𝑥

𝑆

󳨀→𝑥

⟨𝑥
∗

, 𝑥 − 𝑥⟩

‖𝑥 − 𝑥‖
≤ 0
}

}

}

, (6)

where 𝑥 𝑆

󳨀→ 𝑥 means 𝑥 ∈ 𝑆 and 𝑥 → 𝑥. The Mordukhovich
(or basic, limiting) normal cone of 𝑆 at 𝑥 is

𝑁(𝑆, 𝑥) : = {𝑥
∗

∈ R
𝑛

| ∃𝑥
𝑛

𝑠

󳨀→ 𝑥, ∃𝑥
∗

𝑛
󳨀→ 𝑥

∗

with 𝑥∗
𝑛
∈ 𝑁̂ (𝑆, 𝑥

𝑛
) , ∀𝑛 ∈ N} .

(7)

Specially, if 𝑆 is convex, then we have

𝑁̂ (𝑆, 𝑥) = 𝑁 (𝑆, 𝑥) = {𝑥
∗

∈ R
𝑛

| ⟨𝑥
∗

, 𝑥 − 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝑆} .

(8)

Let ℎ : R𝑛 → R∪{+∞} be an extended real-valued function
and let 𝑥 ∈ dom ℎ, where dom ℎ := {𝑥 ∈ R𝑛 | ℎ(𝑥) < +∞}

denotes the domain of ℎ. The Fréchet subdifferential 𝜕̂ℎ(𝑥) of
ℎ at 𝑥 is defined in the geometric form by 𝜕̂ℎ(𝑥) := {𝑥∗ ∈ R𝑛 |

(𝑥
∗, −1) ∈ 𝑁̂(epi ℎ, (𝑥, ℎ(𝑥)))}, or, equivalently, is defined in

the analytical form by

𝜕̂ℎ (𝑥)

:= {𝑥
∗

∈ R
𝑛

| lim inf
𝑥→𝑥, 𝑥 ̸= 𝑥

ℎ (𝑥) − ℎ (𝑥) − ⟨𝑥
∗, 𝑥 − 𝑥⟩

‖𝑥 − 𝑥‖
≥ 0} .

(9)

The Mordukhovich (or basic, limiting) subdifferential 𝜕ℎ(𝑥)
and singular subdifferential 𝜕∞ℎ(𝑥) of ℎ at 𝑥 are defined,
respectively, by 𝜕ℎ(𝑥) := {𝑥∗ ∈ R𝑛 | (𝑥∗, −1) ∈

𝑁(epi ℎ, (𝑥, ℎ(𝑥)))} and 𝜕∞ℎ(𝑥) := {𝑥∗ ∈ R𝑛 | (𝑥∗, 0) ∈

𝑁(epi ℎ, (𝑥, ℎ(𝑥)))}. Clearly, we have 𝜕̂ℎ(𝑥) ⊂ 𝜕ℎ(𝑥) and

𝜕ℎ (𝑥) = {𝑥
∗

∈ R
𝑛

| ∃𝑥
𝑛

ℎ

󳨀→ 𝑥, ∃𝑥
∗

𝑛
󳨀→ 𝑥

∗

with 𝑥∗
𝑛
∈ 𝜕̂ℎ (𝑥

𝑛
) } ,

(10)

where 𝑥
𝑛

ℎ

󳨀→ 𝑥means 𝑥
𝑛
→ 𝑥 and ℎ(𝑥

𝑛
) → ℎ(𝑥). Specially,

for any𝑥 ∈ 𝑆, it follows that 𝜕̂𝜓(𝑥, 𝑆) = 𝑁̂(𝑆, 𝑥) and 𝜕𝜓(𝑥, 𝑆) =
𝜕∞𝜓(𝑥, 𝑆) = 𝑁(𝑆, 𝑥). Furthermore, if ℎ is a convex function,
then we have

𝜕̂ℎ (𝑥) = 𝜕ℎ (𝑥)

= {𝑥
∗

∈ R
𝑛

| ⟨𝑥
∗

, 𝑥 − 𝑥⟩ ≤ ℎ (𝑥) − ℎ (𝑥) , ∀𝑥 ∈ R
𝑛

} ,

𝜕
∞

ℎ (𝑥) ⊂ {𝑥
∗

∈ R
𝑛

| ⟨𝑥
∗

, 𝑥 − 𝑥⟩ ≤ 0, ∀𝑥 ∈ dom ℎ}

= 𝑁 (dom ℎ, 𝑥) .
(11)

Recall that the Fréchet coderivative 𝐷∗𝐹(𝑥, 𝑦) and the Mor-
dukhovich (or basic, limiting) coderivative 𝐷∗𝐹(𝑥, 𝑦) of the
set-valued map 𝐹 : R𝑛 󴁂󴀱 R𝑝 at (𝑥, 𝑦) ∈ gph𝐹 are the set-
valued maps from R𝑝 to R𝑛 defined, respectively, by

𝐷
∗

𝐹 (𝑥, 𝑦) (𝑦
∗

)

:= {𝑥
∗

∈ R
𝑛

| (𝑥
∗

, −𝑦
∗

) ∈ 𝑁̂ (gph𝐹, (𝑥, 𝑦))} ,

∀𝑦
∗

∈ R
𝑝

,

𝐷
∗

𝐹 (𝑥, 𝑦) (𝑦
∗

)

:= {𝑥
∗

∈ R
𝑛

| (𝑥
∗

, −𝑦
∗

) ∈ 𝑁 (gph𝐹, (𝑥, 𝑦))} ,

∀𝑦
∗

∈ R
𝑝

.

(12)

Next, we collect some useful and important propositions
and definitions for this paper.

Proposition 1 (see [8]). For every nonempty subset Ω ⊂ R𝑛

and every 𝑥 ∈ Ω, we have

(i) 𝜕̂𝑑(∙, Ω)(𝑥) = BR𝑛 ∩ 𝑁̂(Ω, 𝑥) and 𝑁̂(Ω, 𝑥) =

⋃
𝜆>0
𝜆𝜕̂𝑑(∙, Ω)(𝑥).
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In addition, if Ω is closed, then we get

(ii) 𝜕𝑑(∙, Ω)(𝑥) ⊂ BR𝑛 ∩ 𝑁(Ω, 𝑥) and 𝑁(Ω, 𝑥) =

⋃
𝜆>0
𝜆𝜕𝑑(∙, Ω)(𝑥).

The following necessary optimality condition, called
generalized Fermat rule, for a function to attain its local
minimum is useful for our analysis.

Proposition 2 (see [7, 8]). Let 𝜑 : R𝑛 → R ∪ {+∞} be
a proper lower semicontinuous function. If 𝑓 attains a local
minimum at 𝑥 ∈ R𝑛, then 0R𝑛 ∈ 𝜕̂𝑓(𝑥) and 0R𝑛 ∈ 𝜕𝑓(𝑥).

We recall the following sum rule for the Mordukhovich
subdifferential which is important in the sequel.

Proposition 3 (see [8]). Let 𝜑
1
, 𝜑

2
: R𝑛 → R ∪ {+∞}

be proper lower semicontinuous functions and 𝑥 ∈ dom𝜑
1
∩

dom𝜑
2
. Suppose that the qualification condition

𝜕
∞

𝜑
1
(𝑥) ∩ (−𝜕

∞

𝜑
2
(𝑥)) = {0R𝑛} , (13)

is fulfilled. Then one has

𝜕 (𝜑
1
+ 𝜑

2
) (𝑥) ⊂ 𝜕𝜑

1
(𝑥) + 𝜕𝜑

2
(𝑥) . (14)

Specially, if either 𝜑
1
or 𝜑

2
is locally Lipschitz around 𝑥, then

one always has

𝜕 (𝜑
1
+ 𝜑

2
) (𝑥) ⊂ 𝜕𝜑

1
(𝑥) + 𝜕𝜑

2
(𝑥) . (15)

The following propositions of the scalarization of Mor-
dukhovich coderivatives and the chain rule ofMordukhovich
subdifferentials are important for this paper.

Proposition 4 (see [8, 16]). Let 𝜑 : R𝑛 → R𝑝 be continuous
around 𝑥. Then

𝜕 ⟨𝑦
∗

, 𝜑⟩ (𝑥) ⊂ 𝐷
∗

𝜑 (𝑥) (𝑦
∗

) , ∀𝑦
∗

∈ R
𝑝

. (16)

If in addition 𝜑 is locally Lipschitz around 𝑥, then

𝐷
∗

𝜑 (𝑥) (𝑦
∗

) = 𝜕 ⟨𝑦
∗

, 𝜑⟩ (𝑥) , ∀𝑦
∗

∈ R
𝑝

. (17)

Proposition 5 (see [8, 16]). Let the vector-valued map 𝐻 :

R𝑛 → Rℓ be locally Lipschitz and let ℎ : Rℓ → R be lower
semicontinuous. If

𝑦
∗

∈ 𝜕
∞

ℎ (𝐻 (𝑥)) , 0R𝑛 ∈ 𝐷
∗

𝐻(𝑥) (𝑦
∗

)

𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑦
∗

= 0Rℓ ,
(18)

then

𝜕ℎ ∘ 𝐻 (𝑥) ⊂ {𝐷
∗

𝐻(𝑥) (𝑦
∗

) : 𝑦
∗

∈ 𝜕ℎ (𝐻 (𝑥))} . (19)

Moreover, if𝐻 is strictly differentiable and ℎ is locally Lipschitz,
then one always has

𝜕ℎ ∘ 𝐻 (𝑥) ⊂ {(∇𝐻 (𝑥))
∗

(𝑦
∗

) : 𝑦
∗

∈ 𝜕ℎ (𝐻 (𝑥))} . (20)

Finally in this section, we recall the following useful
concept called nonlinear scalar function and some of its
properties. For more details, we refer to [17–20].

Lemma 6. Given 𝑒 = (1, 1, . . . , 1) ∈ intR𝑝

+
, the nonlinear

scalar function 𝜉
𝑒
: R𝑝 → R, defined by

𝜉
𝑒
(𝑦) := inf {𝛼 ∈ R | 𝑦 ∈ 𝛼𝑒 −R

𝑝

+
} , ∀𝑦 ∈ R

𝑝

, (21)

is convex, strictly intR𝑝

+
-monotone, R

𝑝

+
-monotone,

nonnegative homogeneous, globally Lipschitz with modulus
𝑑(𝑒, bd R

𝑝

+
)
−1. Simultaneously, for every 𝛼 ∈ R, it follows that

𝜉
𝑒
(𝛼𝑒) = 𝛼,

{𝑦 ∈ R
𝑝

| 𝜉
𝑒
(𝑦) ≤ 𝛼} = 𝛼𝑒 −R

𝑝

+
,

{𝑦 ∈ R
𝑝

| 𝜉
𝑒
(𝑦) < 𝛼} = 𝛼𝑒 − intR𝑝

+
.

(22)

Furthermore, for every 𝑦 ∈ R𝑝,

𝜕𝜉
𝑒
(𝑦) = {𝜆 ∈ R

𝑝

+
|

𝑝

∑
𝑖=1

𝜆
𝑖
= 1, ⟨𝜆, 𝑦⟩ = 𝜉

𝑒
(𝑦)} . (23)

Specially, one has

𝜕𝜉
𝑒
(0R𝑝) = {𝜆 ∈ R

𝑝

+
|

𝑝

∑
𝑖=1

𝜆
𝑖
= 1} . (24)

3. Exact Penalization, Calmness
Condition, and Necessary Optimality
Condition for (MOPEC)

In this section, we focus our attention on establishing
some equivalent properties between a multiobjective exact
penalization and a calmness condition, called (MOPEC-)
calmness, for (MOPEC). Simultaneously, we show that a local
error bound condition associated merely with the constraint
system, equivalently, a calmness condition of the parametric
constraint system, implies the (MOPEC-) calmness condi-
tion. Subsequently, we apply a nonlinear scalar method to
obtain a M-stationary necessary optimality condition under
the (MOPEC-) calmness condition.

Consider the following parametric form of the feasible set
𝑆 with parameter (𝑢, V, 𝑦, 𝑧) ∈ R𝑟+𝑠+𝑛+𝑚:

𝑔 (𝑥) + 𝑢 ∈ −R
𝑟

+
, ℎ (𝑥) + V = 0R𝑠 ,

𝑧 ∈ 𝑞 (𝑥) + 𝑄 (𝑥 + 𝑦) , 𝑥 ∈ Θ.
(25)

Denote the corresponding feasible set by

𝑆 (𝑢, V, 𝑦, 𝑧) : = {𝑥 ∈ R
𝑛

| 𝑔 (𝑥) + 𝑢 ∈ −R
𝑟

+
, ℎ (𝑥) + V = 0R𝑠 ,

𝑧 ∈ 𝑞 (𝑥) + 𝑄 (𝑥 + 𝑦) , 𝑥 ∈ Θ} .

(26)

Obviously, for the set-valued map 𝑆 : R𝑟+𝑠+𝑛+𝑚 󴁂󴀱 R𝑛, we
have 𝑆 = 𝑆(0R𝑟+𝑠+𝑛+𝑚).

We are now in the position to introduce a (MOPEC-)
calmness concept for (MOPEC).

Definition 7. Given 𝜎 > 0 and 𝑥 ∈ 𝑆 being a local
efficient (resp. local weak efficient) solution for (MOPEC),
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then (MOPEC) is said to be (MOPEC-) calm with order 𝜎 at
𝑥 if and only if there exist 𝛿 > 0 and𝑀 > 0 such that, for all
(𝑢, V, 𝑦, 𝑧) ∈ B(0R𝑟+𝑠+𝑛+𝑚 , 𝛿) and all 𝑥 ∈ 𝑆(𝑢, V, 𝑦, 𝑧) ∩ B(𝑥, 𝛿),
one has

𝑓 (𝑥) +𝑀
󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)

󵄩󵄩󵄩󵄩
𝜎

𝑒 ∉ 𝑓 (𝑥) − intR𝑝

+
. (27)

Remark 8. Given 𝜎 > 0 and 𝑥 ∈ 𝑆 being a local efficient
(resp. local weak efficient) solution for (MOPEC), we can also
characterize the (MOPEC-) calmness condition by means of
sequences. It is easy to verify that (MOPEC) is (MOPEC-)
calm with order 𝜎 at 𝑥 if and only if there exists 𝑀 > 0

such that, for every sequence {(𝑢
𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
)} ⊂ R𝑟+𝑠+𝑛+𝑚

with (𝑢
𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) → 0R𝑟+𝑠+𝑛+𝑚 and every sequence {𝑥𝑘} ⊂ Θ

satisfying 𝑔(𝑥
𝑘
) + 𝑢

𝑘
∈ R𝑟

+
, ℎ(𝑥

𝑘
) + V

𝑘
= 0R𝑠 , 𝑧𝑘 ∈ 𝑔(𝑥𝑘) +

𝑄(𝑥
𝑘
+ 𝑦

𝑘
) and 𝑥

𝑘
→ 𝑥, it holds that

𝑓 (𝑥
𝑘
) + 𝑀

󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩
𝜎

𝑒 ∉ 𝑓 (𝑥) − intR𝑝

+
. (28)

Note that the (MOPEC-) calmness condition depends on
not only the objective function but also the constraint system.
In order to make up this deficiency, we propose the following
local error bound notion for (MOPEC) associated merely
with the constraint system.

Definition 9. Given 𝜎 > 0 and 𝑥 ∈ 𝑆, then the constraint
system of (MOPEC) is said to have a local error bound with
order 𝜎 at 𝑥 if and only if there exist 𝛿 > 0 and𝑀 > 0 such
that, for all (𝑢, V, 𝑦, 𝑧) ∈ B(0R𝑟+𝑠+𝑛+𝑚 , 𝛿) \ {0R𝑟+𝑠+𝑛+𝑚} and all 𝑥 ∈
𝑆(𝑢, V, 𝑦, 𝑧) ∩ B(𝑥, 𝛿), one has

𝑑 (𝑥, 𝑆)BR𝑝 ⊂ 𝑀
󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)

󵄩󵄩󵄩󵄩
𝜎

𝑒 − intR𝑝

+
. (29)

Next, we show that the local error bound implies the
(MOPEC-) calmness.

Theorem 10. Let 𝑥 ∈ 𝑆 be a local efficient (resp. local weak
efficient) solution for (MOPEC). If the constraint system of
(MOPEC) has a local error bound with order 𝜎 at 𝑥, then
(MOPEC) is (MOPEC-) calm with order 𝜎 at 𝑥.

Proof. Since 𝑥 ∈ 𝑆 is a local efficient (resp. local weak
efficient) solution for (MOPEC) and 𝑆 = 𝑆(0R𝑟+𝑠+𝑛+𝑚), it
immediately follows that

𝑓 (𝑥) +𝑀
󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)

󵄩󵄩󵄩󵄩
𝜎

𝑒 ∉ 𝑓 (𝑥) − intR𝑝

+
(30)

holds for all 𝑥 ∈ 𝑆(𝑢, V, 𝑦, 𝑧) ∩ B(𝑥, 𝛿) with (𝑢, V, 𝑦, 𝑧) =
0R𝑟+𝑠+𝑛+𝑚 and sufficiently small 𝛿 > 0. Thus, we only need to
prove the case (𝑢, V, 𝑦, 𝑧) ̸= 0R𝑟+𝑠+𝑛+𝑚 . Assume that (MOPEC) is
not (MOPEC-) calm with order 𝜎 at 𝑥. Then, for every 𝑘 ∈ N,
there exist (𝑢

𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) ∈ B(0R𝑟+𝑠+𝑛+𝑚 , 1/𝑘) \ {0R𝑟+𝑠+𝑛+𝑚} and

𝑥
𝑘
∈ 𝑆(𝑢

𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) ∩ B(𝑥, 1/𝑘) such that

𝑓 (𝑥
𝑘
) + 𝑘

󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩
𝜎

𝑒 ∈ 𝑓 (𝑥) − intR𝑝

+
. (31)

Since 𝑆 is nonempty and closed, there exists a projection
𝑃(𝑥

𝑘
, 𝑆) of 𝑥

𝑘
onto 𝑆 such that 𝑑(𝑥

𝑘
, 𝑆) = ‖𝑥

𝑘
− 𝑃(𝑥

𝑘
, 𝑆)‖ for

all 𝑘 ∈ N. Note that 𝑥
𝑘
→ 𝑥 and 𝑥 ∈ 𝑆. Then it follows that

󵄩󵄩󵄩󵄩𝑃 (𝑥𝑘, 𝑆) − 𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑃 (𝑥𝑘, 𝑆) − 𝑥𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
󵄩󵄩󵄩󵄩

= 𝑑 (𝑥
𝑘
, 𝑆) +

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
󵄩󵄩󵄩󵄩 󳨀→ 0.

(32)

Together with 𝑥 ∈ 𝑆 being a local efficient (resp. local weak
efficient) solution for (MOPEC), there exists some 𝑁

1
∈ N

such that

𝑓 (𝑃 (𝑥
𝑘
, 𝑆)) − 𝑓 (𝑥) ∉ −R

𝑝

+
\ {0R𝑝} (resp. − intR𝑝

+
) ,

∀𝑘 ≥ 𝑁
1
.

(33)

Moreover, since 𝑓 is locally Lipschitz, there exist 𝐿 > 0 and
𝑁
2
∈ N such that
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑘) − 𝑓 (𝑃 (𝑥𝑘, 𝑆))

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑃 (𝑥𝑘, 𝑆)

󵄩󵄩󵄩󵄩 , ∀𝑘 ≥ 𝑁
2
.

(34)

By (31) and (33), we have for all 𝑘 ≥ 𝑁
1

𝑓 (𝑃 (𝑥
𝑘
, 𝑆)) − 𝑓 (𝑥

𝑘
)

= 𝑓 (𝑃 (𝑥
𝑘
, 𝑆)) − 𝑓 (𝑥)

+ (𝑓 (𝑥) − 𝑓 (𝑥
𝑘
)) ∉ 𝑘

󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩
𝜎

𝑒 − intR𝑝

+
.

(35)

Together with 𝑑(𝑥
𝑘
, 𝑆) = ‖𝑥

𝑘
− 𝑃(𝑥

𝑘
, 𝑆)‖ and (34), we can

conclude that

𝑑 (𝑥
𝑘
, 𝑆)BR𝑝 ̸⊂

𝑘

𝐿

󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩
𝜎

𝑒 − intR𝑝

+
,

∀𝑘 ≥ max {𝑁
1
, 𝑁

2
} .

(36)

This is a contradiction to the assumption that (MOPEC) has
a local error bound with order 𝜎 at 𝑥 since 𝑘/𝐿 → +∞,
(𝑢
𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) ̸= 0R𝑟+𝑠+𝑛+𝑚 , (𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘) → 0R𝑟+𝑠+𝑛+𝑚 , 𝑥𝑘 ∈

𝑆(𝑢
𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
), and 𝑥

𝑘
→ 𝑥.

Remark 11. Specially, if we consider the case 𝑝 = 1 for every
given 𝜎 > 0 and 𝑥 ∈ 𝑆, then Definition 9 reduces to the fact
that there exist 𝛿 > 0 and𝑀 > 0 such that, for all (𝑢, V, 𝑦, 𝑧) ∈
B(0R𝑟+𝑠+𝑛+𝑚 , 𝛿) \ {0R𝑟+𝑠+𝑛+𝑚} and all 𝑥 ∈ 𝑆(𝑢, V, 𝑦, 𝑧) ∩ B(𝑥, 𝛿),
one has

𝑑 (𝑥, 𝑆) < 𝑀
󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)

󵄩󵄩󵄩󵄩
𝜎

. (37)

It is worth noting that this condition is essentially sufficient
and necessary for the situation 𝑝 > 1. Clearly, the necessity
holds. In fact, since (1/𝑝)𝑒 ∈BR𝑝 , it follows that

𝑑 (𝑥, 𝑆)
1

𝑝
𝑒 ∈ 𝑀

󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)
󵄩󵄩󵄩󵄩
𝜎

𝑒 − intR𝑝

+
, (38)

for all (𝑢, V, 𝑦, 𝑧) ∈ B(0R𝑟+𝑠+𝑛+𝑚 , 𝛿) \ {0R𝑟+𝑠+𝑛+𝑚} and all
𝑥 ∈ 𝑆(𝑢, V, 𝑦, 𝑧) ∩ B(𝑥, 𝛿). Moreover, 𝜉

𝑒
is nonnegative

homogeneous and 𝜉
𝑒
((1/𝑝)𝑒) = 1/𝑝. By Lemma 6, we have

𝜉
𝑒
(𝑑(𝑥, 𝑆)(1/𝑝)𝑒) < 𝑀‖(𝑢, V, 𝑦, 𝑧)‖𝜎, which implies 𝑑(𝑥, 𝑆) <

𝑝𝑀‖(𝑢, V, 𝑦, 𝑧)‖𝜎. For the sufficiency, since 𝜉
𝑒
is continuous

andBR𝑝 is compact, there exists some𝑚 ∈ R such that

𝑚 = max
𝑤∈BR𝑝

𝜉
𝑒
(𝑤) . (39)

Obviously, (1/𝑝)𝑒 ∈ BR𝑝 and 𝜉𝑒((1/𝑝)𝑒) = 1/𝑝 > 0; then we
have𝑚 > 0. Thus, we get from the nonnegative homogeneity
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of 𝜉
𝑒
that, for all (𝑢, V, 𝑦, 𝑧) ∈ B(0R𝑟+𝑠+𝑛+𝑚 , 𝛿) \ {0R𝑟+𝑠+𝑛+𝑚}, all

𝑥 ∈ 𝑆(𝑢, V, 𝑦, 𝑧) ∩ B(𝑥, 𝛿) and all 𝑤 ∈BR𝑝 ,

𝜉
𝑒
(𝑑 (𝑥, 𝑆) 𝑤) = 𝑑 (𝑥, 𝑆) 𝜉

𝑒
(𝑤) < 𝑚𝑀

󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)
󵄩󵄩󵄩󵄩
𝜎

. (40)

By Lemma 6, we have

𝑑 (𝑥, 𝑆) 𝑤 ∈ 𝑚𝑀
󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)

󵄩󵄩󵄩󵄩
𝜎

𝑒 − intR𝑝

+
, (41)

which implies

𝑑 (𝑥, 𝑆)BR𝑝 ⊂ 𝑚𝑀
󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)

󵄩󵄩󵄩󵄩
𝜎

𝑒 − intR𝑝

+
. (42)

Furthermore, recall that a set-valued map Ψ : R𝑡 󴁂󴀱 R𝑛 is
said to be calm with order 𝜎 > 0 at (𝑥, 𝑦) ∈ gphΨ if and
only if there exist neighborhoods𝑈 of 𝑥 and𝑉 of 𝑦 and a real
number ℓ > 0 such that

Ψ (𝑥) ∩ 𝑉 ⊂ Ψ (𝑥) + ℓ‖𝑥 − 𝑥‖
𝜎

BR𝑛 , ∀𝑥 ∈ 𝑈. (43)

Then we can immediately obtain the following character-
ization of local error bounds for the constraint system of
(MOPEC) based on the arguments in Remark 11.

Proposition 12. Given 𝜎 > 0 and 𝑥 ∈ 𝑆, then the following
assertions are equivalent.

(i) The constraint system of (MOPEC) has a local error
bound with order 𝜎 at 𝑥.

(ii) There exist 𝛿 > 0 and 𝑀 > 0 such that, for all
(𝑢, V, 𝑦, 𝑧) ∈ B(0R𝑟+𝑠+𝑛+𝑚 , 𝛿) \ {0R𝑟+𝑠+𝑛+𝑚} and all 𝑥 ∈

𝑆(𝑢, V, 𝑦, 𝑧) ∩ B(𝑥, 𝛿),

𝑑 (𝑥, 𝑆 (0R𝑟+𝑠+𝑛+𝑚)) < 𝑀
󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)

󵄩󵄩󵄩󵄩
𝜎

. (44)

(iii) The set-valued map 𝑆 : R𝑟+𝑠+𝑛+𝑚 󴁂󴀱 R𝑛, defined by
(26), is calm with order 𝜎 at (0R𝑟+𝑠+𝑛+𝑚 , 𝑥).

Proof. As discussed in Remark 11, (i) is equivalent to (ii). We
only need to prove the equivalence of (ii) and (iii). In fact, it
follows from the definition of calmness for a set-valued map
that (ii) is obviously equivalent to the calmness with order 𝜎
at (0R𝑟+𝑠+𝑛+𝑚 , 𝑥) of the set-valued map 𝑆.

As we know, there have been many papers devoted to
investigate the calmness of a set-valued map Ψ (which is
equivalent to the metric subregularity of its converse Ψ−1).
For more details, we refer to [21–24] and references therein.
It has been shown in Remark 11 and Proposition 12 that there
have been no differences between the scalar (𝑝 = 1) and the
multiobjective (𝑝 > 1) settings when we only consider the
calmness or the local error bound for the constraint system
of (MOPEC). However, if we pay attention to the weaker
(MOPEC-) calmness, we cannot negative the differences
between them.

We now give the following equivalent characterizations
of two classes of multiobjective penalty problems and the
(MOPEC-) calmness condition.

Theorem 13. Let 𝑥 ∈ 𝑆 be a local efficient (resp. local weak
efficient) solution for (MOPEC). Then the following assertions
are equivalent.

(i) (MOPEC) is (MOPEC-) calm with order 𝜎 > 0 at 𝑥.

(ii) There exists some 𝜌 > 0 such that, for any 𝜌 ≥ 𝜌,
(𝑥, 0R𝑛+𝑚) is a local efficient (resp. local weak efficient)
solution for the following multiobjective penalty prob-
lem with order 𝜎:

(𝑀𝑃𝑃)
𝐼

min 𝑓 (𝑥) + 𝜌 (
󵄩󵄩󵄩󵄩𝑔+ (𝑥)

󵄩󵄩󵄩󵄩 + ‖ℎ (𝑥)‖ +
󵄩󵄩󵄩󵄩(𝑦, 𝑧)

󵄩󵄩󵄩󵄩)
𝜎

𝑒,

𝑠.𝑡. 𝑧 ∈ 𝑞 (𝑥) + 𝑄 (𝑥 + 𝑦) ,

𝑥 ∈ Θ, (𝑦, 𝑧) ∈ R
𝑛+𝑚

,

(45)

where 𝑔
+
(𝑥) := (max{𝑔

1
(𝑥), 0}, max{𝑔

2
(𝑥), 0}, . . .,

max{𝑔
𝑟
(𝑥), 0}).

(iii) There exists some 𝜇 > 0 such that, for any 𝜇 ≥ 𝜇, 𝑥 is a
local efficient (resp. local weak efficient) solution for the
following multiobjective penalty problem with order 𝜎:

(𝑀𝑃𝑃)
𝐼𝐼

min 𝑓 (𝑥)

+ 𝜇[
󵄩󵄩󵄩󵄩𝑔+ (𝑥)

󵄩󵄩󵄩󵄩 + ‖ℎ (𝑥)‖ + 𝑑 ((𝑥, −𝑞 (𝑥)) , gph𝑄)]
𝜎

𝑒,

𝑠.𝑡. 𝑥 ∈ Θ.

(46)

Proof. We only prove the case for 𝑥 being a local weak
efficient solution since the proof of the case for 𝑥 being a local
efficient solution is similar.

(i)⇒(ii). Suppose to the contrary that, for every 𝑘 ∈ N,
there exists (𝑥

𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) ∈ B((𝑥, 0R𝑛+𝑚), 1/𝑘) with 𝑥𝑘 ∈ Θ and

𝑧
𝑘
∈ 𝑞(𝑥

𝑘
) + 𝑄(𝑥

𝑘
+ 𝑦

𝑘
) such that

𝑓 (𝑥
𝑘
) + 𝑘 (

󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝑦𝑘, 𝑧𝑘)

󵄩󵄩󵄩󵄩)
𝜎

𝑒 ∈ 𝑓 (𝑥) − intR𝑝

+
.

(47)

Take 𝑢
𝑘
= −𝑔

+
(𝑥
𝑘
) and V

𝑘
= −ℎ(𝑥

𝑘
). Then it follows that

𝑔(𝑥
𝑘
) + 𝑢

𝑘
∈ −R𝑟

+
and ℎ(𝑥

𝑘
) + V

𝑘
= 0R𝑠 . Together with 𝑧𝑘 ∈

𝑞(𝑥
𝑘
) + 𝑄(𝑥

𝑘
+ 𝑦

𝑘
) and 𝑥

𝑘
∈ Θ, we get 𝑥

𝑘
∈ 𝑆(𝑢

𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
)

for all 𝑘 ∈ N. Moreover, by (47), we have

𝑓 (𝑥
𝑘
) + 𝑘

󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩
𝜎

𝑒 ∈ 𝑓 (𝑥) − intR𝑝

+
. (48)

Note that 𝑥
𝑘
→ 𝑥, 𝑔(𝑥) ∈ −R𝑟

+
, ℎ(𝑥) = 0R𝑠 , and 𝑔 and ℎ

are continuously Fréchet differentiable. Then it follows that
𝑢
𝑘
= 𝑔

+
(𝑥
𝑘
) → 0R𝑟 and V

𝑘
= ℎ(𝑥

𝑘
) → 0R𝑠 . Together

with (𝑦
𝑘
, 𝑧
𝑘
) → 0R𝑛+𝑚 and (48), this is a contradiction to the

(MOPEC-) calmness with order 𝜎 of (MOPEC) at 𝑥.
(ii)⇒(i). Suppose that (MOPEC) is not (MOPEC-) calm

with order 𝜎 > 0 at 𝑥. Then, for every 𝑘 ∈ N, there exist
(𝑢
𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) ∈ B(0R𝑟+𝑠+𝑛+𝑚 , 1/𝑘) and 𝑥𝑘 ∈ 𝑆(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘) ∩

B(𝑥, 1/𝑘) such that (31) holds. Since 𝑥
𝑘
∈ 𝑆(𝑢

𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
), it

follows that 𝑥
𝑘
∈ Θ, 𝑔(𝑥

𝑘
) + 𝑢

𝑘
∈ −R𝑟

+
, ℎ(𝑥

𝑘
) + V

𝑘
= 0R𝑠 and
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𝑧
𝑘
∈ 𝑞(𝑥

𝑘
) + 𝑄(𝑥

𝑘
+ 𝑦

𝑘
); that is, (𝑥

𝑘
+ 𝑦

𝑘
, 𝑧
𝑘
− 𝑞(𝑥

𝑘
)) ∈ gph𝑄

for all 𝑘 ∈ N. Thus, we have
󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔 (𝑥𝑘) − (𝑔 (𝑥𝑘) + 𝑢𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘) − (ℎ (𝑥𝑘) + V

𝑘
)
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩 , ∀𝑘 ∈ N,

(49)

which implies (‖𝑔
+
(𝑥
𝑘
)‖ + ‖ℎ(𝑥

𝑘
)‖ + ‖(𝑦

𝑘
, 𝑧
𝑘
)‖)

𝜎

≤

‖(𝑢
𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
)‖
𝜎, ∀𝑘 ∈ N. Together with (31), we get

𝑓 (𝑥
𝑘
) + 𝑘(

󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩)
𝜎

𝑒

= 𝑓 (𝑥
𝑘
) + 𝑘

󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩
𝜎

𝑒

+ 𝑘 [(
󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝑦𝑘, 𝑧𝑘)

󵄩󵄩󵄩󵄩)
𝜎

−
󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)

󵄩󵄩󵄩󵄩
𝜎

] 𝑒 ∈ 𝑓 (𝑥)

− intR𝑝

+
− intR𝑝

+

= 𝑓 (𝑥) − intR𝑝

+
, ∀𝑘 ∈ N.

(50)

This shows that the multiobjective penalty problem (MPP)I
with order 𝜎 does not admit a local exact penalization at
(𝑥, 0R𝑛+𝑚) since 𝑥𝑘 ∈ Θ, 𝑧

𝑘
∈ 𝑞(𝑥

𝑘
) + 𝑄(𝑥

𝑘
+ 𝑦

𝑘
), and

(𝑥
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) → (𝑥, 0R𝑛+𝑚).

(i)⇒(iii). Assume that, for every 𝑘 ∈ N, there exists 𝑥
𝑘
∈

Θ ∩ B(𝑥, 1/𝑘) such that

𝑓 (𝑥
𝑘
)

+ 𝑘[
󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩 + 𝑑 ((𝑥𝑘, −𝑞 (𝑥𝑘)) , gph𝑄)]
𝜎

𝑒

− 𝑓 (𝑥) ∈ − intR𝑝

+
.

(51)

Note that

𝑑 ((𝑥
𝑘
, −𝑞 (𝑥

𝑘
)) , gph𝑄) = inf

𝛽∈𝑄(𝛼)

󵄩󵄩󵄩󵄩(𝑥𝑘, −𝑞 (𝑥𝑘)) − (𝛼, 𝛽)
󵄩󵄩󵄩󵄩 .

(52)

Thus, for every 𝑘 ∈ N, there exists (𝛼
𝑘
, 𝛽

𝑘
) ∈ R𝑛+𝑚 with 𝛽

𝑘
∈

𝑄(𝛼
𝑘
) such that

󵄩󵄩󵄩󵄩(𝑥𝑘, −𝑞 (𝑥𝑘)) − (𝛼𝑘, 𝛽𝑘)
󵄩󵄩󵄩󵄩

≤ (1 +
1

𝑘
) 𝑑 ((𝑥

𝑘
, −𝑞 (𝑥

𝑘
)) , gph𝑄) .

(53)

Take 𝑢
𝑘
= −𝑔

+
(𝑥
𝑘
), V

𝑘
= −ℎ(𝑥

𝑘
), 𝑦

𝑘
= 𝛼

𝑘
− 𝑥

𝑘
, and 𝑧

𝑘
=

𝑞(𝑥
𝑘
) + 𝛽

𝑘
. Then it follows that 𝑔(𝑥

𝑘
) + 𝑢

𝑘
∈ −R𝑟

+
, ℎ(𝑥

𝑘
) +

V
𝑘
= 0R𝑠 , and 𝑧𝑘 ∈ 𝑞(𝑥𝑘) + 𝑄(𝑥𝑘 + 𝑦𝑘), which implies 𝑥

𝑘
∈

𝑆(𝑢
𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) since 𝑥

𝑘
∈ Θ, and

(
󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩)
𝜎

≤ (1 +
1

𝑘
)
𝜎

[
󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩

+𝑑 ((𝑥
𝑘
, −𝑞 (𝑥

𝑘
)) , gph𝑄)]𝜎.

(54)

Connecting 𝑒 ∈ int R
𝑝

+
, (51), and (54), we have for any 𝑘 ∈ N

𝑓 (𝑥
𝑘
) +

𝑘𝜎+1

(𝑘 + 1)
𝜎

󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩
𝜎

𝑒 − 𝑓 (𝑥)

= 𝑓 (𝑥
𝑘
) + 𝑘 [

󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)
󵄩󵄩󵄩󵄩

+𝑑 ((𝑥
𝑘
, −𝑞 (𝑥

𝑘
)) , gph𝑄)]𝜎𝑒 − 𝑓 (𝑥)

+
𝑘𝜎+1

(𝑘 + 1)
𝜎
{(
󵄩󵄩󵄩󵄩𝑢𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩V𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩(𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩)
𝜎

− (1 +
1

𝑘
)
𝜎

× [
󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩

+ 𝑑 ((𝑥
𝑘
, −𝑞 (𝑥

𝑘
)) , gph𝑄)]𝜎} 𝑒

∈ − intR𝑝

+
− intR𝑝

+
= − intR𝑝

+
.

(55)

Moreover, it follows from [25, Lemma 3.21] and (51) that for
any 𝜆 ∈ R

𝑝

+
with ∑𝑝

𝑖=1
𝜆
𝑖
= 1 we get

[
󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩 + 𝑑 ((𝑥𝑘, −𝑞 (𝑥𝑘)) , gph𝑄)]
𝜎

≤
1

𝑘

𝑝

∑
𝑖=1

𝜆
𝑖
(𝑓

𝑖
(𝑥) − 𝑓

𝑖
(𝑥

𝑘
)) , ∀𝑘 ∈ N.

(56)

Note that 𝑓 is locally Lipschitz and 𝑥
𝑘
→ 𝑥. Then it follows

that [‖𝑔
+
(𝑥
𝑘
)‖ + ‖ℎ(𝑥

𝑘
)‖ + 𝑑((𝑥

𝑘
, −𝑞(𝑥

𝑘
)), gph𝑄)]𝜎 → 0,

which implies (𝑢
𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) → 0R𝑟+𝑠+𝑛+𝑚 from (54). Together

with 𝑘𝜎+1/(𝑘 + 1)𝜎 → +∞, 𝑥
𝑘
∈ 𝑆(𝑢

𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
), 𝑥

𝑘
→ 𝑥,

and (55), this is a contradiction to the (MOPEC-) calmness
with order 𝜎 of (MOPEC) at 𝑥.

(iii)⇒(i). Assume that (MOPEC) is not (MOPEC-) calm
with order 𝜎 > 0 at 𝑥. Then, by the same argument to the
proof of (ii)⇒(i), it follows that, for every 𝑘 ∈ N, there
exist (𝑢

𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) ∈ B(0R𝑟+𝑠+𝑛+𝑚 , 1/𝑘) and 𝑥𝑘 ∈ B(𝑥, 1/𝑘)

with 𝑥
𝑘
∈ Θ, 𝑔(𝑥

𝑘
) + 𝑢

𝑘
∈ −R𝑟

+
, ℎ(𝑥

𝑘
) + V

𝑘
= 0R𝑠 and

𝑧
𝑘
∈ 𝑞(𝑥

𝑘
) + 𝑄(𝑥

𝑘
+ 𝑦

𝑘
); that is, (𝑥

𝑘
+ 𝑦

𝑘
, 𝑧
𝑘
− 𝑞(𝑥

𝑘
)) ∈ gph𝑄

such that (31) holds. Thus, we have

[
󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩 + 𝑑 ((𝑥𝑘, −𝑞 (𝑥𝑘)) , gph𝑄)]
𝜎

≤ [
󵄩󵄩󵄩󵄩𝑔 (𝑥𝑘) − (𝑔 (𝑥𝑘) + 𝑢𝑘)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘) − (ℎ (𝑥𝑘) + V

𝑘
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(𝑥𝑘, −𝑞 (𝑥𝑘)) − (𝑥𝑘 + 𝑦𝑘, 𝑧𝑘 − 𝑞 (𝑥𝑘))

󵄩󵄩󵄩󵄩]
𝜎

=
󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)

󵄩󵄩󵄩󵄩
𝜎

, ∀𝑘 ∈ N.

(57)
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Together with (31) and 𝑒 ∈ intR𝑝

+
, we get

𝑓 (𝑥
𝑘
) + 𝑘 [

󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)
󵄩󵄩󵄩󵄩

+𝑑 ((𝑥
𝑘
, −𝑞 (𝑥

𝑘
)) , gph𝑄)]𝜎𝑒

= 𝑓 (𝑥
𝑘
) + 𝑘

󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩
𝜎

𝑒

+ 𝑘 ([
󵄩󵄩󵄩󵄩𝑔+ (𝑥𝑘)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩ℎ (𝑥𝑘)

󵄩󵄩󵄩󵄩 + 𝑑 ((𝑥𝑘, −𝑞 (𝑥𝑘)) , gph𝑄)]
𝜎

−
󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)

󵄩󵄩󵄩󵄩
𝜎

) 𝑒 ∈ 𝑓 (𝑥) − intR𝑝

+
− intR𝑝

+

= 𝑓 (𝑥) − intR𝑝

+
, ∀𝑘 ∈ N,

(58)
which implies that the multiobjective penalty problem
(MPP)II with order 𝜎 does not admit a local exact penaliza-
tion at 𝑥 since the sequence {𝑥

𝑘
} ⊂ Θ and 𝑥

𝑘
→ 𝑥.

It is well known that a calmness condition with order
1 for standard nonlinear programming can lead to a KKT
condition. In fact, we can also obtain a M-stationary condi-
tion for (MOPEC) under the (MOPEC-) calmness condition
with order 1. To this end, we need the following generalized
Fermat rule for a multiobjective optimization problem with
an abstract constraint, which is established by applying the
nonlinear scalar function in Lemma 6.

Lemma 14. Let 𝜙 : R𝑛 → R𝑝 be a locally Lipschitz vector-
valued map, and let Ω ⊂ R𝑛 be a nonempty and closed subset.
If 𝑥 ∈ Ω is a local weak efficient solution for the multiobjective
optimization problem

min 𝜙 (𝑥)

𝑠.𝑡. 𝑥 ∈ Ω,
(59)

then there exists some 𝜆 ∈ R
𝑝

+
with ∑𝑝

𝑖=1
𝜆
𝑖
= 1 such that

0R𝑛 ∈

𝑝

∑
𝑖=1

𝜕 ⟨𝜆, 𝜙⟩ (𝑥) + 𝑁 (Ω, 𝑥) . (60)

Proof. Define the functionΦ : R𝑛 → R by
Φ (𝑥) := 𝜉

𝑒
(𝜙 (𝑥) − 𝜙 (𝑥)) + 𝜓 (Ω, 𝑥) , ∀𝑥 ∈ R

𝑛

. (61)
Since 𝑥 ∈ Ω is a local weak efficient solution,Φ attains a local
minimum at 𝑥. Otherwise, there exists a sequence {𝑥

𝑛
} ⊂ R𝑛

converging to 𝑥 such thatΦ(𝑥
𝑛
) < 0 sinceΦ(𝑥) = 0. Then we

have {𝑥
𝑛
} ⊂ Ω and Φ(𝑥

𝑛
) = 𝜉

𝑒
(𝜙(𝑥

𝑛
) − 𝜙(𝑥)) < 0. Together

with Lemma 6, we get
𝜙 (𝑥

𝑛
) − 𝜙 (𝑥) ∈ − intR𝑝

+
, ∀𝑛 ∈ N. (62)

This is a contradiction to 𝑥 ∈ Ω being a local weak efficient
solution since {𝑥

𝑛
} ⊂ Ω and 𝑥

𝑛
→ 𝑥. Note that 𝜙 is locally

Lipschitz and Ω is closed. It follows from Propositions 2, 3,
and 5 and Lemma 6 that
0R𝑛 ∈ 𝜕Φ (𝑥) ⊂ 𝜕𝜉𝑒 (𝜙 (∙) − 𝜙 (𝑥)) (𝑥) + 𝜕𝜓 (Ω, ∙) (𝑥)

⊂ {𝐷
∗

𝜙 (𝑥) (𝜆) : 𝜆 ∈ 𝜕𝜉
𝑒
(0R𝑝)} + 𝑁 (Ω, 𝑥)

= {𝐷
∗

𝜙 (𝑥) (𝜆) : 𝜆 ∈ R
𝑝

+
,

𝑝

∑
𝑖=1

𝜆
𝑖
= 1} + 𝑁 (Ω, 𝑥) .

(63)

Therefore, there exists some 𝜆 ∈ R
𝑝

+
with ∑𝑝

𝑖=1
𝜆
𝑖
= 1 such

that

0R𝑛 ∈ 𝐷
∗

𝜙 (𝑥) (𝜆) + 𝑁 (Ω, 𝑥) . (64)

By Proposition 4, it follows that

0R𝑛 ∈ 𝜕 ⟨𝜆, 𝜙⟩ (𝑥) + 𝑁 (Ω, 𝑥) . (65)

This completes the proof.

Next, we show that the (MOPEC-) calmness condition
with order 1 is sufficient to establish aM-stationary condition
for (MOPEC).

Theorem 15. Suppose that 𝑥 ∈ 𝑆 is a local weak efficient
solution for (MOPEC) and (MOPEC) is (MOPEC-) calm with
order 1 at 𝑥. Then 𝑥 is a M-stationary point for (MOPEC); that
is, there exist 𝜆 ∈ R

𝑝

+
with ∑𝑝

𝑖=1
𝜆
𝑖
= 1, 𝛽 ∈ R𝑟

+
, 𝛾 ∈ R𝑠, 𝜏 > 0,

and (𝑥∗, 𝑦∗) ∈ R𝑛+𝑚 with 𝑥∗ ∈ 𝐷∗𝑄(𝑥, −𝑞(𝑥))(𝑦∗) such that

0R𝑛 ∈ 𝜕 ⟨𝜆, 𝑓⟩ (𝑥) +

𝑟

∑
𝑖=1

𝛽
𝑖
∇𝑔

𝑖
(𝑥) +

𝑠

∑
𝑖=1

𝛾
𝑖
∇ℎ

𝑖
(𝑥)

+ 𝜏 (𝑥
∗

+ (∇𝑞 (𝑥))
∗

(𝑦
∗

)) + 𝑁 (Θ, 𝑥) ,

𝛽
𝑖
𝑔
𝑖
(𝑥) = 0, ∀𝑖 = 1, 2, . . . , 𝑟.

(66)

Proof. Since 𝑥 ∈ 𝑆 is a local weak efficient solution for
(MOPEC) and (MOPEC) is (MOPEC-) calm with order 1
at 𝑥, it follows from Theorem 13 (i)⇔(iii) that there exists
some 𝜇 > 0 such that 𝑥 is a local weak efficient solution for
the multiobjective penalty problem (MPP)II with order 1. For
simplicity, let the real-valued functionT : R𝑛

→ R defined
by

T (𝑥) =
󵄩󵄩󵄩󵄩𝑔+ (𝑥)

󵄩󵄩󵄩󵄩 + ‖ℎ (𝑥)‖ + 𝑑 ((𝑥, −𝑞 (𝑥)) , gph𝑄) ,

∀𝑥 ∈ R
𝑛

.
(67)

Note that 𝑓 is locally Lipschitz, 𝑔, ℎ, and 𝑞 are continuously
Fréchet differentiable, and 𝑄 is closed. Then T is locally
Lipschitz and the penalty function𝑓(∙)+𝜇T(∙)𝑒 : R𝑛 → R𝑝

is also locally Lipschitz. Together with the closedness of Θ
and Lemma 14, it follows that there exists some 𝜆 ∈ R

𝑝

+
with

∑
𝑝

𝑖=1
𝜆
𝑖
= 1 such that

0R𝑛 ∈ 𝜕 ⟨𝜆, 𝑓 (∙) + 𝜇T (∙) 𝑒⟩ (𝑥) + 𝑁 (Θ, 𝑥) . (68)

Moreover, by using ⟨𝜆, 𝑒⟩ = ∑𝑝

𝑖=1
𝜆
𝑖
= 1 and Proposition 3,

we have

𝜕 ⟨𝜆, 𝑓 (∙) + 𝜇T (∙) 𝑒⟩ (𝑥) ⊂ 𝜕 ⟨𝜆, 𝑓⟩ (𝑥) + 𝜇𝜕T (𝑥) , (69)

𝜕T (𝑥) ⊂ 𝜕
󵄩󵄩󵄩󵄩𝑔+ (∙)

󵄩󵄩󵄩󵄩 (𝑥) + 𝜕 ‖ℎ (∙)‖ (𝑥)

+ 𝜕𝑑 ((∙, −𝑞 (∙)) , gph𝑄) (𝑥) .
(70)

Note that 𝑔, ℎ, and 𝑞 are continuously Fréchet differentiable
and𝑄 is closed.Then it follows fromPropositions 1 (ii), 4, and
5 that, for all 𝑖 ∈ {1, 2, . . . , 𝑟},

𝜕max {0, 𝑔
𝑖
(∙)} (𝑥) = {

{0R𝑛} , if 𝑔
𝑖
(𝑥) < 0,

[0, 1] ∇𝑔
𝑖
(𝑥) , if 𝑔

𝑖
(𝑥) = 0,

(71)
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for all 𝑖 ∈ {1, 2, . . . , 𝑠},

𝜕
󵄨󵄨󵄨󵄨ℎ𝑖 (∙)

󵄨󵄨󵄨󵄨 (𝑥) = [−1, 1] ∇ℎ𝑖 (𝑥) ,

𝜕𝑑 ((∙, −𝑞 (∙)) , gph𝑄) (𝑥)

⊂ {(IR𝑛 , −∇𝑞 (𝑥))
∗

(𝑥
∗

, −𝑦
∗

) : (𝑥
∗

, −𝑦
∗

)

∈ 𝑁 (gph𝑄, (−𝑥, 𝑞 (𝑥))) } ,

(72)

where IR𝑛 denotes the identity map from R𝑛 to itself. Let
J(𝑥) := {𝑖 ∈ {1, 2, . . . , 𝑟} | 𝑔

𝑖
(𝑥) = 0} be the set of active

constraints of 𝑔 at 𝑥. Then we can conclude from (70)–(72)
that

𝜕T (𝑥) ⊂ ∑
𝑖∈J(𝑥)

[0, 1] ∇𝑔
𝑖
(𝑥) +

𝑠

∑
𝑖=1

[−1, 1] ∇ℎ
𝑖
(𝑥)

+ {𝑥
∗

+ (∇𝑞 (𝑥))
∗

(𝑦
∗

) : (𝑥
∗

, −𝑦
∗

)

∈ 𝑁 (gph𝑄, (−𝑥, 𝑞 (𝑥))) } .

(73)

Together with (68) and (69), there exist 𝛽
𝑖
≥ 0 with 𝑖 ∈ J(𝑥),

𝛾 ∈ R𝑠, and (𝑥∗, −𝑦∗) ∈ 𝑁(gph𝑄, (−𝑥, 𝑞(𝑥))); that is, 𝑥∗ ∈
𝐷
∗

𝑄(−𝑥, 𝑞(𝑥))(𝑦
∗

), such that

0R𝑛 ∈ 𝜕 ⟨𝜆, 𝑓⟩ (𝑥)

+ 𝜇( ∑
𝑖∈J(𝑥)

𝛽
𝑖
∇𝑔

𝑖
(𝑥) +

𝑠

∑
𝑖=1

𝛾
𝑖
∇ℎ

𝑖
(𝑥)

+ (𝑥
∗

+ (∇𝑞 (𝑥))
∗

(𝑦
∗

))) + 𝑁 (Θ, 𝑥)

= 𝜕 ⟨𝜆, 𝑓⟩ (𝑥) + ∑
𝑖∈J(𝑥)

𝜇𝛽
𝑖
∇𝑔

𝑖
(𝑥)

+

𝑠

∑
𝑖=1

𝜇 𝛾
𝑖
∇ℎ

𝑖
(𝑥) + 𝜇 (𝑥

∗

+ (∇𝑞 (𝑥))
∗

(𝑦
∗

)) + 𝑁 (Θ, 𝑥) .

(74)

Take 𝛽 ∈ R𝑟

+
with 𝛽

𝑖
= 𝜇𝛽

𝑖
, 𝑖 ∈ J(𝑥), and 𝛽

𝑖
= 0,

𝑖 ∈ {1, 2, . . . , 𝑟} \ J(𝑥), 𝛾 ∈ R𝑠 with 𝛾 = 𝜇 𝛾 and 𝜏 = 𝜇.
Then we have

0R𝑛 ∈ 𝜕 ⟨𝜆, 𝑓⟩ (𝑥) +

𝑟

∑
𝑖=1

𝛽
𝑖
∇𝑔

𝑖
(𝑥)

+

𝑠

∑
𝑖=1

𝛾
𝑖
∇ℎ

𝑖
(𝑥) + 𝜏 (𝑥

∗

+ (∇𝑞 (𝑥))
∗

(𝑦
∗

)) + 𝑁 (Θ, 𝑥) ,

𝛽
𝑖
𝑔
𝑖
(𝑥) = 0, 𝑖 = 1, 2, . . . , 𝑟.

(75)

This completes the proof.

Combining Proposition 12 and Theorem 15, we immedi-
ately have the following corollary.

Corollary 16. Let 𝑥 ∈ 𝑆 be a local efficient solution for
(MOPEC). Suppose that the constraint system of (MOPEC) has
a local error bound with order 1 at 𝑥, or, equivalently, the set-
valued map 𝑆 : R𝑟+𝑠+𝑛+𝑚 󴁂󴀱 R𝑛, defined by (26), is calm
with order 1 at (0R𝑟+𝑠+𝑛+𝑚 , 𝑥). Then 𝑥 is a M-stationary point
for (MOPEC).

Remark 17. Recently, Kanzow and Schwartz [26] discussed
the enhanced Fritz-John conditions for a smooth scalar opti-
mization problemwith equilibrium constraints and proposed
some new constraint qualifications for the enhanced M-
stationary condition. In particular, they obtained some suf-
ficient conditions for the existence of a local error bound for
the constraint system and the exactness of penalty functions
with order 1 by using an appropriate condition. Subsequently,
Ye and Zhang [27] extendedKanzow and Schwartz’s results to
the nonsmooth case. It is worth noting that the exactness of
the penalty function with order 1 in [26, 27] was established
by using various qualification conditions, whichwere actually
sufficient for the local error bound property of the constraint
system; see [28, 29] for more details. However, just as
shown in Theorem 13, the exactness for the two types of
multiobjective penalty functions with order 𝜎 is obtained
by means of the equivalent (MOPEC-) calmness condition,
which is associated with not only the objective function but
also the constraint system. Simultaneously, it follows from
Theorem 10 and Proposition 12 that the (MOPEC-) calmness
condition is weaker than the local error bound property of
the constraint system.

4. Applications

The main purpose of this section is to apply the obtained
results for (MOPEC) to a multiobjective optimization prob-
lem with complementarity constraints (in short, (MOPCC))
and a multiobjective optimization problem with weak vector
variational inequality constraints (in short, (MOPWVVI))
and establish corresponding calmness conditions and M-
stationary conditions.

4.1. Applications to (MOPCC). In this subsection, we con-
sider the followingmultiobjective optimization problemwith
complementarity constraints:

(MOPCC)

min 𝑓 (𝑥)

s.t. 𝑔 (𝑥) ∈ −R
𝑟

+
,

ℎ (𝑥) = 0R𝑠 ,

𝐺 (𝑥) ∈ R
𝑙

+
, 𝐻 (𝑥) ∈ R

𝑙

+
, 𝐺(𝑥)

𝑇

𝐻(𝑥) = 0,

𝑥 ∈ Θ,

(76)

where 𝑓 : R𝑛 → R𝑝 is locally Lipschitz, 𝑔 : R𝑛 → R𝑟,
ℎ : R𝑛 → R𝑠, 𝐺, 𝐻 : R𝑛 → R𝑙 are continuously Fréchet
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differentiable, and Θ is a nonempty and closed subset of R𝑛.
As usual, we denote

𝐼
0+
:= {𝑖 | 𝐺

𝑖
(𝑥) = 0,𝐻

𝑖
(𝑥) > 0} ,

𝐼
00
:= {𝑖 | 𝐺

𝑖
(𝑥) = 0,𝐻

𝑖
(𝑥) = 0} ,

𝐼
+0
:= {𝑖 | 𝐺

𝑖
(𝑥) > 0,𝐻

𝑖
(𝑥) = 0} .

(77)

Obviously, the feasible set 𝑆 := {𝑥 ∈ R𝑛 | 𝑔(𝑥) ∈ −R𝑟

+
, ℎ(𝑥) =

0R𝑠 , 𝐺(𝑥) ∈ R𝑙

+
, 𝐻(𝑥) ∈ R𝑙

+
, 𝐺(𝑥)

𝑇

𝐻(𝑥) = 0, 𝑥 ∈ Θ} is a
closed subset of R𝑛. It is easy to verify that (MOPCC) can be
reformulated as a special case of (MOPEC) if we let𝑚 = 2𝑙,

𝑞 (𝑥) :=(

𝐺
1
(𝑥)

𝐻
1
(𝑥)
...

𝐺
𝑙
(𝑥)

𝐻
𝑙
(𝑥)

), 𝑄 (𝑥) := 𝐶
𝑙

, ∀𝑥 ∈ R
𝑛

, (78)

where 𝐶 := {(𝑎, 𝑏) ∈ R2 | 0 ≤ −𝑎 ⊥ −𝑏 ≥ 0}. Note that
𝑄 is constant and equals to 𝐶𝑙. Then the parametric form
𝑆(𝑢, V, 𝑦, 𝑧) of 𝑆 with parameter (𝑢, V, 𝑦, 𝑧) ∈ R𝑟+𝑠+2𝑙 is

𝑆 (𝑢, V, 𝑦, 𝑧) = {𝑥 ∈ Θ | 𝑔 (𝑥) + 𝑢 ∈ −R
𝑟

+
, ℎ (𝑥) + V = 0R𝑠 ,

𝐺 (𝑥) + 𝑦 ∈ R
𝑙

+
, 𝐻 (𝑥) + 𝑧 ∈ R

𝑙

+
,

(𝐺 (𝑥) + 𝑦)
𝑇

(𝐻 (𝑥) + 𝑧) = 0} .

(79)

Clearly, for the set-valued map 𝑆 : R𝑟+𝑠+2𝑙 󴁂󴀱 R𝑛, one has
𝑆(0R𝑟+𝑠+2𝑙) = 𝑆.

Inspired by Definitions 7 and 9, we give the following
concepts, called (MOPCC-) calm and local error bound, for
(MOPCC).

Definition 18. Given 𝜎 > 0 and 𝑥 ∈ 𝑆 being a local
efficient (resp. local weak efficient) solution for (MOPCC),
then (MOPCC) is said to be (MOPCC-) calm with order 𝜎
at 𝑥 if and only if there exist 𝛿 > 0 and𝑀 > 0 such that, for
all (𝑢, V, 𝑦, 𝑧) ∈ B(0R𝑟+𝑠+2𝑙 , 𝛿) and all 𝑥 ∈ 𝑆(𝑢, V, 𝑦, 𝑧) ∩B(𝑥, 𝛿),
one has

𝑓 (𝑥) +𝑀
󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)

󵄩󵄩󵄩󵄩
𝜎

𝑒 ∉ 𝑓 (𝑥) − intR𝑝

+
. (80)

Definition 19. Given 𝜎 > 0 and 𝑥 ∈ 𝑆, then the constraint
system of (MOPCC) is said to have a local error bound with
order 𝜎 at 𝑥 if and only if there exist 𝛿 > 0 and𝑀 > 0 such
that, for all (𝑢, V, 𝑦, 𝑧) ∈ B(0R𝑟+𝑠+2𝑙 , 𝛿) \ {0R𝑟+𝑠+2𝑙} and all 𝑥 ∈
𝑆(𝑢, V, 𝑦, 𝑧) ∩ B(𝑥, 𝛿), one has

𝑑 (𝑥, 𝑆)BR𝑝 ⊂ 𝑀
󵄩󵄩󵄩󵄩(𝑢, V, 𝑦, 𝑧)

󵄩󵄩󵄩󵄩
𝜎

𝑒 − intR𝑝

+
. (81)

Similarly, it follows fromTheorem 10 that if the constraint
system of (MOPCC) has a local error bound with order
𝜎 at 𝑥, then (MOPCC) is (MOPCC-) calm with order 𝜎
at 𝑥. Moreover, by Proposition 12, the constraint system of
(MOPCC) has a local error bound with order 𝜎 at 𝑥 if and

only if the set-valued map 𝑆 : R𝑟+𝑠+2𝑙 󴁂󴀱 R𝑛 is calm with
order 𝜎 at (0R𝑟+𝑠+2𝑙 , 𝑥). Specially, if we take 𝑝 = 1 and 𝜎 = 1,
thenDefinitions 18 and 19 reduce toDefinitions 3.3 and 3.6 in
[4], respectively. Simultaneously, the corresponding results to
Propositions 3.4 and 3.7 in [4] also hold.

As mentioned in the introduction, there have been
various stationary concepts proposed for (MOPCC). Here we
only recall the notion of the M-stationary point.

Definition 20 (see [4]). A point 𝑥 ∈ 𝑆 is called aM-stationary
point of (MOPCC) if and only if there exists a Lagrange
multiplier 𝜆∗ = (𝜆𝑓, 𝜆𝑔, 𝜆ℎ, 𝜆𝐺, 𝜆𝐻) ∈ R𝑝+𝑟+𝑠+2𝑙 with 𝜆𝑓 ∈ R

𝑝

+

and ∑𝑝

𝑖=1
𝜆
𝑓

𝑖
= 1 such that

0R𝑛 ∈ 𝜕 ⟨𝜆
𝑓

, 𝑓⟩ (𝑥) +

𝑟

∑
𝑖=1

𝜆
𝑔

𝑖
∇𝑔

𝑖
(𝑥) +

𝑠

∑
𝑖=1

𝜆
ℎ

𝑖
∇ℎ

𝑖
(𝑥)

−

𝑙

∑
𝑖=1

[𝜆
𝑔

𝑖
∇𝐺

𝑖
(𝑥) + 𝜆

𝐻

𝑖
∇𝐻

𝑖
(𝑥)] + 𝑁 (Θ, 𝑥) ,

𝜆
𝐺

𝑖
= 0, ∀𝑖 ∈ 𝐼

+0
, 𝜆

𝐺

𝑖
∈ R, ∀𝑖 ∈ 𝐼

0+
;

𝜆
𝐻

𝑖
= 0, ∀𝑖 ∈ 𝐼

0+
, 𝜆

𝐻

𝑖
∈ R, ∀𝑖 ∈ 𝐼

+0
,

either 𝜆𝐺
𝑖
> 0, 𝜆

𝐻

𝑖
> 0 or 𝜆

𝐺

𝑖
𝜆
𝐻

𝑖
= 0, ∀𝑖 ∈ 𝐼

00
,

𝜆
𝑔

∈ R
𝑟

+
, 𝜆

𝑔

𝑖
𝑔
𝑖
(𝑥) = 0, ∀𝑖 = 1, 2, . . . , 𝑟.

(82)

The following formula for the Mordukhovich normal
cone of the set 𝐶 is useful in the sequel.

Lemma 21 (see [4]). For every (𝑎, 𝑏) ∈ 𝐶, we have

𝑁(𝐶, (𝑎, 𝑏)) =

{{{{{{{

{{{{{{{

{

(𝑑
1
, 𝑑

2
) | 𝑑

1
∈ R, 𝑑

2
= 0 𝑖𝑓 𝑎 = 0 > 𝑏

𝑑
1
= 0, 𝑑

2
∈ R 𝑖𝑓 𝑎 < 0 = 𝑏

either 𝑑
1
> 0,

𝑑
2
> 0

or 𝑑
1
𝑑
2
= 0 𝑖𝑓 𝑎 = 0 = 𝑏.

(83)

We now apply Theorem 15 to establish a M-stationary
condition for (MOPCC) by virtue of the (MOPCC-) calmness
condition.

Theorem 22. Suppose that 𝑥 ∈ 𝑆 is a local weak efficient
solution for (MOPCC) and (MOPCC) is (MOPCC-) calm with
order 1 at 𝑥. Then 𝑥 is a M-stationary point of (MOPCC).

Proof. As stated above, (MOPCC) is equivalent to (MOPCC)
with𝑚 = 2𝑙 and 𝑞,𝑄 given by (78). Note that the (MOPCC-)
calmness of (MOPCC) implies the (MOPEC-) calmness of
(MOPCC). Then it follows from Theorem 15 that there exist
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𝜆 ∈ R
𝑝

+
with ∑𝑝

𝑖=1
𝜆
𝑖
= 1, 𝛽 ∈ R𝑟

+
, 𝛾 ∈ R𝑠, 𝜏 > 0 and

(𝑥∗, 𝑦∗) ∈ R𝑛+2𝑙 with 𝑥∗ ∈ 𝐷∗𝑄(𝑥, −𝑞(𝑥))(𝑦∗) such that

0R𝑛 ∈ 𝜕 ⟨𝜆, 𝑓⟩ (𝑥) +

𝑟

∑
𝑖=1

𝛽
𝑖
∇𝑔

𝑖
(𝑥) +

𝑠

∑
𝑖=1

𝛾
𝑖
∇ℎ

𝑖
(𝑥)

+ 𝜏 (𝑥
∗

+ (∇𝑞 (𝑥))
∗

(𝑦
∗

)) + 𝑁 (Θ, 𝑥) ,

𝛽
𝑖
𝑔
𝑖
(𝑥) = 0, ∀𝑖 = 1, 2, . . . , 𝑟.

(84)

Note that 𝑄(𝑥) = 𝐶𝑙 for all 𝑥 ∈ R𝑛. Then it follows that
gph𝑄 = R𝑛 × 𝐶𝑙 and

𝑁(gph𝑄, (𝑥, −𝑞 (𝑥)))

= 𝑁 (R
𝑛

, 𝑥) × 𝑁 (𝐶
𝑙

, −𝑞 (𝑥))

= {0R𝑛} × 𝑁 (𝐶, (−𝐺1 (𝑥) , −𝐻1
(𝑥)))

× ⋅ ⋅ ⋅ × 𝑁 (𝐶, (−𝐺
𝑙
(𝑥) , −𝐻

𝑙
(𝑥))) .

(85)

Together with Lemma 21, we have for every (𝑥∗, 𝑦∗) ∈ R𝑛+2𝑙

with 𝑥∗ ∈ 𝐷∗𝑄(𝑥, −𝑞(𝑥))(𝑦∗),

𝑥
∗

= 0R𝑛 ,

−𝑦
∗

∈

{{{{{{

{{{{{{

{

(

𝜂
1

𝜃
1

...
𝜂
𝑙

𝜃
𝑙

)

| 𝜂
𝑖
∈ R, 𝜃

𝑖
= 0

𝜂
𝑖
= 0, 𝜃

𝑖
∈ R

either 𝜂
𝑖
> 0,

𝜃
𝑖
> 0

or 𝜂
𝑖
𝜃
𝑖
= 0

if 𝑖 ∈ 𝐼
0+

if 𝑖 ∈ 𝐼
+0

if 𝑖 ∈ 𝐼
00
.

(86)

Moreover, we get

∇𝑞 (𝑥) =(

(

∇𝐺
1
(𝑥)

𝑇

∇𝐻
1
(𝑥)

𝑇

...
∇𝐺

𝑙
(𝑥)

𝑇

∇𝐻
𝑙
(𝑥)

𝑇

)

)

. (87)

Taking 𝜆∗ = (𝜆𝑓, 𝜆𝑔, 𝜆ℎ, 𝜆𝐺, 𝜆𝐻) ∈ R𝑝+𝑟+𝑠+2𝑙 with 𝜆𝑓 = 𝜆,
𝜆𝑔 = 𝛽, 𝜆ℎ = 𝛾, 𝜆𝐺

𝑖
= 𝜏𝜂

𝑖
, and 𝜆𝐻

𝑖
= 𝜏𝜃

𝑖
, for all 𝑖 ∈ {1, 2, . . . , 𝑙},

and substituting (86) and (87) into (84), thenwe can conclude
that 𝑥 ∈ 𝑆 is a M-stationary point of (MOPCC) with respect
to the Lagrange multiplier 𝜆∗.

4.2. Applications to (MOPWVVI). Consider the following
multiobjective optimization problem with weak vector varia-
tional inequality constraints:

(MOPWVVI)

min 𝑓 (𝑥)

s.t. 𝑔 (𝑥) ∈ −R
𝑟

+
,

ℎ (𝑥) = 0R𝑠 ,

𝑥 ∈ Θ̃,

(88)

where 𝑓 : R𝑛 → R𝑝 is locally Lipschitz, 𝑔 : R𝑛 → R𝑟 and
ℎ : R𝑛 → R𝑠 are continuously Fréchet differentiable. Θ̃ is
the solution set of the weak vector variational inequality (in
short, (WVVI)): find a vector 𝑥 ∈ Θ such that

(⟨𝐹
1
(𝑥) , 𝑤 − 𝑥⟩ , ⟨𝐹

2
(𝑥) , 𝑤 − 𝑥⟩ , . . . ,

⟨𝐹
𝑚
(𝑥) , 𝑤 − 𝑥⟩)

𝑇

∉ − intR𝑚

+
, ∀𝑤 ∈ Θ,

(89)

where𝐹
𝑖
: R𝑛

→ R𝑛, 𝑖 = 1, 2, . . . , 𝑚 are continuously Fréchet
differentiable andΘ is a nonempty, closed, and convex subset
of R𝑛. In the sequel, we denote 𝑆 := {𝑥 ∈ R𝑛 | 𝑔(𝑥) ∈

−R𝑟

+
, ℎ(𝑥) = 0R𝑠 , 𝑥 ∈ Θ̃} by the feasible set of (MOPWVVI).

Then it is clear that 𝑆 is closed.
Take 𝑒

0
:= (1, 1, . . . , 1) ∈ R𝑚. Then it follows from

Lemma 6 that 𝑥 ∈ R𝑛 is a solution of (WVVI) if and only
if

𝑥 ∈ Θ, inf
𝑤∈Θ

𝜉
𝑒
0

( (⟨𝐹
1
(𝑥) , 𝑤 − 𝑥⟩, ⟨𝐹

2
(𝑥) , 𝑤 − 𝑥⟩, . . . ,

⟨𝐹
𝑚
(𝑥), 𝑤 − 𝑥⟩)

𝑇

) = 0.

(90)

Moreover, sinceΘ is nonempty, closed, and convex, and 𝜉
𝑒
0

is
a convex function, we can conclude fromTheorem 8.15 in [7]
and Proposition 5 that 𝑥 is a solution of (WVVI) if and only
if

0R𝑛 ∈ 𝜕𝜉𝑒
0

((⟨𝐹
1
(𝑥) , ∙ − 𝑥⟩ , ⟨𝐹

2
(𝑥) , ∙ − 𝑥⟩ , . . . ,

⟨𝐹
𝑚
(𝑥) , ∙ − 𝑥⟩)

𝑇

) (𝑥) + 𝑁 (Θ, 𝑥)

⊂ (𝐹
1
(𝑥) , 𝐹

2
(𝑥) , . . . , 𝐹

𝑚
(𝑥)) 𝜕𝜉

𝑒
0

(0R𝑚) + 𝑁 (Θ, 𝑥) .

(91)

This shows that there exists some 𝜁 = (𝜁
1
, 𝜁
2
, . . . , 𝜁

𝑚
) ∈

R𝑚

+
with ∑𝑚

𝑖=1
𝜁
𝑖
= 1 such that

0R𝑛 ∈

𝑚

∑
𝑖=1

𝜁
𝑖
𝐹
𝑖
(𝑥) + 𝑁 (Θ, 𝑥) . (92)

Given 𝑥 ∈ 𝑆 being a local efficient (resp. local weak
efficient) solution for (MOPWVVI), then 𝑥 is a solution of
(MOPWVVI). Next, we define the concept of (MOPWVVI-)
calmness with order 𝜎 > 0 at 𝑥 for (MOPWVVI) with respect
to the corresponding 𝜁 = (𝜁

1
, 𝜁
2
, . . . , 𝜁

𝑚
) ∈ R𝑚

+
with ∑𝑚

𝑖=1
𝜁
𝑖
=

1 satisfying (92).

Definition 23. Given 𝜎 > 0, 𝑥 ∈ 𝑆 being a local efficient
(resp. local weak efficient) solution for (MOPWVVI) and
𝜁 = (𝜁

1
, 𝜁
2
, . . . , 𝜁

𝑚
) ∈ R𝑚

+
with∑𝑚

𝑖=1
𝜁
𝑖
= 1 satisfying (92), then

(MOPWVVI) is said to be (MOPWVVI-) calm with order 𝜎
at 𝑥 if and only if there exists 𝑀 > 0 such that, for every
sequence {(𝑢

𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
)} ⊂ R𝑟+𝑠+𝑛+𝑚 with (𝑢

𝑘
, V
𝑘
, 𝑦

𝑘
, 𝑧
𝑘
) →

0R𝑟+𝑠+𝑛+𝑚 and every sequence {𝑥𝑘} ⊂ Θ satisfying 𝑔(𝑥
𝑘
) + 𝑢

𝑘
∈

R𝑟

+
, ℎ(𝑥

𝑘
) + V

𝑘
= 0R𝑠 , 𝑧𝑘 ∈ ∑

𝑚

𝑖=1
𝜁
𝑖
𝐹
𝑖
(𝑥
𝑘
) + 𝑁(Θ, 𝑥

𝑘
+ 𝑦

𝑘
), and

𝑥
𝑘
→ 𝑥, it holds that

𝑓 (𝑥
𝑘
) + 𝑀

󵄩󵄩󵄩󵄩(𝑢𝑘, V𝑘, 𝑦𝑘, 𝑧𝑘)
󵄩󵄩󵄩󵄩
𝜎

𝑒 ∉ 𝑓 (𝑥) − intR𝑝

+
. (93)
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Obviously, we can define a similar local error bound
condition at a local weak efficient solution 𝑥 ∈ 𝑆 for
(MOPWVVI) with respect to 𝜁 = (𝜁

1
, 𝜁
2
, . . . , 𝜁

𝑚
) ∈ R𝑚

+

with ∑𝑚

𝑖=1
𝜁
𝑖
= 1 satisfying (92). Moreover, we can obtain

a corresponding relationship between the (MOPWVVI-)
calmness condition and the local error bound condition.
However, we omit the details here for simplicity.

Next, we establish a M-stationary condition for (MOP-
WVVI) under the (MOPWVVI-) calmness with order 1
assumption.

Theorem 24. Suppose that 𝑥 ∈ 𝑆 is a local weak efficient
solution for (MOPWVVI) and 𝜁 = (𝜁

1
, 𝜁
2
, . . . , 𝜁

𝑚
) ∈ R𝑚

+

with ∑𝑚

𝑖=1
𝜁
𝑖
= 1 satisfy (92). If in addition (MOPWVVI) is

(MOPWVVI-) calm with order 1 at 𝑥, then there exist 𝜆 ∈ R
𝑝

+

with ∑𝑝

𝑖=1
𝜆
𝑖
= 1, 𝛽 ∈ R𝑟

+
, 𝛾 ∈ R𝑠, 𝜏 > 0, and (𝑥∗, 𝑦∗) ∈ R2𝑛

with 𝑥∗ ∈ 𝐷∗𝑁
Θ
(𝑥, −∑

𝑚

𝑖=1
𝜁
𝑖
𝐹
𝑖
(𝑥))(𝑦∗) such that

0R𝑛 ∈ 𝜕 ⟨𝜆, 𝑓⟩ (𝑥) +

𝑟

∑
𝑖=1

𝛽
𝑖
∇𝑔

𝑖
(𝑥) +

𝑠

∑
𝑖=1

𝛾
𝑖
∇ℎ

𝑖
(𝑥)

+ 𝜏 [𝑥
∗

+ (

𝑚

∑
𝑖=1

𝜁
𝑖
∇𝐹

𝑖
(𝑥))

∗

(𝑦
∗

)] + 𝑁 (Θ, 𝑥) ,

𝛽
𝑖
𝑔
𝑖
(𝑥) = 0, ∀𝑖 = 1, 2, . . . , 𝑟,

(94)

where the set-valued map 𝑁
Θ
: R𝑛 󴁂󴀱 R𝑛 is defined by

𝑁
Θ
(𝑥) = 𝑁(Θ, 𝑥) for all 𝑥 ∈ R𝑛.

Proof. Consider the problem (MOPEC) with 𝑞(𝑥) =

∑
𝑚

𝑖=1
𝜁
𝑖
𝐹
𝑖
(𝑥) and 𝑄(𝑥) = 𝑁(Θ, 𝑥) for all 𝑥 ∈ R𝑛. Obviously,

𝑥 is a feasible point of (MOPEC) and the feasible set of
(MOPEC) is contained in 𝑆. By assumption, 𝑥 is a local weak
efficient solution for (MOPEC). Moreover, it is easy to verify
that the (MOPWVVI-) calmness of (MOPWVVI) with order
1 at 𝑥 implies the (MOPEC-) calmness of (MOPEC) with
order 1 at 𝑥. Thus, together with 𝐹

𝑖
, 𝑖 = 1, 2, . . . , 𝑚 being con-

tinuously Fréchet differentiable and ∇𝑞(𝑥) = ∑
𝑚

𝑖=1
𝜁
𝑖
∇𝐹

𝑖
(𝑥),

we immediately complete the proof by Theorem 15.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are grateful to the anonymous referee for
his/her valuable comments and suggestions, which helped
to improve the paper. This research was supported by the
National Natural Science Foundation of China (Grant no.
11171362) and the Fundamental Research Funds for the
Central Universities (Grant no. CDJXS12100021).

References

[1] Z. Luo, J. Pang, D. Ralph, and S. Wu, “Exact penalization
and stationarity conditions of mathematical programs with

equilibrium constraints,”Mathematical Programming B, vol. 75,
no. 1, pp. 19–76, 1996.

[2] J. J. Ye and X. Y. Ye, “Necessary optimality conditions for
optimization problems with variational inequality constraints,”
Mathematics of Operations Research, vol. 22, no. 4, pp. 977–997,
1997.

[3] J. J. Ye andQ. J. Zhu, “Multiobjective optimization problemwith
variational inequality constraints,” Mathematical Programming
B, vol. 96, no. 1, pp. 139–160, 2003.

[4] M. L. Flegel and C. Kanzow, “On M-stationary points for
mathematical programs with equilibrium constraints,” Journal
of Mathematical Analysis and Applications, vol. 310, no. 1, pp.
286–302, 2005.

[5] Y. Chen and M. Florian, “The nonlinear bilevel programming
problem: formulations, regularity and optimality conditions,”
Optimization, vol. 32, pp. 120–145, 1995.

[6] F. H. Clarke,Optimization andNonsmooth Analysis,Wiley, New
York, NY, USA, 1983.

[7] R. T. Rockafellar and R. J. B. Wets, Variational Analysis,
Springer, Berlin, Germany, 1998.

[8] B. S. Mordukhovich, Variational Analysis and Generalized
Differentiation, Volume I: Basic Theory, Volume II: Applications,
Springer, Berlin, Germany, 2006.

[9] J. V. Burke, “Calmness and exact penalization,” SIAM Journal on
Control and Optimization, vol. 29, no. 2, pp. 493–497, 1991.

[10] A. Fiacco and G. McCormic, Nonlinear Programming: Sequen-
tial Unconstrained Minimization Techniques, John Wiley &
Sons, New York, NY, USA, 1987.

[11] A. M. Rubinov, B. M. Glover, and X. Q. Yang, “Decreasing
functions with applications to penalization,” SIAM Journal on
Optimization, vol. 10, no. 1, pp. 289–313, 1999.

[12] A. M. Rubinov and X. Q. Yang, Lagrange-Type Functions
in Constrained Non-Convex Optimzation, Kluwer Academic
Publishers, New York, NY, USA, 2003.

[13] X. X. Huang and X. Q. Yang, “Nonlinear Lagrangian for
multiobjective optimization and applications to duality and
exact penalization,” SIAM Journal on Optimization, vol. 13, no.
3, pp. 675–692, 2002.

[14] T. Q. Bao, P. Gupta, and B. S. Mordukhovich, “Necessary
conditions in multiobjective optimization with equilibrium
constraints,” Journal of Optimization Theory and Applications,
vol. 135, no. 2, pp. 179–203, 2007.

[15] S. M. Robinson, “Stability theory for systems of inequalities,
part II: differentiable nonlinear systems,” SIAM Journal on
Numerical Analysis, vol. 13, no. 4, pp. 497–513, 1976.

[16] J. S. Treiman, “The linear nonconvex generalized gradient and
Lagrangemultipliers,” SIAM Journal on Optimization, vol. 5, pp.
670–680, 1995.

[17] A. Gopfert, H. Riahi, C. Tammer, and C. Zalinescu, Variational
Methods in Partially Ordered Spaces, Springer, Berlin, Germany,
2003.

[18] G. Y. Chen and X. Q. Yang, “Characterizations of variable
domination structures via nonlinear scalarization,” Journal of
OptimizationTheory and Applications, vol. 112, no. 1, pp. 97–110,
2002.

[19] M. Durea and C. Tammer, “Fuzzy necessary optimality condi-
tions for vector optimization problems,” Optimization, vol. 58,
no. 4, pp. 449–467, 2009.

[20] C. R. Chen, S. J. Li, and Z. M. Fang, “On the solution semi-
continuity to a parametric generalized vector quasivariational



Abstract and Applied Analysis 13

inequality,” Computers and Mathematics with Applications, vol.
60, no. 8, pp. 2417–2425, 2010.

[21] A. L. Dontchev and R. T. Rockafellar, Implicit Functions and
SolutionMappings, Springer, Dordrecht,TheNetherlands, 2009.

[22] A. D. Ioffe, “Metric regularity and subdifferential calculus,”
Russian Mathematical Surveys, vol. 55, no. 3, pp. 501–558, 2000.

[23] R. Henrion, A. Jourani, and J. Outrata, “On the calmness of a
class of multifunction,” SIAM Journal on Optimization, vol. 13,
no. 2, pp. 603–618, 2002.

[24] X. Y. Zheng and K. F. Ng, “Metric subregularity and constraint
qualifications for convex generalized equations in banach
spaces,” SIAM Journal on Optimization, vol. 18, no. 2, pp. 437–
460, 2007.

[25] J. Jahn, Vecor Optimization, Theory, Applications and Extension,
Springer, Berlin, Germany, 2004.

[26] C. Kanzow and A. Schwartz, “Mathematical programs with
equilibrium constraints: enhanced Fritz John-conditions, new
constraint qualifications, and improved exact penalty results,”
SIAM Journal on Optimization, vol. 20, no. 5, pp. 2730–2753,
2010.

[27] J. J. Ye and J. Zhang, “Enhanced Karush-Kuhn-Tucker condi-
tions for mathematical programs with equilibrium constraints,”
Journal of Optimization Theory and Applications, 2013.

[28] A. Schwartz,Mathematical programs with complementarity con-
straints: theory, methods, and applications [Ph.D. dissertation],
Institute of Applied Mathematics and Statistics, University of
Wurzburg, 2011.

[29] L. Guo, J. J. Ye, and J. Zhang, “Mathematical programs with
geometric constraints in Banach spaces: enhanced optimality,
exact penalty, and sensitivity,” SIAM Journal on Optimization,
vol. 23, pp. 2295–2319, 2013.


