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We are concerned with the following nonlinear three-point fractional boundary value problem: DJ, u (t) + Aa (¢) f (t,u(t)) = 0,
0<t<lLu()=0andu(l) =pu (q), wherel <a<2,0<f<1,0<n<1, Dg‘+ is the standard Riemann-Liouville fractional
derivative, a () > 0 is continuous for 0 < ¢ < 1, and f > 0 is continuous on [0, 1] x [0, 00). By using Krasnoesel'skii’s fixed-point
theorem and the corresponding Green function, we obtain some results for the existence of positive solutions. At the end of this

paper, we give an example to illustrate our main results.

1. Introduction

Fractional differential equations have been of great inter-
est recently. With the development of nonlinear science,
the researchers found that nonlinear fractional differential
equations could describe something’s changing rules more
accurately. Therefore, it is significant to study nonlinear
fractional differential equations to solve the nonlinear prob-
lems. Recently, many researchers paid attention to existence
and multiplicity of solution of the boundary value problem
for fractional differential equations with different boundary
conditions, such as [1-10]. Bai and L [1] investigated the
existence and multiplicity of positive solutions for nonlinear
fractional boundary value problem:

Dy,u(t)+ f (t,u(t)) =0,
u(0) =u(l)=0,

0<t<l,
ey

where 1 < a < 2 is a real number, Dy, is the standard
Riemann-Liouville fractional derivative, and f : [0,1] x
[0,00) — [0,00) is continuous. By means of some fixed-
point theorems on cone, some existence and multiplicity

results of positive solutions are obtained. Agarwal et al. [2]

investigated the existence of positive solutions for the singular
fractional boundary value problem:
Dy,u(t)+ f(t,u(t),Du(t)) =0, 0<t<]l,

(2)
u(0) =u(l) =0,

where 1 < & < 2, > 0 are real numbers, f is positive, and
Dy, is the standard Riemann-Liouville fractional derivative.
By means of a fixed point theorem on cone, the existence
of positive solutions is obtained. Delbosco and Rodino [3]
investigated the nonlinear Dirichlet-type problem:

XDy y) () = f(y (%),
y(0) =y (1) =0.

l<a<2, 0<x<1,

3)

They proved that if f(y) is a Lipschitzian function, then the
problem has at least one solution y(x) in a certain subspace
of C[0, 1]. In this paper, we study the following three-point
fractional boundary value problem. Consider

Dg,u(t) +Aa(t) f (t,u(t)) =0,
Bu(n) =u(1),

0<t<l,
(4)
u(0) =0,
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where1 < a < 2,0 < 8 < 1,0 < 5 < 1, Dy, is the
standard Riemann-Liouville fractional derivative, a(t) > 0
is continuous, and f > 0 is continuous on [0, 1] x [0, co).
By using Krasnoesel'skii’s fixed-point theorem, we get the
existence of at least one positive solution.

2. Background Materials and Preliminaries

For convenience of the readers, we present here the necessary
definitions from fractional calculus theory. These definitions
can be found in the recent literature [1-5].

Definition 1. The fractional integral of order « > 0 of a
function y : (0,00) — Ris given by

Iy (1) = ﬁ L (t— 9"y (s)ds, )

provided that the right side is pointwise defined on (0, 00).

Definition 2. The fractional derivative of order &« > 0 of a
function y : (0,00) — Ris given by

o) e

0 (t _ S)tX—VH—l
where n = [«] + 1, provided that the right side is pointwise
defined on (0, 00).

Dy, y(t) = n=[a] +1,

(6)

Lemma 3. Let « > 0, if we assume u € C(0,1) N L(0, 1), then
the fractional differential equation Dy, u(t) = 0 has

u(t) = Ct*  + C " - Cpt* N,
(7)

C,eR, i=12,...,N

as unique solutions.

Lemma 4. Assume that u € C(0,1) N L(0, 1) with a fractional
derivative of order o« > 0 that belongs to C(0,1) N L(0, 1). Then

D5 u(t)=u(t)+ Ct* " + Gt 2+ Ct*™ (8)
forsomeC; € R,i=1,2,...,N.

Definition 5. Let E be areal Banach space. A nonempty closed
convex set K  E is called cone of E if it satisfies the following
conditions:

(1) x € K, 0 > 0 implies ox € K;
(2) x € K, —x € K implies x = 0.

Lemma 6. Let E be a Banach space and let K C E be a cone
in E. Assume that Q, and Q, are open subsets of E with 0 €

Q,Q, cQ,LetT: Kn(Q,\Q,) — K bea completely
continuous operator. In addition, suppose that either

HD [Tull < llull,Yu € K n0oQy and |Tull > |ull, Yu €
KnoQ, or

Abstract and Applied Analysis

(H2) |Tull = llul,Yu € K n0Q, and |Tull < Jul, Yu €
KNnoQ,

holds. Then T has a fixed point in K N (Q, \ Q,).

In the following, we present the Green function of
fractional differential equation boundary value problem.

Lemma 7 (see [4]). Let y € C[O0, 1], then the boundary value
problem

Dg,u(t)+y () =0,

Pu(n) =u(1)

0<t<l,

)
u(0) =0,

has a unique solution

1
u(t) = JO G(t,s) y(s)ds, (10)

where
r([t(l _S)]zx—l —ﬁta_l(ﬂ _s)tx—l
_ (t _ S)oc—l (1 _ ﬁrltx—l))
x((1 = B T())
0 <s<min{t,n} <1
[t(l _ S)]oc—l _ (t _ S)oc—l (1 _ /3}104—1)
1-Bn )T
0< n(g S /:715 < )1; “ (1)
[t(l _ S)]tx—l _ ljt(x—l(rl _ S)tx—l
(1= pn*")T ()
0<t<s<ny<l
[t(1-9)]*"
(- BT (@)
0 <max{t,n} <s< 1.

Lemma 8. The function G(t,s) defined by (11) satisfies
G(t,s) > 0 for t,s € (0,1).

>

G(t,s) = 1

>

Proof. (1) For 0 < s < min{t,y} <1,
G(t,s)
) [t(l _ s)]oc—l _ ﬁta_l(’/l _ S)[x—l _ (t _ S)a—l (1 _ ﬁr]tx—l)
(1-By")T (a)

(12)

Let F(t,5,1) = [t(1 = )] = Bt (= ) = (¢ = "1 -
Br™ ). There is

OF (t,s,1)
on

=B @a- 1) (-9 + (-1 (-9 By
_ ﬁ (06 _ 1) [(t _ S)(x—lﬂoc—Z _ toc—l(rl _ s)tx—z]
< ﬁ ((X _ 1) [t(x—lrl(x—Z _ ta_l(?] _ S)zx—z]

— ﬂ (OC _ 1) t{x—l [rla—Z _ (’7 _ S)a—Z] .
(13)
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With 0 < B < 1,1 < a < 2, there is 0F/0y < 0. Hence,
function F(t, s, #) is monotonically decreasing in #. With 0 <
n<1,F(t,s,n) > F(t,$,Nmin = F(t,s,1). Let y§ = 1, there is
F(t,s,1)
A=) =BT A=) k-9 (1= )
(1-p){ira-91"" = -9}

(1-B) [t-ts)*" =t —)*"].

(14)

With0 <s<t< 1,1 <« <2 wehave(t—ts)* ' =(t—s)*" >
0. With 1 — 8 > 0, there is F(t,s,1) > 0, then F(t,s,7) >
F(t,s, 1) > 0, there is G(t, s) > 0.

(2)For0O<n<s<t<l,

[t(l _ s)]oc—l _ (t _ S)oc—l (1 _ ﬁ”a—l)
(1= )T () '
Let E(t,s,5) = [t(1-5)]"" = (t—s)*"' (1= ™ '); it is obvious

that function F(t, s, 77) is monotonically increasing in #, when
n=0,

G(t,s) = (15)

F(t,$, 1) pin = F (t,5,0)
= [t1 -9 =t -5 (16)
=(t—ts)* = (t—s)* .
With0 < s <t <1, 0<a-1< 1,thereis (t—ts)*" >

(t — s)*'; we have F(t, s, n) > F(t,s,0) > 0, then G(t, s) > 0.
(B)For0<t<s<py<l,

[t(l _ S)]oc—l _ ﬁt(x—l(n _ S)ot—l
(1= ") T (o)

Let F(t,s,1) = [t(1—5)]*"" = Bt (n—5)*"", then F(t, s, 77) is
monotonically decreasing in 7,

G(t,s) = 17)

F(t,s,n) ., = F(ts,1)
= [t -9 =BT a-)* T (8)
= (1-B) [t(1 - )"
With0 < B <1, 0 <t <s < 1,thereis F(t,s,1) > 0, then

F(t,s,n) > F(t,s,1) > 0, hence G(¢, s) > 0.
(4) For 0 < max{t,ny} <s<1,

a—1
G(ts) = =9 (19)

(1= Bn*)T (@)

Therefore, G(t,s) > 0 for t,s € (0,1). The proof is complete.
O

Lemma 9. G(t,s) < G(s,s) for t,s € [0, 1].

Proof. To get G(t,s) < G(s, s), firstly, we prove the following
inequality:
- 1-s*
S >
t-s5"" (1-9)"

(20)

wherea=a—1,0 <s <t < 1. Let f(t) = (t* —s")/(t —s)",
then

Pom at* Mt —s)" —a(t* —s*) (t—s)""
f (t) - (t _ S)za
a—1
R R e
a—1
_ aé: : j;za . Sa—l _ tafl) )

With 1 < a < 2, thereisa — 1 < 0; with s < t, there is s* ™! >

%71 then f’(t) > 0. It means that f(t) is monotonically
increasing in t, then f(t) < f(1); we have

1% —s* - 1-s%
t-9)"" 1-9"

(22)

Here we prove G(t, s) < G(s, s).
(1) For 0 < s <minft,n} <1,
G (t,s)
[t =917 = Bt = 9™ = (6= 9" (1 pr*)
(1-By")T(a)

- [S(l _S)]OL—I _ﬁs(x—l(n_ S)OL—I
(1= ") T (o) '

>

G(s,s)

(23)
With (1 - [37;""1)1“(04) > 0, G(t,s) < G(s, s) is equivalent to
(tt_;:)a (-9 - B-9]<1-pp*  (24)

or

(" =s)[A=9"-B-9)"]<(1=p1") -9 (25

(a) F)ors =t, (t"=s[(1-9)"-By—-9"1=0-By")(t-
)% =0;

(b)fors =t =n=1,0" -1 -3s)"-Bn-19°"=
(1= Br*)(t - )" =05

(c)fors=n<t,
(" =) [(1=9)" = Bln=9)"] = (" =n") (1= 1),
(26)
(1= Br") (¢ =" = (1= pr*) (t = )",
ift = n (" - sH(1-9" - -9 = 1 -

Bt - s)* = 0;if t > 1, from (22), we have (t —4*)/
(=" < (=11 - < 1= pr")/(1-n%



(d)f0r0<s<t<10<s<11<11f(1 s) - B-s)" <
0; it is obvious that (t* — s")[(1 —s)" — B(n - 9)"] <
(1 =Byt =) I (1 - 5)* = Bl —5)* > 0, by (22),
there is (7* —s%)/(n —s)* < (1 = s%)/(1 - 5)*; then

1-s%
_ a I a _ a . 2
Consider

t? -

(-9

(1= )" = By = 5)"]

(1 _ S)a (TI - S) (28)

=1-p" - (1-p)s*
<1-p4q.

It means that G(t, s) < G(s, s) holds.
(2)For0<n<s<t<l,

G(t s) B [t(l _S)]afl _ (t _S)Otfl (1 _‘Bnlel)
5 - — a1 I,, >
(1= B )T (o) 09)
a-1
Glss) = [s(1 - 5)]

With (1 - f4* )I(a) > 0, G(t,s) < G(s,s) is equivalent to
[t(1-9))" = (t-9)"(1- ") < [s(1-9)]"  (30)

or
(t"=s") (1 -9)" < (t-9)"(1-py"). (31

From (22), we have ((t* — s*)/(t — s)*)(1 — 5)* < 1 — s% with
N<s0<pf<1l,wehavel —s* <1-#4"<1- By then
(= s/t =)D —5)* <1 - By with s < t, there is

(" =s")A-9)"<@t-9)"(1-p1"). (32)

It means that G(t, s) < G(s, s) holds.
(3)For0<t<s<n<l,

[t(l _ S)]oc—l _ ﬁta_l(f’] _ S)a—l
(1= pr* )T ()

[s(l_s)al ﬁsa 1(}1 S)al
(1= Br!)T (a) '

With (1 - ﬂq“"l)F((x) > 0, G(t,s) < G(s, s) is equivalent to

[t(1 - )] = Bt (- 5)* < [s (1 = 9)]* = Bs*(n—5)"  (34)

G(t,s) =
(33)
G(s,$) =
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or
(" =) A =9 < B(t"=s") (n—9)". (35)

With0 < B < 1,s <7, thereis B - 5)* < (n—3s)" < (1-9)%
with t < s, there is

(" =s") A =-9)" < B(t"=s") (- 9)". (36)

It means that G(t, s) < G(s, s) holds.
(4) For 0 < max{t,n} <s<1,

_ a-91!
R (e I
. (37)
G(ss) = [s(1 - s)]

(1=Bn")T ()
It is obvious that G(t, s) < G(s, s). The proof is complete. [

Lemma 10. G(t,s) > q(k)G(s,s) for t,s € [1/k,1 — (1/k)],
where k > 2 is an integer and

- B) [ = (/)X - (1= 2/k)*
(1/4)%" ’

(1- B) (1/k>*
(1/4)7"

(k - l)a—l/kz(zx—l) }

-
q (k) = min

(/9%
(38)

Proof. From (11), we have

[s(1 —5)]*" = Bs* (- 5)*!

<
(1—/571"‘ DRI
[s1- 91" )

(1= B )T (@)

G(s,s) =

It is obvious that [s(1-s)]*'/(1 - ,817‘""1)1"(04) >

([s(1=9]"" - Bs*'y-s*NH/A0 - By* (), for
t,s € [1/k,1 - (1/k)],

s -9
maxG (s, s) = ‘(1 — B* I («) 2

(40)

_ e

(1=Br )T ()
(1) For 1/k < s < minf{t,n} < 1 - (1/k), let
E(t,sn) =[tQ -] =Bt (- 9"

(41)

_ (t_s)zx—l (1 _/3’10c—1).
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By Lemma 8, for = 1,
F(t,s) = F(t,s, M = F (&5, 1)
_ [t(l _ s)]tx—l _ ﬁttx—l(l _ s)tx—l

—(t-9" (1-p)

(=P {ra -9 - -9} @
=(1-p) [t -t =t —9)*"],
oOF o a "
5. = (=B a=-D[t-9"" =71 -9"7].
With1l < a« € 2,0 < s <t <1, then (t—s)""2 —t"“l(l —

$)*2 > 0; with 0 < 8 < 1, 9F/ds > 0. It means that F(t, s) is
monotonically increasing in s. Similarly,

81_3 _ a2 =2
E—(l—ﬁ)(oc—l)[(t—ts) (1-s)-(t-9""?] <0.
(43)

It means that F(t, s) is monotonically decreasing in t. There-
fore

F(t,s) > minF (t,s) = F(t, S)'t=17(1/k),s=1/k

Saem0- (-3
minG (t, s)
(- [(am - (1) - - @/r)y]
i (1B )T @)

minG(t,s) (1= B) [(1 = (/K" — (1 - 2/k)*"]
(1/4)*" '

>

maxG (s,s)
(44)

(2)Forl/k <n<s<t<1-(1/k),let
F(t,s,n) = [t(1-9)]"" =t - (1-pp*").  (45)
By Lemma 8, for y = 0,

F(t,s) = F(t,s, )., = F(t,5,0)

= (1= = (-9

— (t _ ts)ot—l _ (t _ S)a—l) (46)

oF 2 e -
—=(@-D[t-9"? -t 1-9"?] >0
Os

It means that F(t, s) is monotonically increasing in s

@_ _ _ola-2 92 4
5 = @-D[1-97 T - -9 <0 (47)

It means that F(t, s) is monotonically decreasing in ¢

F(t,s) > minF (t,s) = F(t, s)|t:17(1/k)’s:(l/k)

1 2(a—1) 2 a—1
-(-5) -(-5)

(1= B) [ = /Ry - (= @/k)*"]
(1= BT (a)

minG(t,s) (1= B) [(1 - (1/k)** ™ — (1 - 2/k)*"]
(1/4)*7 '

minG (t,s) =

>

maxG (s,s)
(48)

(3)For1/k <t <s<n<1-(1/k),let
F(t,s,n) =[tQ -] =Bt ' (n-9)"". (49
By Lemma 8, for = 1,

F(t,s) =F(t,s,n), =F(ts1)

_ [t(l _ S)]ocfl _ ‘Btocfl(l _ S)ocfl
— (1 _ ﬁ) [f(l _ S)]oc—l’ (50)

aﬁ_ a—1 =2 .
g_(oc—l)t (B-1)(1-5)""<0;

then F(t, s) is monotonically decreasing in s. Consider
aa_[: =(@-1)(1-B) "1 -9"" >0 (51)

then F(t, s) is monotonically increasing in t. Therefore,

1-8

t=1/ks=1-(1/k) _ f2(a-1)’

(1-B) (1127

F(t,s) > minF (t,s) = F(t, s)|

minG (t,s) = (1 — ﬁﬂ"‘_l) Ta) (52)
minG (6s) _ (1-p) /K™
maxG (s, s) (1/4)*! ’
(4) For 1/k < max{t,n} <s<1-(1/k),let
F(t,s) = [t(1-s)]*"" (53)

It is obvious that F(t, s) is monotonically increasing in t and
monotonically decreasing in s; then

F (t, S) > min F (t, 5) = F(t, S)|t:1/k,$:1—(l/k)
1 1 a—1
)

(/= ()™
(1= )T

(54)

we have

minG (¢, s) = (55)




6
there is
minG (¢,s) (k- 1)a—1/k2(“71) -
maxG (s,s) (1/4)% 1 .
Let
(k) = min (1-B) [(1 = (/)™ - (1 - 2/k))*]
q _ (1/4)0‘_1 >
a-pam*?
(1/4)*7"
T ]

(57)

Therefore, G(t,5)/G(s, s) = min G(¢t, s)/ max G(s, s) = g(k) #
0.

The proof is complete. O

We consider the Banach space X = C[0, 1] equipped with
standard norm [Jul| = maxg;|u(t)], u € X. We define a
cone P by

pP= {ueX:u(t)ZO,te[O,l],

(58)
g in (t) = q (k) IIuII} :
Define an integral operator T : P — X by
1
(Tu)(t) = A J G(t,s)a(s) f (s,u(s))ds,
0 (59)

0<t<l1l, wueP

Lemma 11. It holds the following.

(1) T: P — P iscompletely continuous.

(2) u(t) is a positive solution of the fractional boundary
value problem (4) if and only if u(t) is a fixed point of
the operator T in cone P.

Proof. Foru € P,t € [1/k,1 — (1/k)], by Lemma 10, G(¢, s) >
q(k)G(s,s); for t,s € [1/k, 1 — (1/k)],

Tu(t) =\ IIG(t,s)a(s)f(s,u(s)) ds
0
1
> Aq (k) L G(s,s)a(s) f (s,u(s))ds

=Aq(k) max J-l G(t,s)a(s) f (s,u(s))ds

1/k<t<1-1/k Jo
=q (k) | Tu ().
(60)

It is obvious that min, <, (Tu)(t) = q(k)|Tul, TP < P.
Thus TP ¢ P.In addition, standard arguments show that T'is
completely continuous.
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(2) It is obvious that u(t) is the positive solution of BVP (4) if
and only if

u(t):ALlG(t,s)a(s)f(s,u(s))ds, 0<t<l1. (6])

It can be proved by the definition of integral operator T. [J

3. Main Results

We denote some important constants as follows:

A= JIG(s,s)a(s)q(k)ds,

0

1
B:J G (s,s)a(s)ds,
0

F, = lim sup maxw,

u—0t 0<t<1 u (t)

(62)

fo = lim inf min fEu®) ,

u— +00 ost<st  u(t)

. ftu(t)

Foo = lim supmax=—"
foo = lim inf min M

U — +00 o<t<t  u(t)

Here we assume that 1/Af, = 0if f,, — 00, 1/BF, = o0 if
F, — 0,1/Af, =0if f; - oo,and1/BF = c0ifF,, — 0.

Theorem 12. Suppose that Af., > BF,, then for each A €
(1/Af,, 1/BF,), BVP (4) has at least one positive solution.

Proof. We choose ¢ > 0 sufficiently small such that (F, +
€)AB < 1. By the definition of F;, we can see that there exists
I, > 0, such that f(t,u(t)) < (F, + €)u(t) for 0 < u < I;. For
u € P with ||lu]| =[;, we have

1
ITu @) = A L G(s,s)a(s) f (su(s)) ds

1
< AJ G(s,s)a(s)(Fy+e)u(s)ds
0
1 (63)
<A(Fyre)lul [ Ge9ads
0
=AB (Fo + 5) [l
< ull.
Then we have ||Tu| < [lu. Thus if welet Q; = {u € X : [ull <

1,}, then |[Tu| < |lu|l for u € P N 0Q,. We choose § > 0 and
c € (0,1/4) suchthat A(f,,—6)A > 1. There exists [, > I, > 0,
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such that f(t,u) > (f,, — 8)u for u > I,. Therefore, for each
u € P with [lu]| = 1,, we have

1
ITu ()] = A jo G(s,5)a(s) f (5,u(s)) ds

2AJIG(s,s)a(s)(foo—6)u(s)d5

. (64)
> A(foo = 6) llull J G(s,s)a(s)q(k)ds

> A (foo =) A |ul

> [lul .
Thus if we let Q, = {u € E : |u| < L}, then 51 C
Q, and [[Tull = |ul for u € P n 0Q,. Condition (Hl)

of Krasnoesel’skii’s fixed point theorem is satisfied. So there
exists a fixed point of T' in P. This completes the proof. [

Theorem 13. Suppose that Af, > BF,,, then for each A €
(1/Afy, 1/BE,,), BVP (4) has at least one positive solution.

Proof. Choose € > 0 sufficiently small such that (f, - €)AA >
1. From the definition of f;,, we see that there exists [, > 0,
such that f(t,u) > (fy —eufor0 < u < I,. If u € P with
lul = 1,, we have

1
ITu @) = A L G(s,s)a(s) f(s,u(s))ds

> A (fy &) lull A (65)

2 [ull.

Let Q; = {u € X : |ull < L}; then we have [[Tu| > [ul
foru € PN oQ,. Choose § > 0,¢ € (0,1/4); then we have
MF, + 0)A < 1. There exists [, > [, > 0, such that f(t,u) <
(Fy + 8)u for u > I,. For each u € P with |u| = I,, we have

1
ITu ()] = A jo G(s,5)a(s) f (5,u(s)) ds

SAJIG(s,s)a(s)(FOO+8)u(s)ds

1 (66)
<A (Ey + ) lul | Gs9)a(ads

< M (Foy +8) Al

< .
Let Q, = {u € E : |ul|l < L}; then 51 c Q,, and
we have |Tul| < |ull for u € P n 0Q,. Condition (H2)

of Krasnoesel’skii’s fixed-point theorem is satisfied. So there
exists a fixed point of T' in P. This completes the proof. [

4. An Example

Example 1. Consider the following three-point fractional
boundary value problem:

Du(t)+ Af (bu(t) =0, 0<t<]1,
| (67)

u(0) =0, u(l)= %u<§>,

where f(t,u(t)) = ((t + 1)(20142° + u)/(1? + 1)) + u(sinu +
1), a(t) = 1.
By calculations,

- [S(l _ S)]a—l _ ﬁs(x—l(q _ S)ot—l
(1= BT (a)
0<s=t<ny<l,
[s(1-9)]*"
(1= )T (@)’

0<n<t=s<1,

>

G(s,8) = 3

1 (s =) = s (- s)* !
J G(s,s)ds = J (=BT @) ds

b s(1-8)!
[ asenra®
Jl Q-9
o (1= BT (a)
[ B (- 9"

o (- pr )T @

1
1-(1/2)(1/3)'1(3/2)

« “1 [s(1 — )]"2ds

0

0
1/3

_J 151/2(1’]—5)1/2615}
0o 2

= 0.58832.
(68)

Let k = 10, then
(1= B) [ = /Ry = (1= @/k)*"]
(1/4)*" '

(1-p) (1/k** "
(1/4)**

(k _ 1)a—1/k2(1x71)
(1/4)* '

q (k) min {

=0.00557,



8
(t+1) (201407 +1)
foo = lim inf min > +sinu+1
u— +00 0<t<1 us+1
=2014,
(t+1) (20141 +1)
Fy = lim sup max 3 +sinu +1
u— ot 0<t<1 us+1
=4.
(69)
Consider
1
A= J G(s,s)a(s)q(k)ds =0.00328, (70)
0
1
B= J G (s,s)a(s)ds = 0.58832. (71)
0

The condition Af,, > BF, is obtained. From Theorem 12,
we see that if A € (0.15138,0.42494), the problem (67) has
a positive solution.
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