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The aim of this work is to discuss asymptotic properties of a class of third-order nonlinear neutral functional differential equations.
The results obtained extend and improve some related known results. Two examples are given to illustrate the main results.

1. Introduction

In this work, we study the asymptotic behavior of solutions of
the third-order neutral differential equation

(𝑎(𝑡)(𝑏(𝑡)(𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝜎 (𝑡)))))


+ 𝑞 (𝑡) 𝑓 (𝑥 (𝜏 (𝑡))) 𝑔 (𝑥 (𝑡)) = 0.
(1)

We always assume that the following conditions hold:

(H
1
) 𝑎(𝑡), 𝑏(𝑡), 𝑝(𝑡), 𝑞(𝑡) ∈ 𝐶([𝑡

0
,∞), [0,∞)), 0 ≤ 𝑝(𝑡) ≤

𝑝
0
< 1;

(H
2
) 𝜎(𝑡), 𝜏(𝑡) ∈ 𝐶([𝑡

0
,∞), [0,∞)), 𝜎(𝑡) ≤ 𝑡, 𝜏(𝑡) ≤ 𝑡,

lim
𝑡→∞

𝜎(𝑡) = lim
𝑡→∞

𝜏(𝑡) = ∞;
(H
3
) 𝑓 ∈ 𝐶(𝑅, 𝑅), 𝑓(𝑥)/𝑥 ≥ 𝐾 > 0, for all 𝑥 ̸= 0;

(H
4
) 𝑔 ∈ 𝐶(𝑅, [𝐿,∞)), 𝐿 > 0;

(H
5
) ∫∞
𝑡0

(1/𝑎(𝑡))d𝑡 = ∫∞
𝑡0

(1/𝑏(𝑡))d𝑡 = ∞.

Set 𝑧(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜎(𝑡)). By a solution of (1), we
mean a nontrivial function 𝑥(𝑡) ∈ 𝐶([𝑇

𝑥
,∞), 𝑅), 𝑇

𝑥
≥ 𝑡
0
,

which has the properties 𝑧(𝑡) ∈ 𝐶1([𝑇
𝑥
,∞), 𝑅), 𝑏(𝑡)𝑧(𝑡) ∈

𝐶1([𝑇
𝑥
,∞)), and 𝑎(𝑡)(𝑏(𝑡)𝑧(𝑡)) ∈ 𝐶1([𝑇

𝑥
,∞)) and satisfies

(1) on [𝑇
𝑥
,∞). We consider only those solutions 𝑥(𝑡) of (1)

which satisfies sup{|𝑥(𝑡)| : 𝑡 ≥ 𝑇} > 0 for all 𝑇 ≥ 𝑇
𝑥
. We

assume that (1) possesses such a solution. A solution of (1) is
called oscillatory if it has arbitrarily large zeros on [𝑇

𝑥
,∞);

otherwise, it is called nonoscillatory.
Recently, great attention has been devoted to the oscil-

lation of various classes of differential equations. See, for
example, [1–19]. Hartman andWintner [1] and Erbe et al. [3]
studied the third-order differential equation

𝑥 (𝑡) + 𝑞 (𝑡) 𝑥 (𝑡) = 0. (2)

Paper [5] studied the oscillation of third-order trinomial
delay differential equation

𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡) + 𝑔 (𝑡) 𝑥 (𝜏 (𝑡)) = 0. (3)

Li et al. [7] discussed (1) with 𝑓(𝑥(𝜏(𝑡))) = 𝑥(𝜏(𝑡)) and
𝑔(𝑥(𝑡)) = 1. Han [8] examined the oscillation of (1) with
𝑏(𝑡) = 1.

In this work, we establish some oscillation criteria for (1)
which extend and improve the results in [7, 8].

2. Main Results

In the following, all functional inequalities considered are
assumed to hold eventually for all 𝑡 large enough. Without
loss of generality, we deal only with the positive solutions of
(1).
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Theorem 1. Suppose that

∫
∞

𝑡0

1
𝑏 (V) ∫

∞

V

1
𝑎 (𝑢) ∫

∞

𝑢

𝑞 (𝑠) d𝑠 d𝑢 dV = ∞. (4)

If for some function 𝜌 ∈ 𝐶1([𝑡
0
,∞), (0,∞)), for all sufficiently

large 𝑡
2
> 𝑡
1
> 𝑡
0
, one has

lim sup
𝑡→∞

∫
𝑡

𝑡2

[
[
𝜌 (𝑠) 𝑄 (𝑠) −

(𝜌 (𝑠))2𝑎 (𝑠)
4𝜌 (𝑠)

]
]
d𝑠 = ∞, (5)

where

𝑄 (𝑡) =
𝐾𝐿 (1 − 𝑝

0
) ∫𝜏(𝑡)
𝑡2

∫V
𝑡1

(1/ (𝑎 (𝑢) /𝑏 (V))) d𝑢 dV
∫𝑡
𝑡1

(1/𝑏 (𝑢)) d𝑢
, (6)

then all solutions of (1) are oscillatory or convergent to zero
asymptotically.

Proof. Assume that 𝑥 is a positive solution of (1). Based on
condition (𝐻

5
), there are two possible cases:

(1) 𝑧(𝑡) > 0, 𝑧(𝑡) > 0, (𝑏(𝑡)𝑧(𝑡)) > 0,
[𝑎(𝑡)(𝑏(𝑡)𝑧(𝑡))] < 0;

(2) 𝑧(𝑡) > 0, 𝑧(𝑡) < 0, (𝑏(𝑡)𝑧(𝑡)) > 0,
[𝑎(𝑡)(𝑏(𝑡)𝑧(𝑡))] < 0.

First, consider that 𝑧(𝑡) satisfies (1). We have

𝑥 (𝑡) = 𝑧 (𝑡) − 𝑝 (𝑡) 𝑥 (𝜎 (𝑡)) ≥ (1 − 𝑝
0
) 𝑧 (𝑡) . (7)

From (1), (𝐻
3
), and (𝐻

4
), we get

[𝑎(𝑡)(𝑏(𝑡)𝑧(𝑡))]


≤ −𝐾𝐿 (1 − 𝑝
0
) 𝑞 (𝑡) 𝑧 (𝜏 (𝑡)) ≤ 0. (8)

Define a function 𝜔 by

𝜔 (𝑡) = 𝜌 (𝑡) 𝑎 (𝑡) (𝑏(𝑡)𝑧(𝑡))
𝑏 (𝑡) 𝑧 (𝑡) , 𝑡 ≥ 𝑡

1
; (9)

we obtain 𝜔(𝑡) > 0. Then

𝜔 (𝑡)

= 𝜌 (𝑡) 𝑎 (𝑡) (𝑏(𝑡)𝑧(𝑡))
𝑏 (𝑡) 𝑧 (𝑡) + 𝜌 (𝑡) (𝑎(𝑡)(𝑏(𝑡)𝑧(𝑡)))

𝑏 (𝑡) 𝑧 (𝑡)

− 𝜌 (𝑡)
𝑎 (𝑡) [(𝑏 (𝑡) 𝑧 (𝑡))]

2

(𝑏 (𝑡) 𝑧 (𝑡))2

= 𝜌 (𝑡)
(𝑎 (𝑡) (𝑏 (𝑡) 𝑧 (𝑡)))



𝑏 (𝑡) 𝑧 (𝑡)

+ 𝜌 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 𝜔2 (𝑡)

𝜌 (𝑡) 𝑎 (𝑡)

≤ −𝐾𝐿 (1 − 𝑝
0
) 𝜌 (𝑡) 𝑞 (𝑡) 𝑧 (𝜏 (𝑡))

𝑏 (𝑡) 𝑧 (𝑡)

+ 𝜌 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 𝜔2 (𝑡)

𝜌 (𝑡) 𝑎 (𝑡)

≤ −𝐾𝐿 (1 − 𝑝
0
) 𝜌 (𝑡) 𝑞 (𝑡) 𝑧 (𝜏 (𝑡))

𝑏 (𝑡) 𝑧 (𝑡)

− [ 𝜔(𝑡)
√𝜌(𝑡)𝑎(𝑡) − 1

2√ 𝑎(𝑡)
𝜌(𝑡)𝜌
(𝑡)]
2

+
(𝜌 (𝑡))2𝑎 (𝑡)

4𝜌 (𝑡) .
(10)

By the proof of [7, Theorem 2.1], we have

𝜔 (𝑡) ≤ −[
[
𝜌 (𝑡) 𝑄 (𝑡) −

(𝜌 (𝑡))2𝑎 (𝑡)
4𝜌 (𝑡)

]
]

, (11)

where 𝑄(𝑡) is defined as in (6). We obtain

∫
𝑡

𝑡1

[
[
𝜌 (𝑠) 𝑄 (𝑠) −

(𝜌 (𝑠))2𝑎 (𝑠)
4𝜌 (𝑠)

]
]
d𝑠 ≤ −∫

𝑡

𝑡1

𝜔 (𝑠) d𝑠. (12)

That is,

∫
𝑡

𝑡1

[
[
𝜌 (𝑠) 𝑄 (𝑠) −

(𝜌 (𝑠))2𝑎 (𝑠)
4𝜌 (𝑠)

]
]
d𝑠

≤ 𝜔 (𝑡
1
) − 𝜔 (𝑡) < 𝜔 (𝑡

1
) < ∞,

(13)

which contradicts (5). Assume that case (2) holds. Using the
similar proof of [8, Lemma 4], we can get lim

𝑡→∞
𝑥(𝑡) = 0.

This completes the proof.

Based on Theorem 1, we present a Kamenev-type crite-
rion for (1).
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Theorem 2. Assume that (4) holds. If for some function 𝜌 ∈
𝐶1([𝑡
0
,∞), (0,∞)), for all sufficiently large 𝑡

1
> 𝑡
0
, one has

lim sup
𝑡→∞

1
𝑡𝑛 ∫
𝑡

𝑡1

(𝑡 − 𝑠)𝑛 [
[
𝜌 (𝑠) 𝑄 (𝑠) −

(𝜌 (𝑠))2𝑎 (𝑠)
4𝜌 (𝑠)

]
]
d𝑠 = ∞,

(14)

then all solutions of (1) are oscillatory or convergent to zero
asymptotically.

Proof. Assume that 𝑥(𝑡) is a positive solution of (1). Then by
the proof of Theorem 1, we have cases (1) and (2). Let case (1)
hold. Proceeding as in the proof of Theorem 1, we have (11).
Then we have

∫
𝑡

𝑡1

(𝑡 − 𝑠)𝑛 [
[
𝜌 (𝑠) 𝑄 (𝑠) −

(𝜌 (𝑠))2𝑎 (𝑠)
4𝜌 (𝑠)

]
]
d𝑠

≤ −∫
𝑡

𝑡1

(𝑡 − 𝑠)𝑛𝜔 (𝑠) d𝑠.

(15)

That is,

1
𝑡𝑛 ∫
𝑡

𝑡1

(𝑡 − 𝑠)𝑛 [
[
𝜌 (𝑠) 𝑄 (𝑠) −

(𝜌 (𝑠))2𝑎 (𝑠)
4𝜌 (𝑠)

]
]
d𝑠

≤ − 𝑛
𝑡𝑛 ∫
𝑡

𝑡1

(𝑡 − 𝑠)𝑛−1𝜔 (𝑠) d𝑠 + (1 − 𝑡
1

𝑡 )
𝑛

𝜔 (𝑡
1
)

< (1 − 𝑡
1

𝑡 )
𝑛

𝜔 (𝑡
1
) < ∞,

(16)

which contradicts (14). Assume that case (2) holds. We can
get lim

𝑡→∞
𝑥(𝑡) = 0. The proof is completed.

Next, we present a Philos-type criterion for (1). Let

𝐷 = {(𝑡, 𝑠) : 𝑡 ≥ 𝑠 ≥ 𝑡
0
} , 𝐷

0
= {(𝑡, 𝑠) : 𝑡 > 𝑠 ≥ 𝑡

0
} .
(17)

We say that a function 𝐻 ∈ 𝐶(𝐷, 𝑅) belongs to a function
class 𝑃, if it satisfies

(i) 𝐻(𝑡, 𝑡) = 0, 𝑡 ≥ 𝑡
0
; 𝐻(𝑡, 𝑠) > 0, (𝑡, 𝑠) ∈ 𝐷

0
;

(ii) 𝐻 has a continuous and nonpositive partial derivative
on 𝐷
0
with respect to the second variable, and such

that

−𝜕𝐻 (𝑡, 𝑠)
𝜕𝑠 = ℎ (𝑡, 𝑠) √𝐻 (𝑡, 𝑠), (𝑡, 𝑠) ∈ 𝐷

0
. (18)

Theorem 3. Assume that (4) holds. If for some function 𝜌 ∈
𝐶1([𝑡
0
,∞), (0,∞)), for all sufficiently large 𝑡

1
> 𝑡
0
, one has

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑡

1
) ∫
𝑡

𝑡1

[𝐻 (𝑡, 𝑠) 𝜌 (𝑠) 𝑄 (𝑠) − ℎ2
1
(𝑡, 𝑠)

4𝐵 (𝑠) ] d𝑠 = ∞,
(19)

where 𝑄(𝑡) is defined as in (6), 𝐵(𝑡) = 1/𝜌(𝑡)𝑎(𝑡), and

ℎ
1
(𝑡, 𝑠) = ℎ (𝑡, 𝑠) − 𝜌 (𝑠)

𝜌 (𝑠) √𝐻 (𝑡, 𝑠), (20)

then all solutions of (1) are oscillatory or convergent to zero
asymptotically.

Proof. Assume that 𝑥(𝑡) is a positive solution of (1), and 𝑧(𝑡)
has the case of (1); 𝜔(𝑡) is defined as in (9). Then

𝜔 (𝑡) ≤ −𝜌 (𝑡) 𝑄 (𝑡) + 𝜌 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 1

𝑎 (𝑡) 𝜌 (𝑡)𝜔
2 (𝑡) . (21)

Let 𝐵(𝑡) = 1/𝜌(𝑡)𝑎(𝑡), we have

𝜌 (𝑡) 𝑄 (𝑡) ≤ −𝜔 (𝑡) + 𝜌 (𝑡)
𝜌 (𝑡) 𝜔 (𝑡) − 𝐵 (𝑡) 𝜔2 (𝑡) . (22)

We obtain

∫
𝑡

𝑡1

𝐻(𝑡, 𝑠) 𝜌 (𝑠) 𝑄 (𝑠) d𝑠

≤ ∫
𝑡

𝑡1

𝐻(𝑡, 𝑠) [−𝜔 (𝑠) + 𝜌 (𝑠)
𝜌 (𝑠) 𝜔 (𝑠) − 𝐵 (𝑠) 𝜔2 (𝑠)] d𝑠

= 𝐻 (𝑡, 𝑡
1
) 𝜔 (𝑡
1
)

− ∫
𝑡

𝑡1

[(ℎ (𝑡, 𝑠) √𝐻 (𝑡, 𝑠) − 𝐻 (𝑡, 𝑠) 𝜌 (𝑠)
𝜌 (𝑠) )𝜔 (𝑠)

+𝐻 (𝑡, 𝑠) 𝐵 (𝑠) 𝜔2 (𝑠) ] d𝑠

= 𝐻 (𝑡, 𝑡
1
) 𝜔 (𝑡
1
)

− ∫
𝑡

𝑡1

[√𝐻 (𝑡, 𝑠)ℎ
1
(𝑡, 𝑠) 𝜔 (𝑠) + 𝐻 (𝑡, 𝑠) 𝐵 (𝑠) 𝜔2 (𝑠)] d𝑠

= 𝐻 (𝑡, 𝑡
1
) 𝜔 (𝑡
1
)

− ∫
𝑡

𝑡1

[√𝐻 (𝑡, 𝑠) 𝐵 (𝑠)𝜔 (𝑠) + ℎ
1
(𝑡, 𝑠)

2√𝐵 (𝑠)
]
2

d𝑠

+ ∫
𝑡

𝑡1

ℎ2
1
(𝑡, 𝑠)

4𝐵 (𝑠) d𝑠 < 𝐻 (𝑡, 𝑡
1
) 𝜔 (𝑡
1
) + ∫
𝑡

𝑡1

ℎ2
1
(𝑡, 𝑠)

4𝐵 (𝑠) d𝑠.
(23)

That is,

1
𝐻 (𝑡, 𝑡

1
) ∫
𝑡

𝑡1

[𝐻 (𝑡, 𝑠) 𝜌 (𝑠) 𝑄 (𝑠) − ℎ2
1
(𝑡, 𝑠)

4𝐵 (𝑠) ] d𝑠 ≤ 𝜔 (𝑡
1
) ,
(24)

which contradicts (19). Assume that (2) holds. We can get
lim
𝑡→∞

𝑥(𝑡) = 0. The proof is completed.

3. Examples

In this section, we will present two examples to illustrate the
main results.
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Example 4. Consider the third-order nonlinear neutral dif-
ferential equation:

(𝑡(𝑥(𝑡) + 𝑝
1
𝑥( 𝑡

2))


)


+ 𝜆
𝑡2 𝑥 (𝑡) (1 + (𝑥 (𝑡))2) = 0,

𝜆 > 0, 𝑡 ≥ 1,
(25)

where 𝑝
1

∈ [0, 1), and 𝐾 = 𝐿 = 1. Let 𝜌(𝑡) = 𝑡. It follows
fromTheorem 1 that every solution 𝑥(𝑡) of (25) is oscillatory
or convergent to zero asymptotically.

Example 5. Consider the third-order nonlinear neutral dif-
ferential equation:

(1
𝑡 (𝑡1/2(𝑥(𝑡) + 1

2𝑥(𝑡 − 1
2)


)


)


+ 𝑡𝜆 (𝜆2 − cos 𝑡
𝑡 + 2 + sin 𝑡)

× 𝑥 (𝑡 − 1) (1 + 𝑥2 (𝑡 − 1)) (1 + (𝑥 (𝑡))2) = 0,

(26)

where 𝜆 > 0, 𝑡 ≥ 1. We have

∫
𝑡

𝑡0

𝑞 (𝑠) d𝑠 = ∫
𝑡

𝑡1

𝑠𝜆 (𝜆2 − cos 𝑠
𝑠 + 2 + sin 𝑠) d𝑠

≥ ∫
𝑡

𝑡1

𝑠𝜆 (𝜆2 − cos 𝑠
𝑠 + sin 𝑠) d𝑠

= ∫
𝑡

𝑡1

𝑑 [𝑠𝜆 (2 − cos 𝑠)]

= 𝑡𝜆 (2 − cos 𝑡) − 𝑡𝜆
0
(2 − cos 𝑡

0
)

≥ 𝑡𝜆 − 𝐾
0
→ ∞(𝑡 → ∞) ;

(27)

we see that (4) and (H
1
)–(H
5
) hold. Let 𝐻(𝑡, 𝑠) = (𝑡 − 𝑠)2,

𝜌(𝑡) = 1. Then ℎ
1
(𝑡, 𝑠) = 2. It follows, from Theorem 3,

that the solutions of (26) are oscillatory or convergent to zero
asymptotically.
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