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The fault detection problem for a class of wireless networked control systems is investigated. A Bernoulli distributed parameter is
introduced in modeling the system dynamics; moreover, multiple time delays arising in the communication are taken into account.
The detection observer for tracking the system states is designed, which generates both the state errors and the output errors. By
adopting the linear matrix inequality method, a sufficient condition for the stability of wireless networked control systems with
stochastic uncertainties and multiple time delays is proposed, and the gain of the fault detection observer is obtained. Finally, an
illustrated example is provided to show that the observer designed in this paper tracks the system states well when there is no fault
in the systems; however, when fault happens, the observer residual signal rises rapidly and the fault can be quickly detected, which
demonstrate the effectiveness of the theoretical results.

1. Introduction

The network technology has received compelling attention
during the past decades [1]. The networked control system,
which plays an important role inmodern industry such as the
car industry and the health care, can usually be classified into
thewired networked control system (WNCS) and thewireless
networked control system (WiNCS) [2, 3]. Compared with
WNCS, WiNCS is a comparatively new technology, which
is widely used in military, monitory, and other complex
situations. In WiNCS, large numbers of sensor nodes are
arranged in the region of interest; due to the characteristics
of the wireless communication, information flows among
nodes are dynamic. As the structure of WiNCS becomes
increasinglymodular, system faultsmay result in fatal damage
to the whole system. As a result, the fault detection problem
for WiNCS deserves to be investigated.

The fault detection problem for WiNCS has been studied
extensively in recent years [4–10]. Reference [7] considers the
fault detection problem for WiNCS with access constraints
and random packet dropouts. The residual generation is car-
ried out based on a deterministic formulation and a residual

evaluation is proposed by considering the random packet
dropouts. In addition,with the help ofChebyshev’s inequality,
the fault detection threshold value is obtained. Reference
[8] investigates the fault detection problem for a class of
linear time invariant systems with limited network quality of
services (QoS). The probabilistic switching between different
situations is required to obey a homogeneous Markovian
chain. In [9], the adaptive observer-based fault estimation
problem is studied; by exploring the augmentedmatrix, error
dynamic systems are transferred toMarkov jumping systems.
In [10], the T-S fuzzy model is adopted to describe the system
model, with the benefit that the exact value of network-
induced delay is not necessarily known; a fuzzy observer-
based approach for the fault detection is developed.

InWiNCS, the sensor nodes gather information from the
plant and pass the information to the designed controller
via the bus structure. However, as the sensor nodes may be
influenced by several unexpected factors such as temperature
and moisture, not all the sensor nodes are in the working
status. When some nodes are not working, the information
flow may be transmitted from other signal channels, which
arouses in the uncertainties of WiNCS. On the other hand,
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as the information transmission is time consuming, time
delays arise naturally in WiNCS.The fault detection problem
for wireless networked control systems with both stochastic
uncertainties and multiple time delays has not been consid-
ered in the literature, which motivates the work in this paper.
In this paper, we investigate the fault detection for a class of
wireless networked control systems. A Bernoulli distributed
parameter is introduced in modeling the system dynamics
and the detection observer for tracking the system states is
designed. By adopting the linear matrix inequality method,
a sufficient condition for the stability of wireless networked
control systems with stochastic uncertainties and multiple
time delays is proposed, and the gain of the fault detection
observer is obtained. Finally, an example is given to show the
effectiveness of proposed method.

The rest of this paper is organized as follows. In Section 2,
we provide the problem formulation. In Section 3, the suffi-
cient condition for the stability of WiNCS is obtained by the
linear matrix inequality method. An illustrative example is
given in Section 4 and Section 5 is a brief conclusion of this
paper.

2. Problem Formulation

Consider a class of WiNCS. The system model is given as
follows:

𝑥 (𝑘+ 1)=(𝐴+𝛼𝑘𝐴)𝑥 (𝑘)+𝐴𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)+𝐵𝑢 (𝑘)+ 𝐸𝑓𝑓 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛𝑥 denotes the state without delays, 𝑥(𝑘 − 𝑖) ∈
R𝑛𝑥 denotes the delayed state of the system, 𝑢(𝑘) ∈ R𝑛𝑢
denotes the system input, 𝑓(𝑘) ∈ R𝑛𝑓 denotes the fault of
the system, 𝑦(𝑘) ∈ R𝑛𝑦 denotes the system output, 𝛼𝑘 is the
stochastic variable, and 𝐴, 𝐴, 𝐴𝑑, 𝐵, 𝐸𝑓, and 𝐶 are constant
matrices with appropriate dimensions. The control law 𝑢(𝑘)

has the following form:

𝑢 (𝑘) = 𝐾𝑥 (𝑘) , (2)

where𝐾 is the parameter matrix.
In this paper, the stochastic variable 𝛼𝑘 is assumed to be

a Bernoulli distributed sequence, which represents whether
the communication environment changes or not at each
nonnegative integer time 𝑘. We assume that 𝛼𝑘 = 0 when
there is no change in communication environment, and 𝛼𝑘 =
1 when the network environment changes. Moreover, the
following equations hold:

𝑃 {𝛼𝑘 = 1} = 𝛼,

𝑃 {𝛼𝑘 = 0} = 1 − 𝛼,

(3)

where 𝛼 ∈ [0, 1] is a given constant.

In order to generate a residual signal, we design the fault
detection observer for model (1) as follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐴𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

+ 𝐵𝐾𝑥 (𝑘) + 𝐿 [𝑦 (𝑘) − 𝑦 (𝑘)] ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(4)

where 𝑥(𝑘) and 𝑦(𝑘) are the state and the output of the
observer and 𝐿 is the parameter of the observer to be
designed.

Let

𝑒𝑥 (𝑘) = 𝑥 (𝑘) − 𝑥 (𝑘) ,

𝑒𝑦 (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) .

(5)

The error model of the system is given as

𝑒𝑥 (𝑘 + 1) = (𝐴 + 𝐵𝐾 − 𝐿𝐶) 𝑒𝑥 (𝑘) + (𝛼𝑘 − 𝛼)𝐴𝑥 (𝑘)

+ 𝛼𝐴𝑥 (𝑘) + 𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖) ,

𝑒𝑦 (𝑘) = 𝐶𝑒𝑥 (𝑘) .

(6)

Next, we define the system residual as 𝑟(𝑘) = 𝑒𝑦(𝑘). Note
that if there is no fault in the system, the residual is close to
zero.We set up the residual evaluation function 𝐽 and the fault
threshold 𝐽th as

𝐽 (𝑘) = √

𝑁

∑

𝑘=1

𝑟
𝑇
(𝑘) 𝑟 (𝑘),

𝐽th = sup 𝐽 (𝑘) .

(7)

By comparing 𝐽 and 𝐽th, it can be decided whether the
fault happens or not:

𝐽 ≤ 𝐽th No fault happens,

𝐽 > 𝐽th Fault happens.
(8)

Lemma 1 (Schur complement). For matrices𝐴, 𝐵, and𝐶,𝐴+
𝐵
𝑇
𝐶𝐵 < 0 equals

[

𝐴 𝐵
𝑇

𝐵 −𝐶
−1] < 0 or [

−𝐶
−1

𝐵

𝐵
𝑇

𝐴

] < 0. (9)

3. Main Results

In this section, a fault detection observer will be designed
based on the Lyapunov stability theory. A sufficient condition
for the stability of the system is obtained by the linear matrix
inequalities.
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Theorem2. The error system (6) is quadratically stable if there
exist matrices 𝑃 > 0, 𝑄 > 0, and 𝑅 > 0 with appropriate
dimensions satisfying the following inequality:

𝑊

=(

𝑊


11
𝑊12 𝑊13 𝑊14 𝑊15

∗ 𝑊


22
0 𝑊24 𝑊25

∗ ∗ 𝑊


33
0 𝑊35

∗ ∗ ∗ 𝑊


44
𝑊45

∗ ∗ ∗ ∗ 𝑊55

)< 0, (10)

where

𝑊


11
= 𝛼(𝐴 + 𝐵𝐾)

𝑇
𝑃𝐴 + 𝛼𝐴

𝑇
𝑃 (𝐴 + 𝐵𝐾) − 𝑃 + 𝑁𝑄,

𝑊12 = 𝛼𝐴
𝑇
𝑃 (𝐴 + 𝐵𝐾) − 𝛼𝐴

𝑇
𝑅𝐶,

𝑊13 = (𝐴 + 𝐵𝐾)
𝑇
𝑃𝐴𝑑 + 𝛼𝐴

𝑇
𝑃𝐴𝑑,

𝑊14 = 𝛼𝐴
𝑇
𝑃𝐴𝑑,

𝑊15 = [(𝐴 + 𝐵𝐾)
𝑇
𝑃 √2𝛼𝐴

𝑇
𝑃 √2𝛼𝐴

𝑇
𝑃 0 0 0] ,

𝑊


22
= 𝑁𝑄 − 𝑃,

𝑊24 = (𝐴 + 𝐵𝐾)
𝑇
𝑃𝐴𝑑 − (𝑅𝐶)

𝑇
𝐴𝑑,

𝑊25 = [0 0 0 (𝐴 + 𝐵𝐾)
𝑇
𝑃 − (𝑅𝐶)

𝑇
0 0] ,

𝑊


33
= −

2

(1 + 𝑁)𝑁

𝑄,

𝑊35 = [0 0 0 0 𝐴
𝑇

𝑑
𝑃 0] ,

𝑊


44
= −

2

(1 + 𝑁)𝑁

𝑄,

𝑊45 = [0 0 0 0 0 𝐴
𝑇

𝑑
𝑃] ,

𝑊55 = diag {−𝑃, −𝑃, −𝑃, −𝑃, −𝑃, −𝑃} ,

𝛼 = √𝛼 (1 − 𝛼),

𝑅 = 𝐿
𝑇
𝑃.

(11)

Proof. We choose the following Lyapunov function:

𝑉 (𝑘) = 𝑉1 (𝑘) + 𝑉2 (𝑘) . (12)

where

𝑉1 (𝑘) = 𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒𝑥 (𝑘) + 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘) ,

𝑉2 (𝑘) =

𝑁

∑

𝑖=1

𝑘−1

∑

𝑙=𝑘−𝑖

{𝑒
𝑇

𝑥
(𝑘) 𝑄𝑒𝑥 (𝑘) + 𝑥

𝑇
(𝑘) 𝑄𝑥 (𝑘)} .

(13)

Calculate the difference of (12) along system (6); we have

𝐸Δ𝑉1 (𝑘) = 𝑒
𝑇

𝑥
(𝑘 + 1) 𝑃𝑒𝑥 (𝑘 + 1) + 𝑥

𝑇
(𝑘 + 1) 𝑃𝑥 (𝑥 + 1)

− 𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒𝑥 (𝑘) − 𝑥

𝑇
(𝑘) 𝑃𝑥 (𝑘)

= 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶 + 𝐵𝐾)

𝑇
𝑃 (𝐴 − 𝐿𝐶 + 𝐵𝐾) 𝑒𝑥 (𝑘)

+ 𝛼𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶 + 𝐵𝐾)

𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝑒
𝑇

𝑥
(𝑘) (𝐴 − 𝐿𝐶 + 𝐵𝐾)

𝑇
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

+ 𝛼 (1 − 𝛼) 𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃 (𝐴 − 𝐿𝐶 + 𝐵𝐾) 𝑒𝑥 (𝑘)

+ 𝛼
2
𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃 (𝐴 − 𝐿𝐶 + 𝐵𝐾) 𝑒𝑥 (𝑘)

+ 𝛼

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴𝑥 (𝑘)

+

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

− 𝑒
𝑇

𝑥
(𝑘) 𝑃𝑒𝑥 (𝑘)

+ 𝑥
𝑇
(𝑘) (𝐴 + 𝐵𝐾)

𝑇
𝑃 (𝐴 + 𝐵𝐾) 𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) (𝐴 + 𝐵𝐾)

𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝑥
𝑇
(𝑘) (𝐴 + 𝐵𝐾)

𝑇
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

+ 𝛼 (1 − 𝛼) 𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃 (𝐴 + 𝐵𝐾) 𝑥 (𝑘)

+ 𝛼
2
𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑥 (𝑘)

+ 𝛼𝑥
𝑇
(𝑘) 𝐴
𝑇
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

+

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃 (𝐴 + 𝐵𝐾) 𝑥 (𝑘)

+ 𝛼

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴𝑥 (𝑘)
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+

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖) 𝐴

𝑇

𝑑
𝑃𝐴𝑑

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖)

− 𝑥
𝑇
(𝑘) 𝑃𝑥 (𝑘) .

(14)

According to Jensen’s inequality, we have

𝐸Δ𝑉2 (𝑘) =

𝑁

∑

𝑖=1

{

𝑘

∑

𝑙=𝑘+1−𝑖

𝑒
𝑇

𝑥
(𝑙) 𝑄𝑒𝑥 (𝑙)

−

𝑘−1

∑

𝑙=𝑘−𝑖

𝑒
𝑇

𝑥
(𝑙) 𝑄𝑒𝑥 (𝑙)

+

𝑘

∑

𝑙=𝑘+1−𝑖

𝑥
𝑇
(𝑙) 𝑄𝑥 (𝑙) −

𝑘−1

∑

𝑙=𝑘−𝑖

𝑥
𝑇
(𝑙) 𝑄𝑥 (𝑙)}

=

𝑁

∑

𝑖=1

{𝑒
𝑇

𝑥
(𝑘) 𝑄𝑒𝑥 (𝑘) − 𝑒

𝑇

𝑥
(𝑘 − 𝑖) 𝑄𝑒𝑥 (𝑘 − 𝑖)

+ 𝑥
𝑇
(𝑘) 𝑄𝑥 (𝑘) − 𝑥

𝑇
(𝑘 − 𝑖) 𝑄𝑥 (𝑘 − 𝑖)}

≤ 𝑁𝑒
𝑇

𝑥
(𝑘) 𝑄𝑒𝑥 (𝑘) + 𝑁𝑥

𝑇
(𝑘) 𝑄𝑥 (𝑘)

−

2

(1 + 𝑁)𝑁

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖) 𝑄

𝑁

∑

𝑖=1

𝑒𝑥 (𝑘 − 𝑖)

−

2

(1 + 𝑁)𝑁

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖) 𝑄

𝑁

∑

𝑖=1

𝑥 (𝑘 − 𝑖) .

(15)

Substituting 𝐸Δ𝑉1(𝑘) and 𝐸Δ𝑉2(𝑘) into (12), we have

𝐸Δ𝑉 (𝑘) = 𝐸Δ𝑉1 (𝑘) + 𝐸Δ 2𝑉 (𝑘)

= 𝑍
𝑇
(𝑘)𝑊𝑍 (𝑘) ,

(16)

where

𝑍 (𝑘) = [𝑥
𝑇
(𝑘) 𝑒
𝑇

𝑥
(𝑘)

𝑁

∑

𝑖=1

𝑥
𝑇
(𝑘 − 𝑖)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑥
(𝑘 − 𝑖)]

𝑇

,

𝑊 = (

𝑊11 𝑊12 𝑊13 𝑊14

∗ 𝑊22 0 𝑊24

∗ ∗ 𝑊33 0

∗ ∗ ∗ 𝑊44

),

𝑊11 = (𝐴 + 𝐵𝐾)
𝑇
𝑃 (𝐴 + 𝐵𝐾)

+ 𝛼(𝐴 + 𝐵𝐾)
𝑇
𝑃𝐴 + 2𝛼 (1 − 𝛼)𝐴

𝑇
𝑃𝐴,

+ 𝛼𝐴
𝑇
𝑃 (𝐴 + 𝐵𝐾) + 2𝛼

2
𝐴
𝑇
𝑃𝐴 − 𝑃 + 𝑁𝑄,

𝑊22 = (𝐴 − 𝐿𝐶 + 𝐵𝐾)
𝑇
𝑃 (𝐴 − 𝐿𝐶 + 𝐵𝐾) − 𝑃 + 𝑁𝑄,

𝑊33 = 𝐴
𝑇

𝑑
𝑃𝐴𝑑 −

2

(1 + 𝑁)𝑁

𝑄,

𝑊44 = 𝐴
𝑇

𝑑
𝑃𝐴𝑑 −

2

(1 + 𝑁)𝑁

𝑄,

(17)

and𝑊12,𝑊13,𝑊14, and𝑊24 are the same as in (10).
According to the Lyapunov stability theory, the error

system is stable if

𝑊 < 0. (18)

According to Lemma 1, (18) is equivalent to

𝑊

=

(

(

(

(

(

(

(

𝑊


11
𝑊12 𝑊13 𝑊14 𝑊



15

∗ 𝑊


22
0 𝑊24 𝑊



25

∗ ∗ 𝑊


33
0 𝑊



35

∗ ∗ ∗ 𝑊


44
𝑊


45

∗ ∗ ∗ ∗ 𝑊


55

)

)

)

)

)

)

)

< 0, (19)

where

𝑊


15
= [(𝐴 + 𝐵𝐾)

𝑇
√2𝛼𝐴

𝑇
√2𝛼𝐴

𝑇
0 0 0] ,

𝑊


25
= [0 0 0 (𝐴 − 𝐿𝐶 + 𝐵𝐾)

𝑇
0 0] ,

𝑊


35
= [0 0 0 0 𝐴

𝑇

𝑑
0] ,

𝑊


45
= [0 0 0 0 0 𝐴

𝑇

𝑑
] ,

𝑊


55
= diag {−𝑃−1, −𝑃−1, −𝑃−1, −𝑃−1, −𝑃−1, −𝑃−1} .

(20)

We set 𝑅 = 𝐿
𝑇
𝑃 and multiply diag{𝐼, 𝐼, 𝐼, 𝐼, 𝑃, 𝑃, 𝑃, 𝑃, 𝑃}

on both sides of (19). Then we can get inequality (10). The
proof is completed.

Remark 3. As is well known, the randomly occurring phe-
nomena have been extensively investigated in recent years. In
this paper, we consider the case where the communication
environment is affected by some factors in a probabilistic way
described by Bernoulli random variable 𝛼𝑘.

Remark 4. In practice, many systems have stochastic Marko-
vian jumping dynamics [11–15]. Future research efforts will
be devoted to the fault detection for wireless sensor networks
with stochastic Markovian jumping dynamics.

4. An Illustrative Example

In this section, we will provide a numerical example to
illustrate the effectiveness of the theoreticalresults.
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Figure 1: System residual signal with fault.

Example 1. Consider system (1), where

𝐴 = (

0.4985 0.4849 −0.7260

0.4550 0.4441 1.1011

0.2396 0 0.2662

) ,

𝐴𝑑 = (

−0.2807 0.0121 0

−0.0230 0.0750 0.0387

−0.0448 0.0944 0.1803

) ,

𝐵 = (

0.0883

0.0544

0.0835

) ,

𝐶 = (

2.3232 0.8912 0.0121

1.0563 0.6195 0.0157

0.0750 0.0254 0.8712

) ,

𝐴 = (

−0.0102 0.0239 0.0101

0 −0.1018 0.1201

0.2120 −0.0349 0.0002

) ,

𝐾 = (275.7123 245.9043 −350.6332) .

(21)

We set 𝛼 = 0.2, and 𝑃, 𝑄, and 𝑅 can be obtained as

𝑃 = (

131.2345 28.2728 7.8883

28.2728 110.5035 −5.9995

7.8883 −5.9995 196.6286

) ,

𝑄 = (

15.7873 −0.0697 −0.0521

−0.0697 15.2671 0.1465

−0.0521 0.1465 15.3377

) ,

𝑅 = (

−46.0191 −51.8770 71.2995

170.4173 158.7889 −128.9558

−89.4728 102.9384 27.9875

) .

(22)
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Figure 2: System fault in different states.

Moreover, we have

𝐿 = (

−0.2917 1.0973 −0.9504

−0.3751 1.1201 1.1865

0.3629 −0.6657 0.2167

) . (23)

When fault happens at sampling time 30, we can see that
residual signal rises quickly, which indicates that fault occurs,
as shown in Figure 1. In addition, we can clearly see different
fault happens in every state from Figure 2.

5. Conclusion

In this paper, we discussed the fault detection problem
for WiNCS with both stochastic uncertainties and multiple
time delays. By adopting the Lyapunov method, a sufficient
condition for the stability of the system is provided, and the
gain of observer is also acquired. Finally, simulation results
show the effectiveness of theoretical results.
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