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We give the analytical solution and the series expansion solution of a class of singularly perturbed partial differential equation
(SPPDE) by combining traditional perturbation method (PM) and reproducing kernel method (RKM). The numerical example
is studied to demonstrate the accuracy of the present method. Results obtained by the method indicate the method is simple and
effective.

1. Introduction

Singularly perturbed problems (SPPs) arise very frequently in
many branches of mathematics such as fluid mechanics and
chemical reactor theory. It is well known that the solutions of
SPPs exhibit a multiscale character. So there are some major
computation difficulties. In recent years, many special meth-
ods have been developed to deal with SPPs. Many papers [1–
4] are devoted to SPPs of ordinary differential equation and
the authors discussed the situation and width of boundary
layer(s) and give some effective numerical algorithms. But
few papers [5–7] deal with SPPDE.

The reproducing kernel Hilbert function space has been
shown in [8–10] to solve a large class of linear and nonlinear
problems effectively. However, in [8–10], it cannot be used
directly to SPPs.The aim of this work is to fill this gap. In this
paper, we solve a class of SPPs in reproducing kernel space. By
using a traditional perturbation method and RKM, the series
expansion solution of a class of SPPDE is given. The main
contribution of this paper is to use RKM in SPPDE. The
reason why we use this method is that we aim to solve
some problems in many areas of science and improve high
precision.

Let us consider the following SPPDE:

𝜀

𝜕𝑈

𝜕𝑡

+ 𝑈

𝜕𝑈

𝜕𝑥

= 𝐹 (𝑥, 𝑡) , 𝑡 ∈ [0, 1] , 𝑥 ∈ [0, 1] ,

𝑈 (0, 𝑡) = 0, 𝑈 (𝑥, 0) = V (𝑥) , 𝑥 ∈ [0, 1] ,

(1)

where 𝜀 ≪ 1 is a positive number, functions 𝑓(𝑥, 𝑡) and V(𝑥)
are sufficiently smooth, and V(0) = 0. Under suitable con-
tinuity and compatibility conditions, the problem (1) has a
unique solution 𝑈(𝑥, 𝑡). In [5–7], we notice that a small vari-
ation in the parameter 𝜀 produces a large variation in the
solution. It is quite well known that solution of such problems
involves boundary layers.

2. Perturbation Method

Let 𝑢(𝑥, 𝑡) = 𝑈(𝑥, 𝑡)−V(𝑥); (1) can be equivalently turned into

𝜀

𝜕𝑢

𝜕𝑡

+ 𝑢

𝜕𝑢

𝜕𝑥

+ 𝑢

𝑑V
𝑑𝑥

+ V
𝜕𝑢

𝜕𝑥

= 𝑓 (𝑥, 𝑡) , 𝑡 ∈ [0, 1] , 𝑥∈ [0, 1] ,

𝑢 (0, 𝑡) = 𝑢 (𝑥, 0) = 0, 𝑡 ∈ [0, 1] , 𝑥 ∈ [0, 1] ,

(2)
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where

𝑓 (𝑥, 𝑡) = 𝐹 (𝑥, 𝑡) − V
𝑑V
𝑑𝑥

. (3)

In view of the traditional perturbationmethod [11], we use the
parameter 𝜀 to expand the solution

𝑢 = 𝑢
0
+ 𝜀𝑢
1
+ 𝜀
2
𝑢
2
+ 𝜀
3
𝑢
3
+ ⋅ ⋅ ⋅ . (4)

Substituting (4) into (2), we get

𝜀 (

𝜕𝑢
0

𝜕𝑡

+ 𝜀

𝜕𝑢
1

𝜕𝑡

+ 𝜀
2 𝜕𝑢2

𝜕𝑡

+ ⋅ ⋅ ⋅ ) + (𝑢
0
+ 𝜀𝑢
1
+ 𝜀
2
𝑢
2
+ ⋅ ⋅ ⋅ )

× (

𝜕𝑢
0

𝜕𝑥

+ 𝜀

𝜕𝑢
1

𝜕𝑥

+ 𝜀
2 𝜕𝑢2

𝜕𝑥

+ ⋅ ⋅ ⋅ )

+ (𝑢
0
+ 𝜀𝑢
1
+ 𝜀
2
𝑢
2
+ ⋅ ⋅ ⋅ )

𝑑V
𝑑𝑥

+ V(
𝜕𝑢
0

𝜕𝑥

+ 𝜀

𝜕𝑢
1

𝜕𝑥

+ 𝜀
2 𝜕𝑢2

𝜕𝑥

+ ⋅ ⋅ ⋅ ) = 𝑓 (𝑥, 𝑡)

(5)

and equating coefficients of the identical powers of 𝜀 yields
the following equations:

𝜀
0
: 𝑢
0

𝜕𝑢
0

𝜕𝑥

+ 𝑢
0

𝑑V
𝑑𝑥

+ V
𝜕𝑢
0

𝜕𝑥

= 𝑓 (𝑥, 𝑡)








𝜀=0

,

𝑢
0
(𝑥, 0) = 𝑢

0
(0, 𝑡) = 0,

(6)

𝜀
1
:

𝜕𝑢
0

𝜕𝑡

+ (𝑢
0
+ V)

𝜕𝑢
1

𝜕𝑥

+ 𝑢
1
(

𝜕𝑢
0

𝜕𝑥

+

𝑑V
𝑑𝑥

) =

𝜕𝑓 (𝑥, 𝑡)

𝜕𝜀








𝜀=0

,

𝑢
1 (
𝑥, 0) = 𝑢1 (

0, 𝑡) = 0,

(7)

𝜀
2
:

𝜕𝑢
1

𝜕𝑡

+ 𝑢
1

𝜕𝑢
1

𝜕𝑥

+ (𝑢
0
+ V)

𝜕𝑢
2

𝜕𝑥

+ 𝑢
2
(

𝜕𝑢
0

𝜕𝑥

+

𝑑V
𝑑𝑥

)

=

𝜕
2
𝑓 (𝑥, 𝑡)

𝜕𝜀
2









𝜀=0

, 𝑢
2
(𝑥, 0) = 𝑢

2
(0, 𝑡) = 0,

(8)

𝜀
3
:

𝜕𝑢
2

𝜕𝑡

+ 𝑢
1

𝜕𝑢
2

𝜕𝑥

+ 𝑢
2

𝜕𝑢
1

𝜕𝑥

+ (𝑢
0
+ V)

𝜕𝑢
3

𝜕𝑥

+ 𝑢
3
(

𝜕𝑢
0

𝜕𝑥

+

𝑑V
𝑑𝑥

)

=

𝜕
3
𝑓 (𝑥, 𝑡)

𝜕𝜀
3









𝜀=0

, 𝑢
3 (
𝑥, 0) = 𝑢3 (

0, 𝑡) = 0,

....
(9)

Next, we use the reproducing kernelmethod to solve each
of the equations above, after obtaining all of 𝑢

0
, 𝑢
1
, 𝑢
2
, 𝑢
3
, . . .,

from (6), (7), (8),. . ., because of 𝑢 = 𝑢
0
+𝜀𝑢
1
+𝜀
2
𝑢
2
+𝜀
3
𝑢
3
+⋅ ⋅ ⋅ ;

therefore, the analytical solution of (2) is obtained. Now, let
us introduce how to use the reproducing kernel method to
solve (6), (7), (8),. . ..

3. Reproducing Kernel Method

For getting 𝑢
0
, 𝑢
1
, 𝑢
2
, . . . from (6), (7), (8),. . ., we let

(𝐿
0
𝑢
0
) (𝑥, 𝑡) = 𝑢

0

𝑑V
𝑑𝑥

+ V
𝜕𝑢
0

𝜕𝑥

,

𝑓
0
(𝑥, 𝑡, 𝑢

0
) = 𝑓 (𝑥, 𝑡)




𝜀=0
− 𝑢
0

𝜕𝑢
0

𝜕𝑥

,

(𝐿
𝑗
𝑢
𝑗
) (𝑥, 𝑡) = (𝑢

0
+ V)

𝜕𝑢
𝑗

𝜕𝑥

+ 𝑢
𝑗
(

𝜕𝑢
0

𝜕𝑥

+

𝑑V
𝑑𝑥

) ,

𝑗 = 1, 2, . . . ,

𝑓
1
(𝑥, 𝑡) =

𝜕𝑓 (𝑥, 𝑡)

𝜕𝜀








𝜀=0

−

𝜕𝑢
0

𝜕𝑡

,

𝑓
𝑗 (
𝑥, 𝑡) =

𝜕
𝑗
𝑓 (𝑥, 𝑡)

𝑗!𝜕𝜀
𝑗









𝜀=0

−

𝜕𝑢
𝑗−1

𝜕𝑡

−

𝑗−1

∑

𝑘=1

𝑢
𝑘

𝜕𝑢
𝑗−𝑘

𝜕𝑥

,

𝑗 = 2, 3, . . . .

(10)

Equation (6) can be converted into the following equivalent
form:

(𝐿
0
𝑢
0
) (𝑡, 𝑥) = 𝑓

0
(𝑥, 𝑡, 𝑢

0
) . (11)

Equations (7), (8), . . ., can be converted into the following
equivalent form:

(𝐿
𝑗
𝑢
𝑗
) (𝑡, 𝑥) = 𝑓𝑗 (

𝑥, 𝑡) , 𝑗 = 1, 2, . . . . (12)

Be aimed at with the purpose of solving (11) and (12), we
need to introduce the reproducing kernel space, previously.
Like in [12], we give the reproducing kernel spaces𝑊2

2
[0, 1]:

𝑊
2

2
[0, 1] = {𝑢 | 𝑢, 𝑢

 is one-variable absolutely continuous

function, 𝑢 ∈ 𝐿2 [0, 1] , 𝑢 (0) = 0} .
(13)

Then, we define the inner product of𝑊2
2
[0, 1]. Consider the

following:

⟨𝑢 (𝑥) , V (𝑥)⟩ = 𝑢 (0) V (0) + 𝑢 (0) V (0)

+ ∫

𝑏

0

𝑢

(𝑥) V (𝑥) 𝑑𝑦.

(14)

From [13], we can prove 𝑊2
2
[0, 1] is a reproducing kernel

Hilbert space, and the reproducing kernel of it is

𝑅
{2}

𝑥
(𝑦) =

{
{
{
{

{
{
{
{

{

1 −

𝑦
3

6

+

1

2

𝑥𝑦 (2 + 𝑦) , 𝑥 < 𝑦,

1 −

𝑥
3

6

+

𝑥
2
𝑦

2

+ 𝑥𝑦, 𝑦 < 𝑥.

(15)
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After all of these, we introduce the reproducing kernel space
𝑊
2
(𝐷) [14]

𝑊
2
(𝐷) = 𝑊

2

2
[0.1] ⊗ 𝑊

2

2
[0.1]

= {𝑢 (𝑥, 𝑡) |

𝜕
𝑛+𝑚

𝜕𝑥
𝑛
𝜕𝑡
𝑚
𝑢 (𝑥, 𝑡) are two-vatiable

complete continuous functions, 𝑛 = 0, 1,

𝑚 = 0, 1

𝜕
𝑝+𝑞

𝜕𝑥
𝑝
𝜕𝑡
𝑞
𝑢 (𝑥, 𝑡) ∈ 𝐿

2
(𝐷) , 𝑝 = 0, 1, 2,

𝑞 = 0, 1, 2, 𝑢 (𝑥, 0) = 𝑢 (0, 𝑡) = 0}

(16)

and the inner product of it; see [15], and the reproducing
kernel of𝑊

2
(𝐷) is

𝐾
(𝜉,𝜂)
(𝑡, 𝑥) = 𝑅

{2}

𝜉
(𝑡) 𝑅
{2}

𝜂
(𝑥) . (17)

Similar to the definition of𝑊
2
(𝐷), we can define𝑊

1
(𝐷)

and it is the reproducing kernel 𝐾
(𝜉,𝜂)
(𝑡, 𝑥) = 𝑅

{1}

𝜉
(𝑡)𝑅
{1}

𝜂
(𝑥),

where𝑊1
2
[0, 1] are also a reproducing kernel space with the

reproducing kernel 𝑅{1}
𝑥
(𝑦) (see [16–18]).

It is easy to prove 𝐿
𝑗
(𝑗 = 0, 1, 2, . . .) is a linear bounded

operator, because the problem (1) has a unique solution
𝑈(𝑥, 𝑡); in other words, 𝐿

𝑗
is also a invertible operator, so

[19] if 𝐿
𝑗
𝑢(𝑥, 𝑡) = 𝑓

𝑗
(𝑥, 𝑡, 𝑢) (𝑗 = 0, 1, 2, . . .), where 𝑢(𝑥, 𝑡) ∈

𝑊
2
(𝐷) and 𝑓

𝑗
(𝑥, 𝑡, 𝑢) ∈ 𝑊

1
(𝐷), 𝐿−1

𝑗
is existent and {𝑥

𝑖
, 𝑡
𝑖
}
∞

𝑖=1

is countable dense points in𝐷. Let𝜓
𝑖
(𝑥, 𝑡) = ∑

𝑖

𝑘=1
𝛽
𝑖𝑘
𝜓
𝑘
(𝑥, 𝑡),

where the 𝛽
𝑖𝑘

are the coefficients resulting from
Gram-Schmidt orthonormalization and 𝜓

𝑖
(𝑥, 𝑡) =

(𝐿
𝑗(𝑦,𝑠)

𝐾
(𝑥,𝑡)
(𝑦, 𝑠))(𝑥

𝑖
, 𝑡
𝑖
), 𝑖 = 1, 2, . . .; then

𝑢 (𝑥, 𝑡) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓
𝑗
(𝑥
𝑘
, 𝑡
𝑘
, 𝑢 (𝑥
𝑘
, 𝑡
𝑘
)) 𝜓
𝑖
(𝑥, 𝑡) (18)

is an analytical solution of equation 𝐿
𝑗
𝑢(𝑥, 𝑡) = 𝑓

𝑗
(𝑥, 𝑡, 𝑢).

(i) Linear Problem. Suppose equation 𝐿
𝑗
𝑢(𝑥, 𝑡) = 𝑓

𝑗
(𝑥, 𝑡, 𝑢)

is a linear problem; that is, 𝑓
𝑗
(𝑥, 𝑡, 𝑢) = 𝑓

𝑗
(𝑥, 𝑡); we define an

approximate solution 𝑢
𝑛
(𝑥, 𝑡) by

𝑢
𝑛
(𝑥, 𝑡) =

𝑛

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓
𝑗
(𝑥
𝑘
, 𝑡
𝑘
) 𝜓
𝑖
(𝑥, 𝑡) . (19)

Theorem 1 (see [20–22] convergence analysis). Let 𝜀2
𝑛
=

‖𝑢(𝑥, 𝑡) − 𝑢
𝑛
(𝑥, 𝑡)‖

2; then the sequence of real numbers 𝜀
𝑛
is

monotonously decreasing and 𝜀
𝑛
→ 0 and the sequence

𝑢
𝑛
(𝑥, 𝑡) is convergent uniformly to 𝑢(𝑥, 𝑡).

(ii) Nonlinear Problem (see [23]). Suppose equation𝐿
𝑗
𝑢(𝑥, 𝑡) =

𝑓
𝑗
(𝑥, 𝑡, 𝑢) is a nonlinear problem; that is, 𝑓

𝑗
(𝑥, 𝑡, 𝑢) = 𝑁(𝑢) +

𝐹
𝑗
(𝑥, 𝑡), where𝑁 : 𝑊

2
(𝐷) → 𝑊

1
(𝐷) is a nonlinear operator;

we give an iterative sequence 𝑢
𝑛
(𝑥, 𝑡):

𝑢
0,∗
(𝑥, 𝑡) is the solution of the linear equation 𝐿

𝑗
𝑢 =

𝐹
𝑗
(𝑥, 𝑡);

𝑢
𝑛+1,∗

(𝑥, 𝑡) is the solution of the linear equation 𝐿
𝑗
𝑢 =

𝑁(𝑢
𝑛,∗
) + 𝐹
𝑗
(𝑥, 𝑡), 𝑛 = 0, 1, 2, . . ..

Lemma 2. If 𝑢
𝑛,∗
(𝑥 ⋅ 𝑡) → 𝑢(𝑥, 𝑡), then 𝑢(𝑥, 𝑡) is the solution

of equation 𝐿
𝑗
𝑢(𝑥, 𝑡) = 𝑓

𝑗
(𝑥, 𝑡, 𝑢).

Theorem 3. Suppose the nonlinear operator 𝐴 ≜ (𝐿
−1

𝑗
𝑁) :

𝑊
1
(𝐷) → 𝑊

2
(𝐷) satisfies contractive mapping principle; that

is,
‖𝐴 (𝑢) − 𝐴 (V)‖ ≤ 𝜆 ‖𝑢 − V‖ , 𝜆 < 1; (20)

and then 𝑢
𝑛,∗
(𝑥 ⋅ 𝑡) is convergent.

Using reproducing kernel method, we can get

𝑢
0
(𝑥, 𝑡) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓
0
(𝑥
𝑘
, 𝑡
𝑘
, 𝑢
0
(𝑥
𝑘
, 𝑡
𝑘
)) 𝜓
𝑖0
(𝑥, 𝑡) ,

𝑢
𝑗
(𝑥, 𝑡) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓
𝑗
(𝑥
𝑘
, 𝑡
𝑘
) 𝜓
𝑖
(𝑥, 𝑡) , 𝑗 = 1, 2, . . . .

(21)

Therefore, the analytical solution of (2) is obtained.

𝑢 (𝑥, 𝑡) =

∞

∑

𝑗=0

𝜀
𝑗
𝑢
𝑗
(𝑥, 𝑡) . (22)

In calculation, we use

𝑢
𝑛,𝑚,𝑙

(𝑥) =

𝑙

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑔 (𝑥
𝑘
, 𝑡
𝑘
, (𝑢
0
)
𝑛−1
(𝑥
𝑘
, 𝑡
𝑘
)) 𝜓
𝑖0
(𝑥, 𝑡)

+

𝑚

∑

𝑗=1

𝜀
𝑗

𝑙

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓
𝑗
(𝑥
𝑘
, 𝑡
𝑘
) 𝜓
𝑖 (
𝑥, 𝑡)

(23)

as the approximation solution of (2).

4. Numerical Experiment

Example 4. Considering a nonlinear advection equationwith
perturbation term

𝜀

𝜕𝑢

𝜕𝑡

+ 𝑢

𝜕𝑢

𝜕𝑥

= 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝐷 = [0, 1] × [0, 1] ,

𝑢 (0, 𝑡) = 𝜀𝑡, 𝑢 (𝑥, 0) = 𝑥,

(24)

where𝑓(𝑥, 𝑡) = 𝜀2+𝜀𝑡+𝑥, 𝑢
𝑇
(𝑥, 𝑡) = 𝜀𝑡+𝑥 is the true solution,

and 𝑢
𝑛,𝑚
(𝑥, 𝑡) is the approximate solution (Table 2).When we

take𝑚 = 3, 𝑛 = 2, and 𝑙 = 2, the numerical results are given in
Table 1.

5. Conclusions and Remarks

In this paper, the combination of traditional perturbation and
reproducing kernel spacemethodswas employed successfully
for solving nonlinear advection equation with singular term.
The numerical results show that the present method is an
accurate and reliable. Moreover, the method is also effective
solving other nonlinear singular perturbation problems.
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Table 1: Comparison of the absolute error 𝜀 = 1 × 10−3.

(𝑥, 𝑡) 𝑢
𝑇
(𝑡, 𝑥)

Approximate
solution

Absolute
error

(0.0001, 0.0001) 0.0001001 0.0001 1 × 10
−7

(0.0200, 0.0200) 0.0200200 0.0200 2 × 10
−5

(0.0050, 0.0050) 0.0050050 0.0050 5 × 10
−6

(0.8100, 0.8100) 0.8108100 0.8100 8 × 10
−4

(0.2000, 0.2000) 0.2002000 0.2000 2 × 10
−4

(0.5500, 0.5500) 0.5505500 0.5500 5 × 10
−4

(0.0330, 0.0330) 0.03303300 0.0330 3 × 10
−5

(1, 0) 1 1 0

Table 2: Comparison of the absolute error 𝜀 = 1 × 10−4.

(𝑥, 𝑡) 𝑢
𝑇
(𝑡, 𝑥)

Approximate
solution

Absolute
error

(0, 0) 0 0 0
(0.01, 0.01) 0.010001 0.01 1 × 10

−6

(0.03, 0.03) 0.030003 0.03 3 × 10
−6

(0.05, 0.05) 0.050005 0.05 5 × 10
−6

(0.06, 0.06) 0.060006 0.06 6 × 10
−6

(0.08, 0.08) 0.080008 0.08 8 × 10
−6

(0.10, 0.10) 0.100010 0.10 1 × 10
−5
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