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An improved design approach of robustH
∞
filter for a class of nonlinear systems described by the Takagi-Sugeno (T-S) fuzzymodel

is considered. By introducing a free matrix variable, a new sufficient condition for the existence of robust H
∞
filter is derived. This

condition guarantees that the filtering error system is robustly asymptotically stable and a prescribed H
∞
performance is satisfied

for all admissible uncertainties. Particularly, the solution of filter parameters which are independent of the Lyapunov matrix can
be transformed into a feasibility problem in terms of linear matrix inequalities (LMIs). Finally, a numerical example illustrates that
the proposed filter design procedure is effective.

1. Introductions

In recent years, when the external disturbance and the
statistical properties of the measurement noise are unknown,
using H

∞
filtering approach to estimate the states of a

linear system becomes one of the focuses on the estimated
theoretical research, and some useful research results [1–4]
are obtained. However, how to design an effective filter for
nonlinear systems is still a very difficult problem. Over the
past two decades, there has been a rapidly growing interest in
fuzzy control of nonlinear systems. In particular, the fuzzy
model proposed by Takagi and Sugeno [5] receives a great
deal of attention. And it indicates that this type of fuzzymodel
has a good approximation performance for the complex
nonlinear systems, so some scholars attempt to apply this
fuzzy model to design H

∞
filter for nonlinear systems. Feng

et al. [6] were prior scholars to study the filter for nonlinear
systems by usingT-S fuzzymodel and linearmatrix inequality
(LMI) techniques. For a class of discrete nonlinear dynamic
systems, Tseng and Chen [7] and Pan et al. [8] studied a fuzzy
H
∞
filtering problem. After that, Tseng [9, 10] and Tian et al.

[11] discussed the design problemof robustH
∞
fuzzy filter for

a class of continuous nonlinear systems.Moreover, the above-
obtained results were extended to the fuzzy H

∞
filter or

robustH
∞
filter design for nonlinear systems with time delay

[12–15]. In addition, H
∞

filtering approach is also applied

to Markovian jump systems [16], nonlinear interconnected
systems [17], chaotic systems [18], and networked nonlinear
systems [19] for the discrete-time case and stochastic systems
[20] and singular systems [21] for the continuous-time case.
Nevertheless, in the above-mentioned results, the solving
process of filter parameters is related to the Lyapunovmatrix,
whichwillmore or less bring some conservative to the results.
The reason is that most of the existence conditions of filter
are sufficient conditions; if the Lyapunov matrix cannot be
found, then the filter parameters whichmaybe exist cannot be
constructed. For this reason, de Oliveira et al. [22] proposed
a novel filter design method by introducing free matrices to
the framework of the quadratic Lyapunov function. Bymeans
of decoupling the relations between the Lyapunov matrix
and the system matrix, the conservative of the results will be
reduced. But due to the restrictions of LMI characteristics,
this method can only be applied to the discrete systems
[17, 23, 24]. Lately, Apkarian et al. [25] extended this idea
to the linear continuous systems with the aid of Projection
Theorem. And this idea has been used in other fields [26–28].
Unfortunately, to the best of our knowledge, this idea has not
yet been introduced to the design of robust H

∞
filter for the

uncertain continuous nonlinear systems.
Taking into account the above-mentioned results, this

paper will discuss a new design method of robust H
∞

filter for a class of uncertain nonlinear systems. Firstly, the
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T-S fuzzy model is employed to represent the nonlinear
systems. Then, on the basis of the bounded real lemma of
continuous systems, a new criterion for the existence of the
improved robust H

∞
filter is obtained via introducing a free

matrix variable. Based on this criterion, the solution of the
filter parameters independent of the Lyapunov matrix can
be obtained. Combined with the linear matrix inequality
techniques, the filter design problem can be transformed into
a feasibility problem of a set of linear matrix inequalities.
Finally, a simulation example will be given to verify the
validity of the proposed method.

2. Problem Formulation

Consider a class of uncertain nonlinear systems described by
the following T-S fuzzy models.

Plant Rule 𝑖:

IF V
1
(𝑡) is 𝑀

𝑖1
and ⋅ ⋅ ⋅ and V

𝑝
(𝑡) is 𝑀

𝑖𝑝

THEN �̇� (𝑡) = (𝐴
𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥 (𝑡) + 𝐵

𝑖
𝑤 (𝑡) ,

𝑦 (𝑡) = (𝐶
𝑖
+ Δ𝐶
𝑖
(𝑡)) 𝑥 (𝑡) + 𝐷

𝑖
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿
𝑖
𝑥 (𝑡) ,

𝑥
0
= 𝑥 (0) , 𝑖 = 1, 2, . . . , 𝑟,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑚 is the
measured output, 𝑧(𝑡) ∈ R𝑙 is the signal to be estimated, and
𝑤(𝑡) ∈ 𝐿

𝑞

2
[0,∞) is the noise signal vector (including process

and measurement noises). 𝑥
0
is the initial state condition of

the system, which is considered to be known and, without
loss of generality, assumed to be zero. V

1
(𝑡), . . . , V

𝑝
(𝑡) are the

premise variables, 𝑀
𝑖𝑗

(𝑗 = 1, 2, . . . , 𝑝) is the fuzzy set, and
𝑟 is the number of IF-THEN rules. 𝐴

𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐷
𝑖
, and 𝐿

𝑖
are

known real constantmatrices with appropriate dimensions of
the 𝑖th subsystem, respectively. The uncertain time-varying
matrices Δ𝐴

𝑖
(𝑡) and Δ𝐶

𝑖
(𝑡) represent the parameter uncer-

tainties in the system model and are assumed to be norm-
bounded of the following forms:

Δ𝐴
𝑖
(𝑡) = 𝐸

𝑎𝑖
𝐹 (𝑡)𝐻

𝑎𝑖
,

Δ𝐶
𝑖
(𝑡) = 𝐸

𝑐𝑖
𝐹 (𝑡)𝐻

𝑐𝑖
,

𝑖 = 1, 2, . . . , 𝑟,

(2)

where 𝐸
𝑎𝑖
, 𝐸
𝑐𝑖
, 𝐻
𝑎𝑖
, and 𝐻

𝑐𝑖
are known constant matrices of

appropriate dimensions, which reflect the structural infor-
mation of uncertainty, and 𝐹(𝑡) is an uncertainty matrix
function with Lebesgue measurable elements and satisfies

𝐹
Τ

(𝑡) 𝐹 (𝑡) ≤ 𝐼. (3)

By using theweighted averagemethod for defuzzification,
the uncertain fuzzy dynamic model for the system (1) can be
inferred as follows:

�̇� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) [(𝐴

𝑖
+ Δ𝐴
𝑖
(𝑡)) 𝑥 (𝑡) + 𝐵

𝑖
𝑤 (𝑡)] ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) [(𝐶

𝑖
+ Δ𝐶
𝑖
(𝑡)) 𝑥 (𝑡) + 𝐷

𝑖
𝑤 (𝑡)] ,

𝑧 (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) 𝐿

𝑖
𝑥 (𝑡) ,

(4)

where V(𝑡) = [V
1
(𝑡), V
2
(𝑡), . . . , V

𝑝
(𝑡)]
Τ, and

ℎ
𝑖
(V (𝑡)) =

𝜇
𝑖
(V (𝑡))

∑
𝑟

𝑖=1
𝜇
𝑖
(V (𝑡))

,

𝜇
𝑖
(V (𝑡)) =

𝑝

∏

𝑗=1

𝑀
𝑖𝑗
(V
𝑗
(𝑡)) ,

𝑖 = 1, 2, . . . , 𝑟,

(5)

in which𝑀
𝑖𝑗
(V
𝑗
(𝑡)) is the grade ofmembership of V

𝑗
(𝑡) in the

fuzzy set 𝑀
𝑖𝑗
, while 𝜇

𝑖
(V(𝑡)) is the grade of membership of

the 𝑖th rule.
In general, it is assumed that 𝜇

𝑖
(V(𝑡)) ≥ 0, 𝑖 =

1, 2, . . . , 𝑟, and ∑
𝑟

𝑖=1
𝜇
𝑖
(V(𝑡)) > 0. Therefore, it is easy to

obtain that ℎ
𝑖
(V(𝑡)) ≥ 0, 𝑖 = 1, 2, . . . , 𝑟, and ∑

𝑟

𝑖=1
ℎ
𝑖
(V(𝑡)) = 1.

Based on the T-S fuzzy models (1), the full-order filter is
constructed as follows.

Filter Rule 𝑖:

IF V
1
(𝑡) is 𝑀

𝑖1
and ⋅ ⋅ ⋅ and V

𝑝
(𝑡) is 𝑀

𝑖𝑝

THEN ̇
�̂� (𝑡) = 𝐴

𝑓𝑖
𝑥 (𝑡) + 𝐵

𝑓𝑖
𝑦 (𝑡) ,

�̂� (𝑡) = 𝐶
𝑓𝑖
𝑥 (𝑡) + 𝐷

𝑓𝑖
𝑦 (𝑡) , 𝑖 = 1, 2, . . . , 𝑟,

(6)

where 𝑥(𝑡) ∈ R𝑛 is the state vector of filter and �̂�(𝑡) ∈ R𝑙

is an estimate value of the filter output. The matrices 𝐴
𝑓𝑖
,

𝐵
𝑓𝑖
,𝐶
𝑓𝑖
, and𝐷

𝑓𝑖
are filter parameters to be determined. Here,

it is assumed that the initial condition of filter is 𝑥
0
= 0. Then

the whole fuzzy filter can be expressed as

̇
�̂� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) [𝐴

𝑓𝑖
𝑥 (𝑡) + 𝐵

𝑓𝑖
𝑦 (𝑡)] ,

�̂� (𝑡) =

𝑟

∑

𝑖=1

ℎ
𝑖
(V (𝑡)) [𝐶

𝑓𝑖
𝑥 (𝑡) + 𝐷

𝑓𝑖
𝑦 (𝑡)] .

(7)

Set the state variable as 𝑥(𝑡) = [𝑥
Τ

(𝑡)𝑥
Τ

(𝑡)]
Τ and

estimated error as �̃�(𝑡) = 𝑧(𝑡) − �̂�(𝑡). Then the filtering error
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dynamic equation inferred from formulas (4) and (7) can be
described as follows:

̇
�̃� (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(V (𝑡)) ℎ

𝑗
(V (𝑡))

× [(𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
(𝑡)) 𝑥 (𝑡) + 𝐵

𝑖𝑗
𝑤 (𝑡)] ,

�̃� (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
(V (𝑡)) ℎ

𝑗
(V (𝑡))

× [(𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
(𝑡)) 𝑥 (𝑡) + 𝐷

𝑖𝑗
𝑤 (𝑡)] ,

(8)

where

𝐴
𝑖𝑗

= [

𝐴
𝑗

0

𝐵
𝑓𝑖
𝐶
𝑗

𝐴
𝑓𝑖

] , 𝐵
𝑖𝑗

= [

𝐵
𝑗

𝐵
𝑓𝑖

𝐷
𝑗

] ,

𝐶
𝑖𝑗

= [𝐿
𝑗
− 𝐷
𝑓𝑖
𝐶
𝑗

−𝐶
𝑓𝑖
] , 𝐷

𝑖𝑗
= −𝐷
𝑓𝑖
𝐷
𝑗
,

Δ𝐴
𝑖𝑗
(𝑡) = [

Δ𝐴
𝑗
(𝑡) 0

𝐵
𝑓𝑖
Δ𝐶
𝑗
(𝑡) 0

] ,

Δ𝐶
𝑖𝑗
(𝑡) = [−𝐷

𝑓𝑖
Δ𝐶
𝑗
(𝑡) 0] .

(9)

Let 𝐻
�̃�𝑤

(𝑠) be the transfer function from the disturbance
input 𝑤(𝑡) to the estimation error �̃�(𝑡). Then the robust
H
∞

filter design problem considered in this paper can be
described as follows: for a given constant 𝛾 > 0, find a H

∞

full-order filter in the form of (7) so that the filtering error
dynamic system (8) is robustly asymptotically stable and the
H
∞

norm of the transfer function 𝐻
�̃�𝑤

(𝑠) is less than the
given constant 𝛾; that is, ‖𝐻

�̃�𝑤
(𝑠)‖
∞

< 𝛾 is satisfied. Here,
constant 𝛾 is called a prescribed H

∞
performance level.

For brevity, the functions ℎ
𝑖
(V(𝑡)) will be replaced by ℎ

𝑖

in the subsequence, and Δ𝐴
𝑖
(𝑡), Δ𝐶

𝑖
(𝑡), Δ𝐴

𝑖𝑗
(𝑡), Δ𝐶

𝑖𝑗
(𝑡) will

be replaced by Δ𝐴
𝑖
, Δ𝐶
𝑖
, Δ𝐴
𝑖𝑗
, Δ𝐶
𝑖𝑗
.

3. Robust 𝐻
∞

Filter Design

According to the bounded real lemma of continuous-time
systems, this section firstly gives a sufficient condition for
the existence of robust H

∞
filter for the uncertain fuzzy

system (4). That is, for a given constant 𝛾 > 0, the
filtering error system (8) is robustly asymptotically stable and
satisfies ‖𝐻

�̃�𝑤
(𝑠)‖
∞

< 𝛾, if there exists a symmetric positive
definite matrix 𝑃 ∈ R2𝑛×2𝑛, such that the following matrix
inequality holds:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[

[

[

(𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
)

Τ

𝑃 + 𝑃 (𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
) 𝑃𝐵

𝑖𝑗
(𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
)

Τ

𝐵
Τ

𝑖𝑗
𝑃 −𝛾

2

𝐼 𝐷
Τ

𝑖𝑗

𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗

𝐷
𝑖𝑗

−𝐼

]

]

]

< 0. (10)

With the aid of the basic idea of [25], an improved robust
H
∞

filter design method is obtained by introducing a free
matrix variable, in which the Lyapunov function matrix and
the filtering error systemmatrix are separated.Then the filter
parameters to be determined can be solved independently
of the Lyapunov function matrix. This kind of processing
method can reduce the conservatism of the results.

Theorem 1. For a given constant 𝛾 > 0, the filter-
ing error system (8) is robustly asymptotically stable and
satisfies ‖𝐻

�̃�𝑤
(𝑠)‖
∞

< 𝛾, if there exist a symmetric positive
definite matrix 𝑃 ∈ R2𝑛×2𝑛 and matrix 𝑉 ∈ R2𝑛×2𝑛, such that
the following matrix inequality holds:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[

[

[

[

[

[

[

− (𝑉 + 𝑉
Τ

) 𝑉
Τ

(𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
) + 𝑃 𝑉

Τ

𝐵
𝑖𝑗

0 𝑉
Τ

∗ −𝑃 0 (𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
)

Τ

0

∗ ∗ −𝛾
2

𝐼 𝐷
Τ

𝑖𝑗
0

∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ −𝑃

]

]

]

]

]

]

]

< 0. (11)

Proof. Rewrite the matrix inequality (11) in the following
form:,

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
[Φ + �̃�

Τ

𝑉
Τ

�̃� + �̃�
Τ

𝑉�̃�] < 0, (12)

where

Φ =

[

[

[

[

[

[

[

0 𝑃 0 0 0

∗ −𝑃 0 (𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
)

Τ

0

∗ ∗ −𝛾
2

𝐼 𝐷
Τ

𝑖𝑗
0

∗ ∗ ∗ −𝐼 0

∗ ∗ ∗ ∗ −𝑃

]

]

]

]

]

]

]

,
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�̃� = [𝐼 0 0 0 0] ,

�̃� = [−𝐼 𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗

𝐵
𝑖𝑗

0 𝐼] .

(13)

According to the ProjectionTheorem [25], inequality (12)
is equivalent to the following inequality; that is,

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[

[

[

[

[

𝑃 (𝐴
𝑖𝑗
+ Δ𝐴
𝑖𝑗
) + (𝐴

𝑖𝑗
+ Δ𝐴
𝑖𝑗
)

Τ

𝑃 − 𝑃 𝑃𝐵
𝑖𝑗

(𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗
)

Τ

𝑃

𝐵
Τ

𝑖𝑗
𝑃 −𝛾

2

𝐼 𝐷
Τ

𝑖𝑗
0

𝐶
𝑖𝑗
+ Δ𝐶
𝑖𝑗

𝐷
𝑖𝑗

−𝐼 0

𝑃 0 0 −𝑃

]

]

]

]

]

< 0. (14)

Applying the Schur complement, it is easy to know that
inequality (10) can be deduced from the above inequality.
That is to say, inequality (11) is a sufficient condition of the
establishment of inequality (10), which can guarantee the
filtering error system (8) is robustly asymptotically stable and
satisfies the prescribed H

∞
performance level.

Take into account that inequality (11) is a nonlinearmatrix
inequality on the matrix variables (𝑃, 𝐴

𝑓𝑖
, 𝐵
𝑓𝑖
, 𝐶
𝑓𝑖
, 𝐷
𝑓𝑖
,

𝑖 = 1, 2, . . . , 𝑟), so it is very difficult to solve these variables
directly. In this end, the variable substitution method will be
utilized in the following derivation to transform inequality
(11) into the form of linear matrix inequalities. Then the
parameters of robust H

∞
filter can be easily achieved by

applying the MATLAB LMI toolbox.

Lemma 2 (see [29]). Given matrices 𝑌,𝐻, and 𝐸 of appropri-
ate dimensions, where 𝑌 is symmetric, then the inequality 𝑌 +

𝐻𝐹𝐸 + 𝐸
Τ

𝐹
Τ

𝐻
Τ

< 0 holds for all 𝐹 satisfying 𝐹
Τ

𝐹 ≤ 𝐼,
if and only if there exists a constant 𝜀 > 0 such that the
equality 𝑌 + 𝜀𝐻𝐻

Τ

+ 𝜀
−1

𝐸
Τ

𝐸 < 0 holds.

Let matrices 𝑉, 𝑉−1, and 𝑃 be partitioned as follows:

𝑉 = [

𝑉
11

𝑉
12

𝑉
21

𝑉
22

] , 𝑉
−1

= [

𝑊
11

𝑊
12

𝑊
21

𝑊
22

] ,

𝑃 = [

𝑃
11

𝑃
12

𝑃
Τ

12
𝑃
22

] ,

(15)

where 𝑉
11
,𝑊
11
, 𝑃
11

∈ R𝑛×𝑛.
Then introduce the following nonsingular matrices:

Π
1
= [

𝑉
11

𝐼

𝑉
21

0
] , Π

2
= [

𝐼 𝑊
11

0 𝑊
21

] . (16)

Obviously, the equation 𝑉Π
2
= Π
1
holds.

Denote 𝑇
1

= diag{Π
2
, Π
2
, 𝐼, 𝐼, Π

2
}, 𝑃 = [

𝑃
11
𝑃
12

𝑃

Τ

12
𝑃
22

] =

Π
Τ

2
𝑃Π
2
. Let inequality (11) be pre- and postmultiplied

by 𝑇
Τ

1
and 𝑇

1
, respectively, and substitute the expression of the

matrix variables 𝐴
𝑖𝑗
, 𝐵
𝑖𝑗
, 𝐶
𝑖𝑗
, and 𝐷

𝑖𝑗
. The following matrix

inequality can be obtained:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11

Ξ
12

Ξ
13

Ξ
14

Ξ
15

0 𝑉
Τ

11
Ξ
18

∗ Ξ
22

Ξ
23

Ξ
24

𝐵
𝑗

0 𝐼 𝑊
11

∗ ∗ −𝑃
11

−𝑃
12

0 Ξ
36

0 0

∗ ∗ ∗ −𝑃
22

0 Ξ
46

0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 −𝐷
Τ

𝑗
𝐷
Τ

𝑓𝑖
0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑃
11

−𝑃
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑃
22

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (17)

where

Ξ
11

= −𝑉
11

− 𝑉
Τ

11
, Ξ
12

= −𝐼 − 𝑉
Τ

11
𝑊
11

− 𝑉
Τ

21
𝑊
21
,

Ξ
13

= 𝑃
11

+ 𝑉
Τ

11
(𝐴
𝑗
+ Δ𝐴
𝑗
) + 𝑉
Τ

21
𝐵
𝑓𝑖

(𝐶
𝑗
+ Δ𝐶
𝑗
) ,

Ξ
14

= 𝑃
12

+ 𝑉
Τ

11
(𝐴
𝑗
+ Δ𝐴
𝑗
)𝑊
11

+ 𝑉
Τ

21
𝐵
𝑓𝑖

(𝐶
𝑗
+ Δ𝐶
𝑗
)𝑊
11

+ 𝑉
Τ

21
𝐴
𝑓𝑖
𝑊
21
,

Ξ
15

= 𝑉
Τ

11
𝐵
𝑗
+ 𝑉
Τ

21
𝐵
𝑓𝑖
𝐷
𝑗
,

Ξ
18

= 𝑉
Τ

11
𝑊
11

+ 𝑉
Τ

21
𝑊
21
, Ξ
22

= −𝑊
11

− 𝑊
Τ

11
,

Ξ
23

= 𝑃

Τ

12
+ 𝐴
𝑗
+ Δ𝐴
𝑗
, Ξ
24

= 𝑃
22

+ (𝐴
𝑗
+ Δ𝐴
𝑗
)𝑊
11
,

Ξ
36

= 𝐿
Τ

𝑗
− (𝐶
𝑗
+ Δ𝐶
𝑗
)

Τ

𝐷
Τ

𝑓𝑖
,

Ξ
46

= 𝑊
Τ

11
𝐿
Τ

𝑗
− 𝑊
Τ

11
(𝐶
𝑗
+ Δ𝐶
𝑗
)

Τ

𝐷
Τ

𝑓𝑖
− 𝑊
Τ

21
𝐶
Τ

𝑓𝑖
.

(18)



Abstract and Applied Analysis 5

Moreover, denote 𝑇
2

= diag{𝐼,𝑊−1
11

, 𝐼,𝑊
−1

11
, 𝐼, 𝐼, 𝐼,𝑊

−1

11
}.

Similarly, multiply inequality (17) by 𝑇
Τ

2
on the left and

by 𝑇
2
on the right. At the same time, let

�̃� = [

�̃�
11

�̃�
12

�̃�
Τ

12
�̃�
22

] = [

𝐼 0

0 𝑊
−1

11

]

Τ

[

𝑃
11

𝑃
12

𝑃

Τ

12
𝑃
22

] [

𝐼 0

0 𝑊
−1

11

] ,

𝑄 = 𝑊
−1

11
, 𝑅 = 𝑉

Τ

21
𝑊
21
𝑄,

𝑋
𝑖
= 𝑉
Τ

21
𝐴
𝑓𝑖
𝑊
21
𝑄,

𝑌
𝑖
= 𝑉
Τ

21
𝐵
𝑓𝑖
, 𝑍

𝑖
= 𝐶
𝑓𝑖
𝑊
21
𝑄.

(19)

Then inequality (17) can be equivalent to the following form:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11

Ξ̃
12

Ξ̃
13

Ξ̃
14

Ξ̃
15

0 𝑉
Τ

11
𝑉
Τ

11
+ 𝑅

∗ Ξ̃
22

Ξ̃
23

Ξ̃
24

𝑄
Τ

𝐵
𝑗

0 𝑄
Τ

𝑄
Τ

∗ ∗ −�̃�
11

−�̃�
12

0 Ξ
36

0 0

∗ ∗ ∗ −�̃�
22

0 Ξ̃
46

0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 −𝐷
Τ

𝑗
𝐷
Τ

𝑓𝑖
0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −�̃�
11

−�̃�
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ −�̃�
22

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (20)

where

Ξ̃
12

= −𝑄 − 𝑉
Τ

11
− 𝑅,

Ξ̃
13

= �̃�
11

+ 𝑉
Τ

11
(𝐴
𝑗
+ Δ𝐴
𝑗
) + 𝑌
𝑖
(𝐶
𝑗
+ Δ𝐶
𝑗
) ,

Ξ̃
14

= �̃�
12

+ 𝑉
Τ

11
(𝐴
𝑗
+ Δ𝐴
𝑗
) + 𝑌
𝑖
(𝐶
𝑗
+ Δ𝐶
𝑗
) + 𝑋
𝑖
,

Ξ̃
15

= 𝑉
Τ

11
𝐵
𝑗
+ 𝑌
𝑖
𝐷
𝑗
, Ξ̃

22
= −𝑄 − 𝑄

Τ

Ξ̃
23

= �̃�
Τ

12
+ 𝑄
Τ

(𝐴
𝑗
+ Δ𝐴
𝑗
) ,

Ξ̃
24

= �̃�
22

+ 𝑄
Τ

(𝐴
𝑗
+ Δ𝐴
𝑗
) ,

Ξ̃
46

= 𝐿
Τ

𝑗
− (𝐶
𝑗
+ Δ𝐶
𝑗
)

Τ

𝐷
Τ

𝑓𝑖
− 𝑍
Τ

𝑖
.

(21)

In the following, by substituting expression (2) of
the uncertain matrices Δ𝐴

𝑖
(𝑡) and Δ𝐶

𝑖
(𝑡) into the matrix

inequality (20), it can be obtained that

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
[Ξ̂
𝑖𝑗
+ 𝐸
1𝑗
𝐹 (𝑡)𝐻

1𝑗
+ 𝐻
Τ

1𝑗
𝐹
Τ

(𝑡) 𝐸
Τ

1𝑗

+𝐸
2𝑖𝑗

𝐹 (𝑡)𝐻
2𝑗

+ 𝐻
Τ

2𝑗
𝐹
Τ

(𝑡) 𝐸
Τ

2𝑖𝑗
] < 0,

(22)

where

Ξ̂
𝑖𝑗

=

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ
11

Ξ̃
12

Ξ̂
13

Ξ̂
14

Ξ̃
15

0 𝑉
Τ

11
𝑉
Τ

11
+ 𝑅

∗ Ξ̃
22

Ξ̂
23

Ξ̂
24

𝑄
Τ

𝐵
𝑗

0 𝑄
Τ

𝑄
Τ

∗ ∗ −�̃�
11

−�̃�
12

0 Ξ
36

0 0

∗ ∗ ∗ −�̃�
22

0 Ξ̂
46

0 0

∗ ∗ ∗ ∗ −𝛾
2

𝐼 −𝐷
Τ

𝑗
𝐷
Τ

𝑓𝑖
0 0

∗ ∗ ∗ ∗ ∗ −𝐼 0 0

∗ ∗ ∗ ∗ ∗ ∗ −�̃�
11

−�̃�
12

∗ ∗ ∗ ∗ ∗ ∗ ∗ −�̃�
22

]

]

]

]

]

]

]

]

]

]

]

]

]

,

Ξ̂
13

= �̃�
11

+ 𝑉
Τ

11
𝐴
𝑗
+ 𝑌
𝑖
𝐶
𝑗
,

Ξ̂
23

= �̃�
Τ

12
+ 𝑄
Τ

𝐴
𝑗
, Ξ̃

14
= �̃�
12

+ 𝑉
Τ

11
𝐴
𝑗
+ 𝑌
𝑖
𝐶
𝑗
+ 𝑋
𝑖
,

Ξ̂
24

= �̃�
22

+ 𝑄
Τ

𝐴
𝑗
, Ξ̂

46
= 𝐿
Τ

𝑗
− 𝐶
Τ

𝑗
𝐷
Τ

𝑓𝑖
− 𝑍
Τ

𝑖
,

𝐸
Τ

1𝑗
= [𝐸
Τ

𝑎𝑗
𝑉
11

𝐸
Τ

𝑎𝑗
𝑄 0 0 0 0 0 0] ,

𝐻
1𝑗

= [0 0 𝐻
𝑎𝑗

𝐻
𝑎𝑗

0 0 0 0] ,

𝐸
Τ

2𝑖𝑗
= [𝐸
Τ

𝑐𝑗
𝑌
Τ

𝑖
0 0 0 0 −𝐸

Τ

𝑐𝑗
𝐷
Τ

𝑓𝑖
0 0] ,

𝐻
2𝑗

= [0 0 𝐻
𝑐𝑗

𝐻
𝑐𝑗

0 0 0 0] .

(23)

According to Lemma 2, the matrix inequality (22) holds
for all admissible uncertainty matrices 𝐹(𝑡) satisfying con-
dition (3), if and only if there exist constants 𝜀

1𝑖𝑗
> 0 and
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𝜀
2𝑖𝑗

> 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑟, such that the following matrix
inequality holds:

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

ℎ
𝑖
ℎ
𝑗
[Ξ̂
𝑖𝑗
+ 𝜀
1𝑖𝑗

𝐻
Τ

1𝑗
𝐻
1𝑗

+ 𝜀
−1

1𝑖𝑗
𝐸
1𝑗
𝐸
Τ

1𝑗

+ 𝜀
2𝑖𝑗

𝐻
Τ

2𝑗
𝐻
2𝑗

+ 𝜀
−1

2𝑖𝑗
𝐸
2𝑖𝑗

𝐸
Τ

2𝑖𝑗
]

=

𝑟

∑

𝑖=1

ℎ
2

𝑖
[Ξ̂
𝑖𝑖
+ 𝜀
1𝑖𝑖

𝐻
Τ

1𝑖
𝐻
1𝑖

+ 𝜀
−1

1𝑖𝑖
𝐸
1𝑖
𝐸
Τ

1𝑖

+ 𝜀
2𝑖𝑖

𝐻
Τ

2𝑖
𝐻
2𝑖

+ 𝜀
−1

2𝑖𝑖
𝐸
2𝑖𝑖

𝐸
Τ

2𝑖𝑖
]

+

𝑟

∑

𝑖=1

𝑟

∑

𝑖<𝑗

ℎ
𝑖
ℎ
𝑗
[Ξ̂
𝑖𝑗
+ 𝜀
1𝑖𝑗

𝐻
Τ

1𝑗
𝐻
1𝑗

+ 𝜀
−1

1𝑖𝑗
𝐸
1𝑗
𝐸
Τ

1𝑗

+ 𝜀
2𝑖𝑗

𝐻
Τ

2𝑗
𝐻
2𝑗

+ 𝜀
−1

2𝑖𝑗
𝐸
2𝑖𝑗

𝐸
Τ

2𝑖𝑗
+ Ξ̂
𝑗𝑖

+ 𝜀
1𝑗𝑖

𝐻
Τ

1𝑖
𝐻
1𝑖

+ 𝜀
−1

1𝑗𝑖
𝐸
1𝑖
𝐸
Τ

1𝑖

+ 𝜀
2𝑗𝑖

𝐻
Τ

2𝑖
𝐻
2𝑖

+ 𝜀
−1

2𝑗𝑖
𝐸
2𝑗𝑖

𝐸
Τ

2𝑗𝑖
] < 0.

(24)

Applying the Schur complement lemma to the above
matrix inequality, the following conclusion can be reached
from the above deduction.

Theorem 3. For a given constant 𝛾 > 0, the filtering
error system (8) is robustly asymptotically stable and satis-
fies ‖𝐻

�̃�𝑤
(𝑠)‖
∞

< 𝛾, if there exist constant 𝜀
1𝑖𝑗

> 0, 𝜀
2𝑖𝑗

>

0, symmetric positive definite matrix �̃�
11
, �̃�
22
, and matrices

�̃�
12
, 𝑉
11
, 𝑄, 𝑅, 𝑋

𝑖
, 𝑌
𝑖
, 𝑍
𝑖
, 𝐷
𝑓𝑖
, 𝑖, 𝑗 = 1, 2, . . . , 𝑟, such that

for all admissible uncertainties (3) the following linear matrix
inequalities hold:

[

[

Ξ̂
𝑖𝑖
+ 𝜀
1𝑖𝑖

𝐻
Τ

1𝑖
𝐻
1𝑖

+ 𝜀
2𝑖𝑖

𝐻
Τ

2𝑖
𝐻
2𝑖

𝐸
1𝑖

𝐸
2𝑖𝑖

𝐸
Τ

1𝑖
−𝜀
1𝑖𝑖

𝐼 0

𝐸
Τ

2𝑖𝑖
0 −𝜀

2𝑖𝑖
𝐼

]

]

< 0, 𝑖 = 1, 2, . . . , 𝑟,

[

[

[

[

[

[

[

[

[

[

(

Ξ̂
𝑖𝑗
+ Ξ̂
𝑗𝑖

+ 𝜀
1𝑖𝑗

𝐻
Τ

1𝑗
𝐻
1𝑗

+ 𝜀
1𝑗𝑖

𝐻
Τ

1𝑖
𝐻
1𝑖

+𝜀
2𝑖𝑗

𝐻
Τ

2𝑗
𝐻
2𝑗

+ 𝜀
2𝑗𝑖

𝐻
Τ

2𝑖
𝐻
2𝑖

) 𝐸
1𝑗

𝐸
2𝑖𝑗

𝐸
1𝑖

𝐸
2𝑗𝑖

𝐸
Τ

1𝑗
−𝜀
1𝑖𝑗

𝐼 0 0 0

𝐸
Τ

2𝑖𝑗
0 −𝜀

2𝑖𝑗
𝐼 0 0

𝐸
Τ

1𝑖
0 0 −𝜀

1𝑗𝑖
𝐼 0

𝐸
Τ

2𝑗𝑖
0 0 0 −𝜀

2𝑗𝑖
𝐼

]

]

]

]

]

]

]

]

]

]

< 0, 𝑖 < 𝑗.

(25)

Using the matrix relations of formula (19) and the equiv-
alence of the transfer function, filter parameter matrices are
given as follows:

𝐴
𝑓𝑖

= 𝑅
−1

𝑋
𝑖
, 𝐵

𝑓𝑖
= 𝑅
−1

𝑌
𝑖
,

𝐶
𝑓𝑖

= 𝑍
𝑖
, 𝐷

𝑓𝑖
= 𝐷
𝑓𝑖
,

𝑖 = 1, 2, . . . , 𝑟.

(26)

Set 𝜌 = 𝛾
2, and an optimization problem about robust

H
∞

filter can be described in the following:

min 𝜌

s.t. (25) .

(27)

Thus, the obtained filter can be called an optimal robust H
∞

filter of the uncertain fuzzy system (4), and the corresponding
optimal disturbance attenuation level is 𝛾

∗

= √𝜌.

4. Numerical Example

In this section, a numerical example will be given to illustrate
the effectiveness of robust H

∞
filtering approach developed

in the previous section (see Figure 1) [30].

According to the literature [30], Figure 1 can be described
by the following state equations:

�̇�
1
(𝑡) = −0.1𝑥

1
(𝑡) − 0.5𝑥

3

1
(𝑡) + 50𝑥

2
(𝑡) ,

�̇�
2
(𝑡) = −𝑥

1
(𝑡) − 10𝑥

2
(𝑡) + 𝑤 (𝑡) ,

𝑦 (𝑡) = 𝑥
1
(𝑡) + 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝑥
1
(𝑡) ,

(28)

where 𝑥
1
(𝑡) = V

𝐶
(𝑡) is capacitor voltage and 𝑥

2
(𝑡) = 𝑖

𝐿
(𝑡) is

inductor current.
Assume that the state variable 𝑥

1
(𝑡) satisfies |𝑥

1
(𝑡)| ≤ 3.

In order to simplify the calculation, two fuzzy rules will be
used to approximate the nonlinear system (28).

Plant Rule 1:

IF 𝑥
1
(𝑡) is 𝑀

1
(𝑥
1
(𝑡)) ,

THEN �̇� (𝑡) = (𝐴
1
+ Δ𝐴
1
(𝑡)) 𝑥 (𝑡) + 𝐵

1
𝑤 (𝑡) .

𝑦 (𝑡) = (𝐶
1
+ Δ𝐶
1
(𝑡)) 𝑥 (𝑡) + 𝐷

1
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿
1
𝑥 (𝑡) .

(29)
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Figure 1: Tunnel diode circuit system.
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M1(x1(t))
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x1

Figure 2: Fuzzy membership functions.

Plant Rule 2:

IF 𝑥
1
(𝑡) is 𝑀

2
(𝑥
1
(𝑡)) ,

THEN �̇� (𝑡) = (𝐴
2
+ Δ𝐴
2
(𝑡)) 𝑥 (𝑡) + 𝐵

2
𝑤 (𝑡)

𝑦 (𝑡) = (𝐶
2
+ Δ𝐶
2
(𝑡)) 𝑥 (𝑡) + 𝐷

2
𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐿
2
𝑥 (𝑡) ,

(30)

where model parameters are given below:

𝐴
1
= [

−0.1 50

−1 −10
] , 𝐴

2
= [

−4.6 50

−1 −10
]

𝐵
1
= 𝐵
2
= [

0

1
] , 𝐶

1
= 𝐶
2
= [1 0] ,

𝐷
1
= 𝐷
2
= 1, 𝐿

1
= 𝐿
2
= [1 0] ,

𝐸
𝑎1

= 𝐸
𝑎2

= [

0

0.1
] , 𝐻

𝑎1
= 𝐻
𝑎2

= [0.1 0.1] ,

𝐸
𝑐1

= 𝐸
𝑐2

= 1, 𝐻
𝑐1

= 𝐻
𝑐2

= [−0.1 0.1] .

(31)

And the fuzzy membership functions corresponding to
the above two rules are given in Figure 2.

10 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

Time (s)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

Time (s)

Estimated signal z(t)

Estimated signal z(t)

Figure 3: Filtering results for 𝑤(𝑡) = 0.5 sin(5𝑡).

By giving the H
∞

performance level 𝛾 = 1 and con-
structing the fuzzy filter (7), by solving linear matrix inequal-
ities (25), the modified filter parameters can be obtained as
follows:

𝐴
𝑓1

= [

−1.6780 41.9421

−1.8564 −9.1733
] ,

𝐴
𝑓2

= [

−5.0817 43.5742

−1.8467 −9.1707
] ,

𝐵
𝑓1

= [

1.0785

0.9305
] , 𝐵

𝑓2
= [

−0.1095

0.9196
] ,

𝐶
𝑓1

= [0.6950 −0.3013] ,

𝐶
𝑓2

= [0.7422 −0.3745] ,

𝐷
𝑓1

= 0.2516, 𝐷
𝑓2

= 0.2566.

(32)

Assume that the initial state of system is 𝑥
0

= [−1 0]

Τ,
the initial state of filter is 𝑥

0
= [0 0]

Τ, and the uncertain
matrix is selected as 𝐹(𝑡) = sin(𝑡). Apply the above-obtained
filter to the system (28) for filtering simulation. When the
exogenous interference noise is set as 𝑤(𝑡) = 0.5 sin(5𝑡),
the simulation results are shown in Figure 3, in which the
blue dotted line indicates the case without introducing a free
matrix variable, while the red dotted line represents the case
with introducing a free matrix variable. Similarly, Figure 4
shows the filtering results when the noise is a random noise
with zero mean and variance of 0.01. Obviously, from the
simulation results, it can be seen that the filtering results with
introducing a free matrix variable are better than those of not
introducing, and the former makes the system have a higher
error estimation accuracy.

Moreover, by solving the optimization problem (27), the
minimum disturbance attenuation level is obtained as 𝛾

∗

=

5.1 × 10
−7. By comparison, the result without introducing
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Figure 4: Filtering results for random noise interference.

a free matrix variable is also given as 𝛾
∗

= 3.3 × 10
−6. Thus

it can be seen that the system can obtain lower disturbance
attenuation level by introducing a free matrix variable.

5. Conclusions

This paper successfully extends the ideology of literature
[25] to robust H

∞
filter design for a class of uncertain

nonlinear systems. By introducing a free matrix variable,
this paper gives a new systematic design methodology of
robust H

∞
filter. In particular, the filter parameters can be

designed independent of the Lyapunov matrix. This method
can decouple between the Lyapunov matrix and the system
matrix, so it can reduce the conservatism of the system to a
certain extent. The solution of filter can be converted into a
standard LMI problem. From the simulation results, it can
be seen that the improved filter has the lower conservatism
and the higher estimation accuracy, which is useful for
engineering application.
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