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This paper considers the constrained multiagent optimization problem. The objective function of the problem is a sum of convex
functions, each of which is known by a specific agent only. For solving this problem, we propose an asynchronous distributed
method that is based on gradient-free oracles and gossip algorithm. In contrast to the existing work, we do not require that agents
be capable of computing the subgradients of their objective functions and coordinating their step size values as well. We prove that
with probability 1 the iterates of all agents converge to the same optimal point of the problem, for a diminishing step size.

1. Introduction

In recent years, the problem of solving convex optimization
problems over a network has attracted a lot of research atten-
tion; see [1–18]. The objective function of the problem is a
sum of convex functions, each of which is known by a specific
agent only. Such problems arise in many real applications
including distributed finite-time optimal rendezvous [2] and
distributed regression over sensor networks [5].Themethods
that are designed for solving these optimization problems
need to be fully distributed; that is, there does not exist a
central coordinator.

In this paper, we propose an asynchronous gossip-based
gradient-free method for solving the convex optimization
problem over a multiagent network. The method is based on
the gossip algorithm [19] and the gradient-free oracles [20].
The method is asynchronous in the sense that only one agent
communicates at a given time, in contrast to the synchronous
methods where all agents communicate simultaneously.
Moreover, the method does not rely on the assumption that
the information of the subgradients of the objective function
is available. As is well known that for a variety of reasons there
have been many instances where derivatives of the objective

functions are unavailable or computationally expensive to
calculate [20, 21].

Literature Review. In [3], the authors study the problem of
minimizing a sum of multiple convex functions, each of
which is known to one specific agent only.The authors use the
average consensus algorithm in the literature on multiagent
systems (see, e.g., [19, 22–26]) as a mechanism to develop a
distributed subgradient method for solving the optimization
problem; the convergence of the method is also given for a
constant step size. The authors in [7] further take the global
equality and inequality constraints into consideration. The
work in [2] proposes a variant of the distributed subgradient
method in [3], in which at each iteration several consensus
steps are executed, which simplifies the proof of the conver-
gence of the method. Inspired by the work in [2], the authors
in [6] further incorporate the global inequality constraints.
The aforementioned methods are synchronous because they
require that all agents in the network update at the same time.
To overcome this limitation, the work in [14] develops an
asynchronous distributed algorithm, based on the gossip
algorithm. The algorithm is asynchronous in the sense that
only one agent communicates at a given time. Moreover, all
agents use different step size values and they do not require
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any coordination of the agents. In [5], the author further
removes the need for bidirectional communications of the
asynchronous algorithm in [14]; the convergence of the algo-
rithm is also established. The aforementioned methods or
algorithms, however, rely on the assumption that the subgra-
dients of the objective functions are available to each agent,
respectively.

By comparison to previous work, the main contributions
of this paper are twofold: (i) different from the methods or
algorithms considered in existing papers, which rely on com-
puting the subgradients of each agent’s objective function,
we propose the derivative-free method which is based on
utilizing the random gradient-free oracles; (ii) the proposed
method is asynchronous, in the sense that all agents use dif-
ferent step size values that do not require any coordination of
the agents. We prove that with probability 1 the iterates of all
agents converge to the same optimal point of the problem, for
a diminishing step size.

Notation and Terminology. Let R𝑑 be the 𝑑-dimensional
vector space.We denote the standard inner product onR𝑑 by
⟨𝑎, 𝑏⟩ = ∑

𝑑

𝑖=1
𝑎𝑖𝑏𝑖, for 𝑎, 𝑏 ∈ R𝑑. We write ‖𝑥‖ to denote the

Euclidean norm of a vector 𝑥 and ΠX[𝑥] to denote the
Euclidean projection of a vector 𝑥 onX. We use 𝑥T to denote
the transpose of 𝑥. For amatrix P, [P]𝑖𝑗 represents the element
in the 𝑖th row and 𝑗th columnof P, and PT represents its trans-
pose. We use E[𝑥] to denote the expected value of a random
variable 𝑥. For a function 𝑓, its gradient at a point 𝑥 is
represented by ∇𝑓(𝑥).

2. Problem Formulation

In this section, we start by describing the constrained multi-
agent optimization problem.Then, we provide some prelimi-
nary results on the gossip algorithm that we use in developing
the method.

2.1. Constrained Multiagent Optimization. We consider the
following constrained multiagent optimization problem:

min
𝑥∈X

𝑓 (𝑥) ≜

𝑁

∑

𝑖=1

𝑓
𝑖
(𝑥) , (1)

where 𝑥 ∈ R𝑑 is a decision vector;𝑓𝑖: R𝑑 → R is the convex
objective function of agent 𝑖 known only by agent 𝑖, and we
assume that 𝑓𝑖 is Lipschitz continuous overX with Lipschitz
constant 𝐿(𝑓𝑖);X ⊆ R𝑑 is a nonempty closed convex set. We
denote the optimal set of problem (1) byX∗, and we assume
that it is nonempty. Note that in problem (1), each function
𝑓
𝑖 need not be differentiable.

2.2. Gossip Algorithm. The underlying network topology of
problem (1) is denoted by𝐺 = (𝑉, 𝐸), where𝑉 = {1, . . . , 𝑁} is
the node set and𝐸 is the set of links {𝑖, 𝑗}with 𝑖 ̸= 𝑗 and {𝑖, 𝑗} ∈
𝐸 only if there is a link between agents 𝑖 and 𝑗.We assume that
the network 𝐺 is fixed, undirected, and connected.

In the paper, we utilize gossip algorithm as a mechanism
to design the method. To be specific, at each time instant,
agent 𝑖 is chosen with probability 1/𝑁, and then with some
positive probability, agent 𝑖 communicates with one of its
neighbors agent 𝑗. The iterations evolve as follows: for 𝑘 ≥ 0,

𝑥
𝑖

𝑘+1
= 𝑥
𝑗

𝑘+1
=
1

2
𝑥
𝑖

𝑘
+
1

2
𝑥
𝑗

𝑘
(2)

and for agents 𝑠 that do not belong to {𝑖, 𝑗}, update

𝑥
𝑠

𝑘+1
= 𝑥
𝑠

𝑘
. (3)

3. Gossip-Based Gradient-Free Method

In this section, motivated by the random gradient-free
method in [20] and the gossip algorithm in [19], we present an
asynchronous gossip-based gradient-free method for solving
problem (1). We use I𝑘+1 to denote the index of the agent that
is chosen to update at time 𝑘+1 and J𝑘+1 the index of the agent
communicating with agent I𝑘+1. The method is given as
follows.

Gossip-Based Gradient-Free Method with a Diminishing
Step Size

Initialize: choose random 𝑥
𝑖

0
∈ X, ∀𝑖 ∈ 𝑉.

Iteration (𝑘 ≥ 0):

(i) for 𝑖 ∈ {I𝑘+1, J𝑘+1}:

(1) compute 𝜑𝑖
𝑘+1

= (1/2)𝑥
I𝑘+1
𝑘

+ (1/2)𝑥
J𝑘+1
𝑘

;

(2) compute 𝑥𝑖
𝑘+1

= ΠX[𝜑
𝑖

𝑘+1
− 𝜎
𝑖

𝑘
G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)], where 𝜎𝑖

𝑘
=

(Σ
𝑖

𝑘
)
−1, and Σ

𝑖

𝑘
denotes the number of updates that

agent 𝑖 has performed until time 𝑘, inclusively, and
G𝜇𝑖(𝑥
𝑖

𝑘
) is the random gradient-free oracle, given by

G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) =

𝑓
𝑖
(𝑥
𝑖

𝑘
+ 𝜇
𝑖

𝑘
]𝑖
𝑘
) − 𝑓
𝑖
(𝑥
𝑖

𝑘
)

𝜇𝑖
𝑘

]𝑖
𝑘
, (4)

where 𝜇𝑖
𝑘
= 𝜇𝜎
𝑖

𝑘
, and 𝜇 is a positive constant; ]𝑖

𝑘
is a

random variable generated locally according to the
Gaussian distribution.

(ii) For 𝑖 ∉ {I𝑘+1, J𝑘+1}: 𝑥
𝑖

𝑘+1
= 𝑥
𝑖

𝑘
.

We use F𝑘 to denote the 𝜎-field generated by the entire
history of the random variables to iteration 𝑘; that is,

F𝑘 = {𝑥
𝑖

0
, 𝑖 ∈ 𝑉} ∪ {I𝑠+1, J𝑠+1, ]

I𝑠+1
𝑠
, ]J𝑠+1
𝑠
; 0 ≤ 𝑠 ≤ 𝑘 − 1} ,

(5)

whereF0 = {𝑥
𝑖

0
, 𝑖 ∈ 𝑉}.

Themethod can be presented in amore compact form, by
defining the following weight matrix:

W𝑘+1 = 𝐼 −
1

2
(𝑒I𝑘+1

− 𝑒J𝑘+1
) (𝑒I𝑘+1

− 𝑒J𝑘+1
)
T
, 𝑘 ≥ 0, (6)

where 𝐼 is the identity matrix and 𝑒𝑖 ∈ R𝑁 denotes the 𝑖th
standard basis vector. It is easy to see that W𝑘+1 ∈ R𝑁×𝑁 is
doubly stochastic.
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Now we can write the method as follows: for all 𝑘 ≥ 0 and
any 𝑖 ∈ 𝑉,

𝜑
𝑖

𝑘+1
=

𝑁

∑

𝑗=1

[W𝑘+1]𝑖𝑗𝑥
𝑗

𝑘
,

𝑥
𝑖

𝑘+1
= 𝜑
𝑖

𝑘+1
+ [ΠX [𝜑

𝑖

𝑘+1
− 𝜎
𝑖

𝑘
G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)] − 𝜑

𝑖

𝑘+1
]

× 1{𝑖∈{I𝑘+1 ,J𝑘+1}},

(7)

where 1{𝑖∈{I𝑘+1 ,J𝑘+1}} is the indicator function of the event {𝑖 ∈
{I𝑘+1, J𝑘+1}}. For the gradient-free oracleG𝜇𝑖

𝑘

(𝑥
𝑖

𝑘
), we have the

following lemma, which is adopted from [20].

Lemma 1. For each 𝑖 ∈ {I𝑘+1, J𝑘+1} and all 𝑘 ≥ 0, one has the
following:

(a) E[G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) | F𝑘, I𝑘+1, J𝑘+1] = ∇𝑓

𝑖

𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
), where

𝑓
𝑖

𝜇𝑖
𝑘

(𝑥) = (1/𝜅) ∫
R𝑑
𝑓
𝑖
(𝑥 + 𝜇

𝑖

𝑘
𝜉)𝑒
−(1/2)‖𝜉‖

2

𝑑𝜉 with 𝜅 =

∫
R𝑑
𝑒
−(1/2)‖𝜉‖

2

𝑑𝜉 = (2𝜋)
𝑑/2, and it satisfies:

𝑓
𝑖
(𝑥) ≤ 𝑓

𝑖

𝜇𝑖
𝑘

(𝑥) ≤ 𝑓
𝑖
(𝑥) + 𝜇

𝑖

𝑘
√𝑑𝐿 (𝑓

𝑖
) . (8)

(b) E[‖G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)‖
2

| F𝑘, I𝑘+1, J𝑘+1] ≤ (𝑑 + 4)
2
𝐿
2
(𝑓
𝑖
).

Remark 2. Note thatmethod (7) is asynchronous, in the sense
that to implement the method, each agent need not coordi-
nate its step size with the step sizes of its neighbors; the time-
varying parameters 𝜇𝑖

𝑘
(𝑘 ≥ 0, 𝑖 ∈ 𝑉) share the same

feature. In addition, to implement the method (7), the
information of subgradients of the objective functions is not
needed; however, each agent only needs tomake two function
evaluations per iteration to get the gradient-free oracle.

Let E𝑖
𝑘
= {𝑖 ∈ {I𝑘, J𝑘}} be the event that agent 𝑖 updates at

time 𝑘 and 𝜋𝑖 the probability of eventE𝑖
𝑘
. It is easy to see that

𝜋
𝑖
=
1

𝑁
+
1

𝑁
∑

𝑗∈𝑁𝑖

𝜋𝑗𝑖, (9)

where𝑁𝑖 denotes the set that contains all agents that are nei-
ghboring to agent 𝑖 and 𝜋𝑗𝑖 > 0 denotes the probability that
agent 𝑖 is chosen by its neighbor 𝑗 to communicate. In the
paper, we denote �̌� = min𝑖∈𝑉𝜋

𝑖 and �̂� = max𝑖∈𝑉𝜋
𝑖, respec-

tively. There is an interesting link between the step size 𝜎𝑖
𝑘
=

(Σ
𝑖

𝑘
)
−1 and the probability 𝜋𝑖 that agent 𝑖 updates.

Lemma 3 (see [17]). Let 𝜋min = min{𝑖,𝑗}∈𝐸𝜋𝑖𝑗. Let 𝜎𝑖𝑘 = (Σ
𝑖

𝑘
)
−1

for all 𝑘 ≥ 1 and 𝑖 ∈ 𝑉, and also let 𝑒 be a scalar such that 0 <
𝑒 < 1/2.Then, there exists a large enough �̃� = �̃�(𝑒,𝑁) such that
with probability 1 for all 𝑘 ≥ �̃� and 𝑖 ∈ 𝑉,

(a) 𝜎𝑖
𝑘
≤ 2/𝑘𝜋

𝑖;

(b) (𝜎𝑖
𝑘
)
2

≤ 4𝑁
2
/𝑘
2
(1 + 𝜋min)

2;

(c) |𝜎𝑖
𝑘
− (1/𝑘𝜋

𝑖
)| ≤ 2/𝑘

3/2−𝑒
(1 + 𝜋min)

2.

To establish the convergence of method (7), we also make
use of the following lemma.

Lemma 4 (see [5]). Let {𝑢𝑘}, {V𝑘}, {𝑎𝑘}, and {𝑤𝑘} be nonnega-
tive random sequences such that for all 𝑘 ≥ 1, E[𝑢𝑘+1 | 𝐹𝑘] ≤
(1 + 𝑎𝑘)𝑢𝑘 − V𝑘 + 𝑤𝑘 with probability 1, where 𝐹𝑘 = {{𝑢𝑠, V𝑠, 𝑎𝑠,
𝑤𝑠}; 1 ≤ 𝑠 ≤ 𝑘}. If ∑∞

𝑘=1
𝑎𝑘 < ∞ and ∑∞

𝑘=1
𝑤𝑘 < ∞ with

probability 1, then, with probability 1, the sequence {𝑢𝑘} con-
verges to some random variable and ∑∞

𝑘=1
V𝑘 < ∞.

We now present the main result of the paper, which is
given in the following theorem.

Theorem 5. Let {𝑥𝑖
𝑘
}, 𝑖 ∈ 𝑉, be the sequences generated by

method (7) with 𝜎
𝑖

𝑘
= (Σ
𝑖

𝑘
)
−1 and 𝜇

𝑖

𝑘
= 𝜇𝜎

𝑖

𝑘
, where 𝜇 is

some positive constant. Assume that problem (1) has a non-
empty optimal set X∗. Also, assume that the sequence {]𝑖k; 𝑖 ∈
{I𝑘+1, J𝑘+1}} is independent and identically distributed. Then
the sequences {𝑥𝑖

𝑘
}, 𝑖 ∈ 𝑉, converge to the same random point

inX∗ with probability 1.

Proof. For 𝑘 ≥ 0 and 𝑖 ∈ {I𝑘+1, J𝑘+1}, we have for any 𝑥 ∈ X,


𝑥
𝑖

𝑘+1
− 𝑥



2

=

ΠX [𝜑

𝑖

𝑘+1
− 𝜎
𝑖

𝑘
G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)] − 𝑥



2

≤

𝜑
𝑖

𝑘+1
− 𝜎
𝑖

𝑘
G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) − 𝑥



2

≤

𝜑
𝑖

𝑘+1
− 𝑥



2

+ (𝜎
𝑖

𝑘
)
2
G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)


2

− 2𝜎
𝑖

𝑘
⟨G𝜇𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩

=

𝜑
𝑖

𝑘+1
− 𝑥



2

+ (𝜎
𝑖

𝑘
)
2
G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)


2

−
2

𝑘𝜋𝑖
⟨G𝜇𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩

− 2 (𝜎
𝑖

𝑘
−

1

𝑘𝜋𝑖
) ⟨G𝜇𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩ ,

(10)

where the first inequality follows from the nonexpansive
property of the projection operation. For 𝑘 ≥ �̃�, by recalling
Lemma 3(c), with probability 1 the last term on the right-
hand side of (10) can be bounded as follows:

− 2 (𝜎
𝑖

𝑘
−

1

𝑘𝜋𝑖
) ⟨G𝜇𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩

≤
2

𝑘3/2−𝑒(1 + 𝜋min)
2
(

G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)


2

+

𝜑
𝑖

𝑘+1
− 𝑥



2

) .

(11)

Substituting the preceding inequality into (10) gives


𝑥
𝑖

𝑘+1
− 𝑥



2

≤ (1 +
2

𝑘3/2−𝑒(1 + 𝜋min)
2
)

𝜑
𝑖

𝑘+1
− 𝑥



2

+ ((𝜎
𝑖

𝑘
)
2

+
2

𝑘3/2−𝑒(1 + 𝜋min)
2
)

G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)


2

−
2

𝑘𝜋𝑖
⟨G𝜇𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩ .

(12)
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To simplify the notation, we denote 𝐴𝑘 = 2/𝑘
3/2−𝑒

(1 + 𝜋min)
2

and 𝐵𝑘 = 4𝑁
2
/𝑘
2
(1+𝜋min)

2
+𝐴𝑘; then from Lemma 3(b) and

(12) it follows that with probability 1 for all 𝑘 ≥ �̃� and 𝑖 ∈
{I𝑘+1, J𝑘+1},

𝑥
𝑖

𝑘+1
− 𝑥



2

≤ (1 + 𝐴𝑘)

𝜑
𝑖

𝑘+1
− 𝑥



2

+ 𝐵𝑘

G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)


2

−
2

𝑘𝜋𝑖
⟨G𝜇𝑖

𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩ .

(13)

Taking the conditional expectation on F𝑘, I𝑘+1 and J𝑘+1
jointly yields

E [

𝑥
𝑖

𝑘+1
− 𝑥



2

| F𝑘, I𝑘+1, J𝑘+1]

≤ (1 + 𝐴𝑘)

𝜑
𝑖

𝑘+1
− 𝑥



2

+ 𝐵𝑘E [

G𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)


2

| F𝑘, I𝑘+1, J𝑘+1]

−
2

𝑘𝜋𝑖
⟨E [G𝜇𝑖

𝑘

(𝑥
𝑖

𝑘
) | F𝑘, I𝑘+1, J𝑘+1] , 𝜑

𝑖

𝑘+1
− 𝑥⟩

≤ (1 + 𝐴𝑘)

𝜑
𝑖

𝑘+1
− 𝑥



2

+ 𝐵𝑘(𝑑 + 4)
2
𝐿
2
(𝑓
𝑖
)

−
2

𝑘𝜋𝑖
⟨∇𝑓
𝑖

𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩ ,

(14)

where the last inequality follows fromusing Lemma 1. For the
last term on the right-hand side of the preceding inequality,
we can derive

−
2

𝑘𝜋𝑖
⟨∇𝑓
𝑖

𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥⟩

= −
2

𝑘𝜋𝑖
⟨∇𝑓
𝑖

𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) , 𝑥
𝑖

𝑘
− 𝑥⟩

−
2

𝑘𝜋𝑖
⟨∇𝑓
𝑖

𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) , 𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘
⟩

≤ −
2

𝑘𝜋𝑖
[𝑓
𝑖

𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) − 𝑓
𝑖

𝜇𝑖
𝑘

(𝑥)]

+
2

𝑘𝜋𝑖


∇𝑓
𝑖

𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)



𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘



≤ −
2

𝑘𝜋𝑖
[𝑓
𝑖

𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) − 𝑓
𝑖

𝜇𝑖
𝑘

(𝑥)]

+
2

𝑘𝜋𝑖
(𝑑 + 4) 𝐿 (𝑓

𝑖
)

𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘


,

(15)

where in the last inequality we have use the bound
‖∇𝑓
𝑖

𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
)‖ ≤ (𝑑+4)𝐿(𝑓

𝑖
), according to Lemma 1. Hence, sub-

stituting (15) into (14) yields

E [

𝑥
𝑖

𝑘+1
− 𝑥



2

| F𝑘, I𝑘+1, J𝑘+1]

≤ (1 + 𝐴𝑘)

𝜑
𝑖

𝑘+1
− 𝑥



2

+ 𝐵𝑘(𝑑 + 4)
2
𝐿
2
(𝑓
𝑖
)

−
2

𝑘𝜋𝑖
[𝑓
𝑖
(𝑥
𝑖

𝑘
) − 𝑓
𝑖
(𝑥)] +

2

𝑘𝜋𝑖
𝜇
𝑖

𝑘
√𝑑𝐿 (𝑓

𝑖
)

+
2

𝑘𝜋𝑖
(𝑑 + 4) 𝐿 (𝑓

𝑖
)

𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘


,

(16)

where we have used the inequalities 𝑓𝑖
𝜇𝑖
𝑘

(𝑥
𝑖

𝑘
) ≥ 𝑓

𝑖
(𝑥
𝑖

𝑘
) and

𝑓
𝑖

𝜇𝑖
𝑘

(𝑥) ≤ 𝑓
𝑖
(𝑥)+𝜇

𝑖

𝑘
√𝑑𝐿(𝑓

𝑖
), based on Lemma 1(a). Using the

fact that 𝜇𝑖
𝑘
= 𝜇𝜎
𝑖

𝑘
and Lemma 3(a), we obtain

2

𝑘𝜋𝑖
𝜇
𝑖

𝑘
√𝑑𝐿 (𝑓

𝑖
) ≤

4𝜇

𝑘2(𝜋𝑖)
2
√𝑑𝐿 (𝑓

𝑖
) (17)

which implies

E [

𝑥
𝑖

𝑘+1
− 𝑥



2

| F𝑘, I𝑘+1, J𝑘+1]

≤ (1 + 𝐴𝑘)

𝜑
𝑖

𝑘+1
− 𝑥



2

+ 𝐵𝑘(𝑑 + 4)
2
𝐿
2
(𝑓
𝑖
)

+
4𝜇

𝑘2(𝜋𝑖)
2
√𝑑𝐿 (𝑓

𝑖
) −

2

𝑘𝜋𝑖
[𝑓
𝑖
(𝑥
𝑖

𝑘
) − 𝑓
𝑖
(𝑥)]

+
2

𝑘𝜋𝑖
(𝑑 + 4) 𝐿 (𝑓

𝑖
)

𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘


.

(18)

Taking the expectation with respect toF𝑘 and using the fact
the preceding inequality holds with probability𝜋𝑖, and 𝑥𝑖

𝑘+1
=

𝜑
𝑖

𝑘+1
with probability 1−𝜋𝑖, we obtainwith probability 1 for all

𝑘 ≥ �̃� and 𝑖 ∈ 𝑉,

E [

𝑥
𝑖

𝑘+1
− 𝑥



2

| F𝑘]

≤ (1 + 𝜋
𝑖
𝐴𝑘)E [


𝜑
𝑖

𝑘+1
− 𝑥



2

| F𝑘]

+ 𝜋
𝑖
𝐵𝑘(𝑑 + 4)

2
𝐿
2
(𝑓
𝑖
)

+
4𝜇

𝑘2𝜋𝑖
√𝑑𝐿 (𝑓

𝑖
) −

2

𝑘
[𝑓
𝑖
(𝑥
𝑖

𝑘
) − 𝑓
𝑖
(𝑥)]

+
2

𝑘
(𝑑 + 4) 𝐿 (𝑓

𝑖
)E [


𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘


| F𝑘] .

(19)

Summing the above inequality for 𝑖 = 1, . . . , 𝑁, and noting
that �̌� = min𝑖∈𝑉𝜋

𝑖, �̂� = max𝑖∈𝑉𝜋
𝑖 and denoting �̂�(𝑓) =

max𝑖∈𝑉𝐿(𝑓
𝑖
), we obtain with probability 1 for all 𝑘 ≥ �̃� and

𝑖 ∈ 𝑉,

𝑁

∑

𝑖=1

E [

𝑥
𝑖

𝑘+1
− 𝑥



2

| F𝑘]

≤ (1 + �̂�𝐴𝑘)

𝑁

∑

𝑖=1

E [

𝜑
𝑖

𝑘+1
− 𝑥



2

| F𝑘]

+ 𝑁�̂�𝐵𝑘(𝑑 + 4)
2
�̂�
2
(𝑓) +

4𝑁𝜇

𝑘2�̌�
√𝑑�̂� (𝑓)

−
2

𝑘
[𝑓 (𝑥𝑘) − 𝑓 (𝑥)] +

2

𝑘
�̂� (𝑓)

𝑁

∑

𝑖=1


𝑥
𝑖

𝑘
− 𝑥𝑘



+
2

𝑘
(𝑑 + 4) �̂� (𝑓)

𝑁

∑

𝑖=1

E [

𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘


| F𝑘] ,

(20)
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where 𝑥𝑘 = (1/𝑁)∑
𝑁

𝑖=1
𝑥
𝑖

𝑘
and we have used the following

inequality:

𝑁

∑

𝑖=1

[𝑓
𝑖
(𝑥
𝑖

𝑘
) − 𝑓
𝑖
(𝑥𝑘)] ≥ −

𝑁

∑

𝑖=1

𝐿 (𝑓
𝑖
)

𝑥
𝑖

𝑘
− 𝑥𝑘



≥ −�̂� (𝑓)

𝑁

∑

𝑖=1


𝑥
𝑖

𝑘
− 𝑥𝑘


.

(21)

Now by using the definition of the weight matrix W𝑘+1 and
the convexity of the squared norm it follows that

𝑁

∑

𝑖=1

E [

𝜑
𝑖

𝑘+1
− 𝑥



2

| F𝑘] ≤
𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

[W𝑘+1]𝑖𝑗

𝑥
𝑗

𝑘
− 𝑥



2

=

𝑁

∑

𝑗=1


𝑥
𝑗

𝑘
− 𝑥



2

(22)

which yields the final bound for all 𝑘 ≥ �̃� and 𝑖 ∈ 𝑉 with
probability 1:

𝑁

∑

𝑖=1

E [

𝑥
𝑖

𝑘+1
− 𝑥
∗

2

| F𝑘]

≤ (1 + �̂�𝐴𝑘)

𝑁

∑

𝑖=1


𝑥
𝑖

𝑘
− 𝑥
∗

2

+ 𝑁�̂�𝐵𝑘(𝑑 + 4)
2
�̂�
2
(𝑓)

+
4𝑁𝜇

𝑘2�̌�
√𝑑�̂� (𝑓) −

2

𝑘
[𝑓 (𝑥𝑘) − 𝑓 (𝑥

∗
)]

+
2

𝑘
(2𝑑 + 9) �̂� (𝑓)𝑁max

𝑖∈𝑉


𝑥
𝑖

𝑘
− 𝑥𝑘


,

(23)

where 𝑥∗ ∈ X∗ and we have used the following inequality:

𝑁

∑

𝑖=1

E [

𝜑
𝑖

𝑘+1
− 𝑥
𝑖

𝑘


| F𝑘]

≤

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

[W𝑘+1]𝑖𝑗

𝑥
𝑗

𝑘
− 𝑥
𝑖

𝑘


≤ 2𝑁max

𝑖∈𝑉


𝑥
𝑖

𝑘
− 𝑥𝑘


.

(24)

Nowwe are ready to establish the convergence of themethod.
First, note that

∞

∑

𝑘=1

�̂�𝐴𝑘 < ∞,

∞

∑

𝑘=1

𝑁�̂�𝐵𝑘(𝑑 + 4)
2
�̂�
2
(𝑓) +

∞

∑

𝑘=1

4𝑁𝜇

𝑘2�̌�
√𝑑�̂� (𝑓) < ∞

(25)

which can be easily seen from the explicit expressions for 𝐴𝑘
and 𝐵𝑘. For the termmax𝑖∈𝑉‖𝑥

𝑖

𝑘
−𝑥𝑘‖, we can follow an argu-

ment similar to the proof of Lemma4 in [5] andderive that for
each 𝑖 ∈ 𝑉,∑∞

𝑘=1
(1/𝑘)‖𝑥

𝑖

𝑘
−𝑥𝑘‖ < ∞ and lim𝑘→∞‖𝑥

𝑖

𝑘
−𝑥𝑘‖ =

0, which gives
∞

∑

𝑘=1

2

𝑘
(2𝑑 + 9) �̂� (𝑓)𝑁max

𝑖∈𝑉


𝑥
𝑖

𝑘
− 𝑥𝑘


< ∞. (26)

Hence, combining the preceding fact with Lemma 4,
which we can obtain with probability 1, the sequence
{E[‖𝑥𝑖

𝑘
− 𝑥
∗
‖
2

]} converges for any 𝑥∗ ∈ X∗, and ∑
∞

𝑘=1
(1/

𝑘)[𝑓(𝑥𝑘)−𝑓(𝑥
∗
)] < ∞ (note that 𝑥𝑘 ∈ X, and hence 𝑓(𝑥𝑘)−

𝑓(𝑥
∗
) ≥ 0), which implies

lim inf
𝑘→∞

𝑓 (𝑥𝑘) = 𝑓 (𝑥
∗
) . (27)

This, along with the fact that the sequence {E[‖𝑥𝑖
𝑘
− 𝑥
∗
‖
2

]}

converges for any 𝑥∗ ∈ X∗ and lim𝑘→∞‖𝑥
𝑖

𝑘
− 𝑥𝑘‖ = 0, gives

our final statement, that is, lim𝑘→∞𝑥
𝑖

𝑘
= 𝑥
∗ for all 𝑖 ∈ 𝑉 with

probability 1.

Remark 6. Note that other choices of the parameters 𝜇𝑖
𝑘
(𝑘 ≥

0, 𝑖 ∈ 𝑉) are possible. For example, we can set 𝜇𝑖
𝑘
= 𝜇√𝜎𝑖

𝑘
, for

all 𝑘 ≥ 0 and any 𝑖 ∈ 𝑉, under which case the convergence of
the method (7) can also be established.

Remark 7. In contrast to the subgradient-based methods in
[1–3], the implementation of the proposed method does not
need the information of subgradients but only the function
values. This makes our method suitable for the cases where
explicit gradient calculations are computationally infeasible
or expensive. In contrast to the gradient-free method in [13],
the proposed method is asynchronous and the step sizes do
not require any coordination of the agents.

4. Conclusion

In this paper, we have considered the constrained multiagent
optimization problem. We present an asynchronous method
that is based on the gossip algorithm and the gradient-free
oracles for solving the problem. The proposed method
removes the need for synchronous communications and the
information of the subgradients as well. Finally, we prove that
with probability 1 the iterates of all agents converge to the
same optimal point of the problem, for a diminishing step
size. There are several interesting questions that remain to be
explored. For instance, it would be interesting to study the
case of constant step size; it would be also interesting to study
the effects of message quantization on the proposed method.
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