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We introduce a class of Fourier multiplier operators𝑀𝑏 on n-complex unit sphere, where the symbol 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔). We obtained the

Sobolev boundedness of𝑀𝑏. Our result implies that the operators𝑀𝑏 take a role of fractional differential operators on 𝜕B.

1. Introduction

In this paper, we introduce a class of unboundedholomorphic
Fourier multipliers𝑀𝑏 on 𝑛-complex unit sphere.We further
study the boundedness of𝑀𝑏 on Sobolev spaces. Our results
generalize the theory of Fourier multipliers on Lipschitz
curves in C to 𝑛-complex unit sphere B𝑛. We refer the reader
to Gaudry et al. [1], McIntosh and Qian [2], and Qian [3, 4]
for further information on multipliers on Lipschitz curves.

Ourmotivation originates from the following example on
the unit sphere in C𝑛. The explicit formula of the Cauchy-
Szegö kernel is as follows:

𝐻(𝑧, 𝜉) =
1

𝜔2𝑛−1

1

(1 − 𝑧𝜉
󸀠

)

𝑛 . (1)

Let {𝑝
V
𝑘
} denote the orthonormal system in the space of

holomorphic functions in B𝑛. The following result is well-
known:

𝐻(𝑧, 𝜉) =

∞

∑

𝑘=0

𝑁𝑘

∑

V=1

𝑝
𝑘

V (𝑧) 𝑝
𝑘
V (𝜉), 𝑧 ∈ B𝑛, 𝜉 ∈ 𝜕B𝑛. (2)

See Theorem 1 and (16) below for details. Formally, (2) can
be seen as the special case of (4) below. Let 𝑆𝜔 be the sector
defined as

𝑆𝜔 = {𝑧 ∈ C : 𝑧 ̸= 0,
󵄨󵄨󵄨󵄨arg 𝑧

󵄨󵄨󵄨󵄨 < 𝜔} . (3)

Assume that

(1) 𝑏 is holomorphic on 𝑆𝜔;
(2) 𝑏 is bounded near the origin;
(3) |𝑏(𝑧)| ≤ 𝐶|𝑧|

𝑠 for |𝑧| > 1.

We consider the function:

𝐻𝑏 (𝑧, 𝜉) =

∞

∑

𝑘=1

𝑏 (𝑘)

𝑁𝑘

∑

V=1

𝑝
𝑘

V (𝑧) 𝑝
𝑘
V (𝜉). (4)

If 𝑏(𝑧) ≡ 1, then (4) becomes (2). For 𝑠 = 0, Cowling andQian
[5] introduced a class of bounded holomorphicmultipliers on
𝐿

2
(𝜕B𝑛). In this paper, we consider the case 𝑠 ̸= 0. For this case,

𝑏 is unbounded on {𝑧 : |𝑧| > 1}. We prove that if 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔),

then

󵄨󵄨󵄨󵄨󵄨
𝐻𝑏 (𝑧, 𝜉)

󵄨󵄨󵄨󵄨󵄨
=

𝐶𝜇󸀠

𝛿 (], 𝜇󸀠)
󵄨󵄨󵄨󵄨󵄨
1 − 𝑧𝜉󸀠

󵄨󵄨󵄨󵄨󵄨

𝑛+𝑠
. (5)

See Theorem 5.
In Section 4, we introduce a class of Fourier multipliers

𝑀𝑏 with 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔), 𝑠 ̸= 0. Unlike the ones of Cowling and

Qian [5], our multipliers 𝑏 are unbounded on 𝑆𝜔. Take 𝑏(𝑘) =
𝑘

𝑠. Plancherel’s theorem implies that 𝑀𝑏 is not bounded
on 𝐿

2
(𝜕B𝑛). Hence for such 𝑀𝑏, we need to consider their

boundedness on some function spaces with higher regularity.
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Let 𝑟, 𝑠 ∈ [0,∞). We prove that if 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔),𝑀𝑏 is bounded

from Sobolev space𝑊𝑝,𝑟+𝑠
(𝜕B𝑛) to Sobolev space𝑊

𝑝,𝑟
(𝜕B𝑛),

1 < 𝑝 < ∞. Our result implies that the operators 𝑀𝑏

take a role of fractional differential operators on 𝜕B𝑛. See
Theorem 11.

The rest of this paper is organized as follows. In Section 2,
we state some basic preliminaries and notations which
will be used in the sequel. In Section 3, we estimate the
kernels generated by holomorphic multipliers 𝑏 ∈ 𝐻

𝑠
(𝑆𝜔).

The Sobolev boundedness of the operators 𝑀𝑏 is given in
Section 4.

Notations.U ≈ V represents that there is a constant 𝑐 > 0 such
that 𝑐−1V ≤ U ≤ 𝑐V whose right inequality is also written as
U ≲ V. Similarly, one writes V ≳ U for V ≥ 𝑐U.

2. Preliminaries and Notations

In this section, we state some preliminaries and notations
and refer the reader to Gong [6], Hua [7], and Rudin [8] for
further information.We use 𝑧 as a general element ofC𝑛; that
is, 𝑧 = (𝑧1, . . . , 𝑧𝑛), 𝑧𝑖 ∈ C, 𝑖 = 1, 2, . . . , 𝑛, 𝑛 ≥ 2. Denote
𝑧 = [𝑧1, . . . , 𝑧𝑛]. The notation 𝑧 is considered to be a row
vector. Denote by B𝑛 the open unit ball {𝑧 ∈ C𝑛

: |𝑧| < 1},
where |𝑧| = (∑

𝑛

𝑖=1
|𝑧𝑖|

2
)
1/2.The unit sphere inC𝑛 is denoted by

𝜕B𝑛 = S
2𝑛−1

= {𝑧 ∈ C
𝑛
: |𝑧| = 1} . (6)

The open ball centered at 𝑧 with radius 𝑟 will be denoted by
𝐵(𝑧, 𝑟). A general element on 𝜕B𝑛 is usually denoted by 𝜉.The
constant 𝜔2𝑛−1 involved in the Cauchy-Szegö kernel is the
surface area of 𝜕B𝑛 and is equal to 2𝜋

𝑛
/Γ(𝑛). For 𝑧, 𝑤 ∈ C𝑛,

we use the notation 𝑧𝑤
󸀠
= ∑

𝑛

𝑘=1
𝑧𝑘𝑤𝑘. The theory developed

in this paper is relevant to the radial Dirac operator

𝐷 =

𝑛

∑

𝑘=1

𝑧𝑘

𝜕

𝜕𝑧𝑘

. (7)

Now we state some basis knowledge of basic functions in
the space of holomorphic function in B𝑛 and some relevant
function spaces on 𝜕B𝑛. We refer to Hua [7] for details. Let 𝑘
be a nonnegative integer. We consider the column vector 𝑧[𝑘]

with components

√
𝑘!

𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!
𝑧

𝑘1

1
⋅ ⋅ ⋅ 𝑧

𝑘𝑛
𝑛
, 𝑘1 + ⋅ ⋅ ⋅ 𝑘𝑛 = 𝑘. (8)

The dimension of 𝑧[𝑘] is

𝑁𝑘 =
1

𝑘!
𝑛 (𝑛 + 1) ⋅ (𝑛 + 𝑘 − 1) = 𝐶

𝑘

𝑛+𝑘−1
. (9)

Let 𝑑𝑧 and 𝑑𝜎(𝜉) be the Lebesgue volume element of C𝑛

and the Lebesgue area element of 𝜕B𝑛, respectively. Define

𝐻
𝑘

1
= ∫

B𝑛

𝑧[𝑘]
󸀠

⋅ 𝑧
[𝑘]

𝑑𝑧,

𝐻
𝑘

2
= ∫

𝜕B𝑛

𝜉[𝑘]
󸀠

⋅ 𝜉
[𝑘]

𝑑𝜎 (𝜉) .

(10)

It is easy to prove that 𝐻𝑘

1
and 𝐻

𝑘

2
are positive definite Her-

mitian matrices of order𝑁𝑘. There exists a matrix Γ such that

Γ󸀠 ⋅ 𝐻
𝑘

1
⋅ Γ = Λ, Γ󸀠 ⋅ 𝐻

𝑘

2
⋅ Γ = 𝐼, (11)

where Λ = [𝛽
𝑘

1
, . . . , 𝛽

𝑘

𝑛
] is a diagonal matrix and 𝐼 is the

identity matrix. Set

𝑧[𝑘] = 𝑧
[𝑘]

⋅ Γ;

𝜉[𝑘] = 𝜉
[𝑘]

⋅ Γ.

(12)

Denote by 𝑝
𝑘

V (𝑧) the components of the vectors 𝑧[𝑘]. From
(11), we can see that

∫
B𝑛

𝑝
𝑘

V (𝑧) 𝑝
𝑘
𝜇
(𝑧)𝑑𝑧 = 𝛿V𝜇 ⋅ 𝛿𝑘𝑙 ⋅ 𝛽

𝑘

V ,

∫
𝜕B𝑛

𝑝
𝑘

V (𝜉) 𝑝
𝑘
𝜇
(𝜉)𝑑𝜎 (𝜉) = 𝛿V𝜇 ⋅ 𝛿𝑘𝑙.

(13)

The following theorem is well known.

Theorem 1. The system of functions

{

{

{

(𝛽
𝑘

])
−

1

2 𝑝
𝑘

] , 𝑘 = 0, 1, 2, . . . , ] = 1, 2, . . . , 𝑁𝑘

}

}

}

(14)

is a complete orthonormal system in the space of holomorphic
functions in B𝑛. The system {𝑝

𝑘

] } is orthonormal, but it is not
complete in the space of continuous functions on 𝜕B𝑛.

The explicit formula of the Cauchy-Szegö kernel

𝐻(𝑧, 𝜉) =
1

𝜔2𝑛−1

1

(1 − 𝑧𝜉
󸀠

)

𝑛 (15)

on 𝜕B𝑛 was first deduced in Hua [7] by using the system {𝑝
𝑘

V }

and the relation

𝐻(𝑧, 𝜉) =

∞

∑

𝑘=0

𝑁𝑘

∑

V=1

𝑝
𝑘

V (𝑧) 𝑝
𝑘
V (𝜉), 𝑧 ∈ B𝑛, 𝜉 ∈ B𝑛. (16)

For 𝑧, 𝜔 ∈ B𝑛 ∪ 𝜕B𝑛, the nonisotropic distance 𝑑(𝑧, 𝜔) is
defined as

𝑑 (𝑧, 𝜔) =
󵄨󵄨󵄨󵄨󵄨
1 − 𝑧𝜔

󸀠󵄨󵄨󵄨󵄨󵄨

1/2

. (17)

It can be easily shown that 𝑑(⋅, ⋅) is a metric on 𝜕B𝑛. For 𝜉 ∈

𝜕B𝑛 and 𝜀 > 0, we define the ball corresponding to 𝑑(⋅, ⋅) as

𝑆 (𝜉, 𝜀) = {𝜂 ∈ 𝜕B𝑛, 𝑑 (𝜉, 𝜂) ≤ 𝜀} . (18)

The complement set of 𝑆(𝜉, 𝜀) in 𝜕B𝑛 is denoted by 𝑆
𝑐
(𝜉, 𝜀).

Set

A = {𝑓 : 𝑓 is holomorphic in 𝐵 (0, 1 + 𝛿)

for some 𝛿 > 0} .

(19)
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If 𝑓 ∈ A, then

𝑓 (𝑧) =

∞

∑

𝑘=0

𝑁𝑘

∑

V=0

𝑐𝑘V𝑝
𝑘

V (𝑧) , (20)

where 𝑐𝑘V are the Fourier coefficients of 𝑓:

𝑐𝑘V = ∫
𝜕B𝑛

𝑝𝑘
V (𝜉)𝑓 (𝜉) 𝑑𝜎 (𝜉) , (21)

and for any positive integer 𝑙, the series

∞

∑

𝑘=0

𝑘
𝑙

𝑁𝑘

∑

V=0

𝑐𝑘V𝑝
𝑘

V (𝑧) (22)

is uniformaly and absolutely convergent in any compact ball
contained in 𝐵(0, 1 + 𝛿) in which 𝑓 is defined.

Denote by U the unitary group of C𝑛 consisting of all
unitary operators on the Hilbert spaceC𝑛 under the complex
inner product ⟨𝑧, 𝑤⟩ = 𝑧𝑤

󸀠. These are the linear operators 𝑈
that preserve inner products:

⟨𝑈𝑧, 𝑈𝑤⟩ = ⟨𝑧, 𝑤⟩ . (23)

Clearly,U is a compact subset of𝑂(2𝑛). It is easy to verify that
A is invariant under 𝑈 ∈ U. If 𝑓 ∈ A, then 𝑓 is defined by
its values on 𝜕B𝑛. In Section 3, we treat 𝑓|𝜕B𝑛

as identical to
𝑓 ∈ A.

3. The Kernel Generated by
Holomorphic Multipliers

Set
𝑆𝜔 = {𝑧 ∈ C𝑧 ̸= 0 and 󵄨󵄨󵄨󵄨arg 𝑧

󵄨󵄨󵄨󵄨 < 𝜔} ,

𝑆𝜔 (𝜋) = {𝑧 ∈ C𝑧 ̸= 0, |Re (𝑧)| ≤ 𝜋,
󵄨󵄨󵄨󵄨arg (±𝑧)

󵄨󵄨󵄨󵄨 < 𝜔} ,

𝑊𝜔 (𝜋) = {𝑧 ∈ C | 𝑧 ̸= 0, |Re (𝑧)| ≤ 𝜋, Im (𝑧) > 0}

⋃𝑆𝜔 (𝜋) ,

𝐻𝜔 = {𝑧 ∈ C𝑧 = 𝑒
𝑖𝜔
, 𝜔 ∈ 𝑊𝜔 (𝜋)} .

(24)

The following function space is relevant.

Definition 2. Let −1 < 𝑠 < ∞. 𝐻𝑠
(𝑆𝜔) is defined as the set of

all holomorphic functions in 𝑆𝜔 such that

(a) 𝑏 is bounded for |𝑧| ≤ 1;
(b) |𝑏(𝑧)| ≤ 𝐶𝜇|𝑧|

𝑠
, 𝑧 ∈ 𝑆𝜇, 0 < 𝜇 < 𝜔.

Remark 3. The classes 𝐻𝑠
(𝑆𝜔) are generalizations of 𝐻

∞
(𝑆𝜔)

which is introduced by McIntosh and his collaborators. We
refer to Li et al. [9], McIntosh [10], McIntosh and Qian [2],
Qian [11], and the reference therein for further information
on𝐻

∞
(𝑆𝜔).

Let

𝜑𝑏 (𝑧) =

∞

∑

𝑘=1

𝑏 (𝑘) 𝑧
𝑘
. (25)

Lemma 4. Let 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔), −1 < 𝑠 < ∞. Then 𝜑𝑏 can be

holomorphically extended to𝐻𝜔. Moreover, for 0 < 𝜇 < 𝜇
󸀠
< 𝜔

and 𝑙 = 0, 1, 2, . . .,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑧
d
d𝑧

)

𝑙

𝜑𝑏 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲

𝐶𝜇󸀠 𝑙!

𝛿𝑙 (𝜇, 𝜇󸀠) |1 − 𝑧|
𝑙+1+𝑠

, 𝑧 ∈ 𝐻𝜇, (26)

where 𝛿(𝜇, 𝜇
󸀠
) = min{1/2, tan(𝜇, 𝜇󸀠

}; 𝐶𝜇󸀠 are the constants in
Definition 2.

Proof. Let

𝑉𝜔 = {𝑧 ∈ C : Im (𝑧) > 0}⋃𝑆𝜔 ⋃(−𝑆𝜔) ,

𝑊𝜔 = 𝑉𝜔 ⋂{𝑧 ∈ C : −𝜋 ≤ Re 𝑧 ≤ 𝜋}

(27)

and 𝜌𝜃 is the ray 𝑟 exp(𝑖𝜃), 0 < 𝑟 < ∞, where 𝜃 is chosen so
that 𝜌𝜃 ⊆ 𝑆𝜔. Define

Ψ𝑏 (𝑧) =
1

2𝜋
∫
𝜌(𝜃)

exp (𝑖𝜉𝑧) 𝑏 (𝜉) 𝑑𝜉, 𝑧 ∈ 𝑉𝜔, (28)

where exp(𝑖𝑧𝜉) is exponentially decaying as 𝜉 → ∞ along
𝜌𝜃. Then we get
󵄨󵄨󵄨󵄨󵄨
|𝑧|

1+𝑠
Ψ𝑏 (𝑧)

󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

2𝜋
∫
𝜌(𝜃)

exp (𝑖𝜉𝑧) |𝑧|
1+𝑠

𝑏 (𝜉) 𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲

𝐶𝜇󸀠

2𝜋
∫

∞

0

exp (−𝑟 |𝑧| sin (𝜃 + arg 𝑧)) (𝑟|𝑧|)𝑠𝑑(𝑟|𝑧|)𝑠

≲ 𝐶𝜇󸀠 ,

(29)

which implies |Ψ𝑏(𝑧)| ≲ 1/|𝑧|
1+𝑠. Define

𝜓𝑏 (𝑧) = 2𝜋

∞

∑

𝑛=−∞

Ψ𝑏 (𝑧 + 2𝑛𝜋) ,

𝑧 ∈

∞

⋃

𝑛=−∞

(2𝑛𝜋 + 𝑊𝜔) .

(30)

It is easy to see that𝜓𝑏 is holomorphically and 2𝜋-periodically
defined in the described region, and |𝜓𝑏(𝑧)| ≲ 1/|𝑧|

1+𝑠. Let

𝜑𝑏 (𝑧) = 𝜓𝑏 (
log 𝑧
𝑖

) . (31)

For 𝑧 ∈ exp(𝑖𝑆𝜔), we write 𝑧 = 𝑒
𝑖𝑢, where 𝑢 ∈ 𝑆𝜔. Then

sin(|𝑢|/2) ≲ |𝑢|/2. This implies that 2 − 2 cos |𝑢| ≲ |𝑢|
2 and

|1 − 𝑒
𝑖|𝑢|

| ≲ |𝑢|. Therefore, (29) gives

󵄨󵄨󵄨󵄨𝜑𝑏 (𝑧)
󵄨󵄨󵄨󵄨 ≲

𝐶𝜇󸀠

󵄨󵄨󵄨󵄨log 𝑧
󵄨󵄨󵄨󵄨

1+𝑠
≲

𝐶𝜇󸀠

󵄨󵄨󵄨󵄨log |𝑧|
󵄨󵄨󵄨󵄨

1+𝑠
≲

𝐶𝜇󸀠

|1 − 𝑧|
1+𝑠

. (32)

Take the ball

𝐵 (𝑧, 𝑟) = {𝜉 :
󵄨󵄨󵄨󵄨𝑧 − 𝜉

󵄨󵄨󵄨󵄨 < 𝛿 (𝜇, 𝜇
󸀠
) |1 − 𝑧|} . (33)
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Applying Cauchy’s integral formula, we obtain

𝜑
(𝑙)

𝑏
(𝑧) =

𝑙!

2𝜋𝑖
∫
𝜕𝐵(𝑧,𝑟)

𝜑 (𝜂)

(𝜂 − 𝑧)
1+𝑙

𝑑𝜂. (34)

For any 𝜂 ∈ 𝜕𝐵(𝑧, 𝑟), we have |𝜂 − 𝑧| ≥ (1 − 𝛿(𝜇, 𝜇
󸀠
))|1 − 𝑧|.

Then we have

󵄨󵄨󵄨󵄨󵄨
𝜑

(𝑙)

𝑏
(𝑧)

󵄨󵄨󵄨󵄨󵄨
≲

𝑙!‖𝑏‖𝐻𝑠(𝑆𝑐
𝜔
)

𝛿𝑙 (𝜇, 𝜇󸀠) |1 − 𝑧|
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝜕𝐵(𝑧,𝑟)

1

󵄨󵄨󵄨󵄨1 − 𝜂
󵄨󵄨󵄨󵄨

1+𝑠
𝑑𝜂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲
𝑙!

𝛿𝑙 (𝜇, 𝜇󸀠) |1 − 𝑧|
𝑙+1+𝑠

.

(35)

Theorem 5. Let 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔) and

𝐻𝑏 (𝑧, 𝜉) =

∞

∑

𝑘=1

𝑏 (𝑘)

𝑁𝑘

∑

V=1

𝑝
𝑘

V (𝑧) 𝑝
𝑘
V (𝜉),

𝑧 ∈ B𝑛, 𝜉 ∈ 𝜕B𝑛.

(36)

Then

𝐻𝑏 (𝑧, 𝜉) =
1

(𝑛 − 1)!𝜔2𝑛−1

(𝑟
𝑛−1

𝜑𝑏(𝑟))
(𝑛−1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑧𝜉
󸀠

(37)

is holomorphically defined for 𝑧 ∈ B𝑛, 𝜉 ∈ 𝜕B𝑛 such that 𝑧𝜉
󸀠

∈

𝐻𝜔, where 𝜑𝑏 is the function defined in Lemma 4, Moreover,
for 0 < 𝜇 < 𝜇

󸀠
< 𝜔 and 𝑙 = 0, 1, 2, . . .,

󵄨󵄨󵄨󵄨󵄨
𝐷

𝑙

𝑧
𝐻𝑏 (𝑧, 𝜉)

󵄨󵄨󵄨󵄨󵄨
≲

𝐶𝜇󸀠 𝑙!

𝛿𝑙 (𝜇, 𝜇󸀠)
󵄨󵄨󵄨󵄨󵄨󵄨
1 − 𝑧𝜉

󸀠󵄨󵄨󵄨󵄨󵄨󵄨

𝑛+𝑙+𝑠
, 𝑧𝜉

󸀠

∈ 𝐻𝜇, (38)

where 𝛿(𝜇, 𝜇󸀠
) = min{1/2, tan(𝜇󸀠

−𝜇)},𝐶𝜇󸀠 are the constant in
the definition of the function space 𝐻𝑠

(𝑆𝜔).

Proof. Recall that

𝜑𝑏 (𝑧) =

∞

∑

𝑘=1

𝑏 (𝑘) 𝑧
𝑘
;

𝑟
𝑛−1

𝜑𝑏 (𝑟) =

∞

∑

𝑘=1

𝑏 (𝑘) 𝑟
𝑛+𝑘−1

.

(39)

Then we have
1

(𝑛 − 1)!
(𝑟

𝑛−1
𝜑𝑏 (𝑟))

(𝑛−1)

=
1

(𝑛 − 1)!

∞

∑

𝑘=1

𝑏 (𝑘) (𝑛 + 𝑘 − 1) (𝑛 + 𝑘 − 2) ⋅ ⋅ ⋅ (𝑘 + 1) 𝑟
𝑘

=

∞

∑

𝑘=1

𝑏 (𝑘) 𝑟
𝑘 (𝑛 + 𝑘 − 1)!

(𝑛 − 1)!𝑘!

=

∞

∑

𝑘=1

(𝑛 + 𝑘 − 1) (𝑛 + 𝑘 − 2) (𝑛 + 1) 𝑛

𝑘!
𝑏 (𝑘) 𝑟

𝑘
.

(40)

Therefore,

1

(𝑛 − 1)!
(𝑟

𝑛−1
𝜑𝑏 (𝑟))

(𝑛−1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑟=𝑧𝜉

󸀠

=

∞

∑

𝑘=1

𝑏 (𝑘)
(𝑛 + 𝑘 − 1) (𝑛 + 𝑘 − 2) (𝑛 + 1) 𝑛

𝑘!
(𝑧𝜉

󸀠

)

𝑘

= 𝜔2𝑛−1

∞

∑

𝑘=1

𝑏 (𝑘)

𝑁𝑘

∑

V=1

𝑝
𝑘

V (𝑧) 𝑝
𝑘
V (𝜉)

= 𝜔2𝑛−1𝐻𝑏 (𝑧, 𝜉) .

(41)

By [4, Theorem 3], we could obtain the following result.

Theorem 6. Let 𝑠 be a negative integer. If 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔,±),

𝐻𝑏 (𝑧, 𝜉) =

∞

∑

𝑘=1

𝑏 (𝑘)

𝑁𝑘

∑

V=1

𝑝
𝑘

V (𝑧) 𝑝
𝑙

𝜇
(𝜉) ,

𝑧 ∈ B, 𝜉 ∈ 𝜕B𝑛,

(42)

then

󵄨󵄨󵄨󵄨󵄨
𝐷

𝑙

𝑧
𝐻𝑏 (𝑧, 𝜉)

󵄨󵄨󵄨󵄨󵄨
≲

𝐶𝜇𝑙! [
󵄨󵄨󵄨󵄨󵄨󵄨
ln

󵄨󵄨󵄨󵄨󵄨󵄨
1 − 𝑧𝜉

󸀠󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨
+ 1]

𝛿𝑙 (𝜇, 𝜇󸀠)
󵄨󵄨󵄨󵄨󵄨󵄨
1 − 𝑧𝜉

󸀠󵄨󵄨󵄨󵄨󵄨󵄨

𝑛+𝑙+𝑠
. (43)

Proof. The proof is similar to Theorem 5. we omit it.

4. Sobolev Spaces and Unbounded
Fourier Multipliers

4.1. Integral Representation of Multipliers. Given 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔),

we define the Fourier multiplier operator𝑀𝑏 : A → A by

𝑀𝑏 (𝑓) (𝜉) =

∞

∑

𝑘=1

𝑏 (𝑘)

𝑁𝑘

∑

V=0

𝑐𝑘V𝑝
𝑘

V (𝜉) , 𝜉 ∈ 𝜕B𝑛, (44)

where {𝑐𝑘V} are the Fourier coefficients of the test function𝑓 ∈

A.
For the above operator 𝑀𝑏, the Plemelj type formula

holds.

Theorem 7. Let 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔), 𝑠 > 0. Take 𝑏1(𝑧) = 𝑧

−𝑠1𝑏(𝑧),
where 𝑠1 = [𝑠] + 1. Operator 𝑀𝑏 has a singular integral
expression. For 𝑓 ∈ A,

𝑀𝑏 (𝑓) (𝜉) = lim
𝜀→0

[∫
𝑆𝑐(𝜉,𝜀)

𝐻𝑏1
(𝜉, 𝜂)𝐷

𝑠1
𝜂
𝑓 (𝜂) 𝑑𝜎 (𝜂)

+ (𝐷
𝑠1
𝑧
𝑓) (𝜉) ∫

𝑆𝑐(𝜉,𝜀)

𝐻𝑏1
(𝜉, 𝜂) 𝑑𝜎 (𝜂)] ,

(45)

where ∫
𝑆(𝜉,𝜀)

𝐻𝑏1
(𝜉, 𝜂)𝑑𝜎(𝜂) is a bounded function of 𝜉 ∈ 𝜕B𝑛

and 𝜀.
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Proof. Let

𝑀𝑏 (𝑓) (𝜌𝜉) =

∞

∑

𝑘=1

𝑏 (𝑘)

𝑁𝑘

∑

V=1

𝑐𝑘V𝑝
𝑘

V (𝜌𝜉) , 𝜉 ∈ 𝜕B𝑛, (46)

where

𝑐𝑘V = ∫
𝜕𝐵

𝑝𝑘
V (𝜂)𝑓 (𝜂) 𝑑𝜎 (𝜂) . (47)

We can see that

𝐷𝑧𝑧
[𝑙]

= √
𝑙!

𝑙1!𝑙2! ⋅ ⋅ ⋅ 𝑙𝑛!

𝑛

∑

𝑘=1

𝑧𝑘

𝜕

𝜕𝑧𝑘

(𝑧
𝑙1

1
𝑧

𝑙2

2
⋅ ⋅ ⋅ 𝑧

𝑙𝑛
𝑛
)

= √
𝑙!

𝑙1!𝑙2! ⋅ ⋅ ⋅ 𝑙𝑛!

𝑛

∑

𝑘=1

𝑧𝑘𝑙𝑘𝑧
𝑙1

1
𝑧

𝑙2

2
⋅ ⋅ ⋅ 𝑧

𝑙𝑘−1

𝑘−1
𝑧

𝑙𝑘−1

𝑘
𝑧

𝑙𝑘+1

𝑘+1
⋅ ⋅ ⋅ 𝑧

𝑙𝑛
𝑛

= √
𝑙!

𝑙1!𝑙2! ⋅ ⋅ ⋅ 𝑙𝑛!
(

𝑛

∑

𝑘=1

𝑙𝑘)𝑧
𝑙1

1
𝑧

𝑙2

2
⋅ ⋅ ⋅ 𝑧

𝑙𝑛
𝑛

= 𝑙𝑧
[𝑙]
,

(48)

which implies that𝐷𝑧𝑝
𝑘

V = 𝑘𝑝
𝑘

V . Then, we have

𝑀𝑏 (𝑓) (𝜌𝜉)

=

∞

∑

𝑘=1

𝑏 (𝑘)

𝑁𝑘

∑

V=1

∫
𝜕𝐵

𝑝
𝑘

V (𝜌𝜉) 𝑝
𝑘
V (𝜂)𝑓 (𝜂) 𝑑𝜎 (𝜂)

=

∞

∑

𝑘=1

𝑏 (𝑘)
1

𝑘𝑠1

𝑁𝑘

∑

V=1

∫
𝜕𝐵

𝑝
𝑘

V (𝜌𝜉) 𝑘
𝑠1𝑝𝑘

V (𝜂)𝑓 (𝜂) 𝑑𝜎 (𝜂)

=

∞

∑

𝑘=1

𝑏 (𝑘)
1

𝑘𝑠1

𝑁𝑘

∑

V=1

∫
𝜕𝐵

𝑝
𝑘

V (𝜌𝜉)𝐷
𝑠1
𝜂
𝑝𝑘
V (𝜂)𝑓 (𝜂) 𝑑𝜎 (𝜂) .

(49)

By integration by parts,

𝑀𝑏 (𝑓) (𝜌𝜉)

=

∞

∑

𝑘=1

𝑏 (𝑘)
1

𝑘𝑠1

𝑁𝑘

∑

V=1

∫
𝜕𝐵

𝑝
𝑘

V (𝜌𝜉) 𝑝
𝑘
V (𝜂) (𝐷

𝑠1
𝜂
𝑓) (𝜂) 𝑑𝜎 (𝜂)

=

∞

∑

𝑘=1

𝑏1 (𝑘)

𝑁𝑘

∑

V=1

∫
𝜕𝐵

𝑝
𝑘

V (𝜌𝜉) 𝑝
𝑘
V (𝜂) (𝐷

𝑠1
𝜂
𝑓) (𝜂) 𝑑𝜎 (𝜂) .

(50)

For any 𝜀 > 0, we have

𝑀𝑏 (𝑓) (𝜌𝜉)

= ∫
𝑆𝑐(𝜉,𝜀)

𝐻𝑏1
(𝜌𝜉, 𝜂)𝐷

𝑠1
𝜂
𝑓 (𝜂) 𝑑𝜎 (𝜂)

+ ∫
𝑆(𝜉,𝜀)

𝐻𝑏1
(𝜌𝜉, 𝜂) (−𝐷

𝑠1

𝜉
𝑓 (𝜉) + 𝐷

𝑠1
𝜂
𝑓 (𝜂)) 𝑑𝜎 (𝜂)

+ 𝐷
𝑠1

𝜉
𝑓 (𝜉) ∫

𝑆(𝜉,𝜀)

𝐻𝑏1
(𝜌𝜉, 𝜂) 𝑑𝜎 (𝜂)

=: 𝐼1 (𝜌, 𝜀) + 𝐼2 (𝜌, 𝜀) + 𝐷
𝑠1

𝜉
𝑓 (𝜉) 𝐼3 (𝜌, 𝜀) ,

(51)
where

𝐼1 (𝜌, 𝜀) = ∫
𝑆𝑐(𝜉,𝜀)

𝐻𝑏1
(𝜌𝜉, 𝜂)𝐷

𝑠1
𝜂
𝑓 (𝜂) 𝑑𝜎 (𝜂) ,

𝐼2 (𝜌, 𝜀) = ∫
𝑆(𝜉,𝜀)

𝐻𝑏1
(𝜌𝜉, 𝜂) (−𝐷

𝑠1

𝜉
𝑓 (𝜉) + 𝐷

𝑠1
𝜂
𝑓 (𝜂)) 𝑑𝜎 (𝜂) ,

𝐼3 (𝜌, 𝜀) = ∫
𝑆(𝜉,𝜀)

𝐻𝑏1
(𝜌𝜉, 𝜂) 𝑑𝜎 (𝜂) .

(52)
For 𝜌 → 1 − 0, we have
lim

𝜌→1−0
𝐼1 (𝜌, 𝜀) = lim

𝜌→1−0
∫
𝑆𝑐(𝜉,𝜀)

𝐻𝑏1
(𝜌𝜉, 𝜂)𝐷

𝑠1
𝜂
𝑓 (𝜂) 𝑑𝜎 (𝜂)

= ∫
𝑆𝑐(𝜉,𝜀)

𝐻𝑏1
(𝜉, 𝜂)𝐷

𝑠1
𝜂
𝑓 (𝜂) 𝑑𝜎 (𝜂) .

(53)
Now we consider 𝐼2(𝜌, 𝜀). Let 𝜉 = [1, 0, . . . , 0]. For 𝜂 ∈ 𝜕B𝑛,
write

𝜂1 = 𝑟𝑒
𝑖𝜃
, 𝜂2 = V2, 𝜂3 = V3, . . . , 𝜂𝑛 = V𝑛;

V = [V2, V3, . . . , V𝑛] .

(54)

For such 𝜂 ∈ 𝜕B𝑛, VV
󸀠
= 1 − 𝑟

2. Without loss of generality,
assume 𝜉 = 1. We get

󵄨󵄨󵄨󵄨󵄨
1 − 𝜉𝜂

󸀠󵄨󵄨󵄨󵄨󵄨

1/2

=
󵄨󵄨󵄨󵄨󵄨
1 − 𝑟𝑒

𝑖𝜃󵄨󵄨󵄨󵄨󵄨

1/2

= [(1 − 𝑟 cos 𝜃)2 + (𝑟 sin 𝜃)
2
]
1/4

≤ 𝜀,

(55)

which implies that

cos 𝜃 ≥
1 + 𝑟

2
− 𝜀

4

2𝑟
. (56)

The above estimate implies

𝑆 (𝜉, 𝜀) = {𝜂 | VV󸀠
= 1 − 𝑟

2
, cos 𝜃 ≥

1 + 𝑟
2
− 𝜀

4

2𝑟
} . (57)

Since
1 + 𝑟

2
− 𝜀

4

2𝑟
≤ cos 𝜃 ≤ 1, (58)

we obtain 1 − 𝑟 ≤ 𝜀
2 and then

VV󸀠
= 1 − 𝑟

2
≤ 1 − (1 − 𝜀

2
)
2

= 2𝜀
2
− 𝜀

4
. (59)

Denote

𝑎 = 𝑎 (𝑟, 𝜀) = arccos(1 + 𝑟
2
− 𝜀

4

2𝑟
) . (60)

Since (1−𝑟)
2
≤ 𝜀

4 and 1−𝑦 = 𝑂(arccos2𝑦), we get 𝑎 = 𝑂(𝜀
2
).

It is easy to see

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

2
=

󵄨󵄨󵄨󵄨󵄨
1 − 𝑟𝑒

𝑖𝜃󵄨󵄨󵄨󵄨󵄨

2

+

𝑛

∑

𝑘=2

󵄨󵄨󵄨󵄨V𝑘

󵄨󵄨󵄨󵄨

2

= (1 + 𝑟
2
− 2𝑟 cos 𝜃) + (1 − 𝑟

2
)
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= 2 − 2𝑟 cos 𝜃,

𝑑
4
(𝜉, 𝜂) = 1 + 𝑟

2
− 2𝑟 cos 𝜃

= (2 − 2𝑟 cos 𝜃) − (1 − 𝑟
2
)

=
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨

2
− (1 + 𝑟) (1 − 𝑟) ,

(61)

that is, 𝑑2
(𝜉, 𝜂) ≤ |𝜉 − 𝜂|. Because

𝑑
2
(𝜉, 𝜂) = [1 + 𝑟

2
− 2𝑟 cos 𝜃]

1/2

≥ 1 − 𝑟, (62)

then we have 1 − 𝑟 ≤ 𝑑
2
(𝜉, 𝜂), so

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

2
≤ 𝑑

4
(𝜉, 𝜂) + (1 + 𝑟) 𝑑

2
(𝜉, 𝜂) . (63)

Since 𝑑2
(𝜉, 𝜂) ≤ 2, then

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

2
≤ 2𝑑

2
(𝜉, 𝜂) + 2𝑑

2
(𝜉, 𝜂) = 4𝑑

2
(𝜉, 𝜂) , (64)

that is
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨 ≤ 2𝑑 (𝜉, 𝜂) . (65)

Since 𝑓 ∈ A, we have
󵄨󵄨󵄨󵄨𝑓 (𝜉) − 𝑓 (𝜂)

󵄨󵄨󵄨󵄨 ≲
󵄨󵄨󵄨󵄨𝜉 − 𝜂

󵄨󵄨󵄨󵄨 ≲ 𝑑 (𝜉, 𝜂) . (66)

For 𝜌 ∈ (0, 1),

󵄨󵄨󵄨󵄨𝐼2 (𝜌, 𝜀)
󵄨󵄨󵄨󵄨 ≲ ∫

𝑆(𝜉,𝜀)

󵄨󵄨󵄨󵄨󵄨
𝐻𝑏1

(𝜌𝜉, 𝜂)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝜉) − 𝑓 (𝜂)
󵄨󵄨󵄨󵄨 𝑑𝜎 (𝜂)

≲ ∫
𝑆(𝜉,𝜀)

𝑑 (𝜉, 𝜂)

󵄨󵄨󵄨󵄨󵄨
1 − 𝜉𝜂

󸀠󵄨󵄨󵄨󵄨󵄨

𝑛 𝑑𝜎 (𝜂)

≲ ∫
VV󸀠≤2𝜀2−𝜀4

∫

𝑎

−𝑎

1

󵄨󵄨󵄨󵄨1 − 𝑟𝑒𝑖𝜃󵄨󵄨󵄨󵄨

𝑛−1/2
𝑑𝜃 𝑑V.

(67)

For 𝑛 = 2,

1

2𝑎
∫

𝑎

−𝑎

1

󵄨󵄨󵄨󵄨1 − 𝑟𝑒𝑖𝜃󵄨󵄨󵄨󵄨

2−1/2
𝑑𝜃 ≤ (

1

2𝑎
∫

𝑎

−𝑎

1

󵄨󵄨󵄨󵄨1 − 𝑟𝑒𝑖𝜃󵄨󵄨󵄨󵄨

2
𝑑𝜃)

3/4

≤ (
1

2𝑎
∫

𝜋

−𝜋

1

󵄨󵄨󵄨󵄨1 − 𝑟𝑒𝑖𝜃󵄨󵄨󵄨󵄨

2
𝑑𝜃)

3/4

≤ (
1

2𝑎
)

3/4
1

(1 − 𝑟2)
3/4

.

(68)

Then we get

󵄨󵄨󵄨󵄨𝐼2 (𝜌, 𝜀)
󵄨󵄨󵄨󵄨 ≲ ∫

VV󸀠≤2𝜀2−𝜀4
𝑎

1/4 1

(1 − 𝑟2)
3/4

𝑑V

≲ 𝜀
1/2

∫
VV󸀠≤2𝜀2−𝜀4

1

(VV󸀠
)
3/4

𝑑V

= 𝜀
1/2

∫

√2𝜀2−𝜀4

0

𝑡

𝑡3/2
𝑑𝑡

≲ 𝜀 󳨀→ 0.

(69)
For 𝑛 > 2, we have

∫

𝑎

−𝑎

1

󵄨󵄨󵄨󵄨1 − 𝑟𝑒𝑖𝜃󵄨󵄨󵄨󵄨

𝑛−1/2
𝑑𝜃 ≲ ∫

𝑎

−𝑎

󵄨󵄨󵄨󵄨󵄨
1 − 𝑟

2󵄨󵄨󵄨󵄨󵄨

𝑛−1/2−2

󵄨󵄨󵄨󵄨1 − 𝑟𝑒𝑖𝜃󵄨󵄨󵄨󵄨

𝑛−1/2

1

󵄨󵄨󵄨󵄨1 − 𝑟2󵄨󵄨󵄨󵄨

𝑛−1/2−2
𝑑𝜃

≲
1

󵄨󵄨󵄨󵄨1 − 𝑟2󵄨󵄨󵄨󵄨

𝑛−1/2−1
∫

𝜋

−𝜋

1

󵄨󵄨󵄨󵄨1 − 𝑟𝑒𝑖𝜃󵄨󵄨󵄨󵄨

2
𝑑𝜃

≲
1

󵄨󵄨󵄨󵄨1 − 𝑟2󵄨󵄨󵄨󵄨

𝑛−1/2−1
.

(70)
Then, we get

󵄨󵄨󵄨󵄨𝐼2 (𝜌, 𝜀)
󵄨󵄨󵄨󵄨 ≲ ∫

√2𝜀2−𝜀4

0

𝑡
2𝑛−3 1

𝑡2𝑛−3
𝑑𝑡 ≲ √2𝜀2 󳨀→ 0. (71)

Now we prove if 𝜌 → 1 − 0, 𝐼3(𝜌, 𝜀) has a limit uniformly
bounded for 𝜀 near 0. Integrating as before, we have

𝐼3 (𝜌, 𝜀) = ∫
𝑆(𝜉,𝜀)

𝐻𝑏1
(𝜌𝜉, 𝜂) 𝑑𝜎 (𝜂)

= ∫
VV󸀠≤2𝜀2−𝜀4

∫

𝑎

−𝑎

(𝑡
𝑛−1

𝜑𝑏1
(𝑡))

(𝑛−1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝜌𝑟𝑒𝑖𝜃

𝑑𝜃 𝑑V.
(72)

Let 𝑠 = 𝜌𝑟𝑒
𝑖𝜃. Then 𝑑𝑠 = 𝑖𝑠𝑑𝜃. We get

𝐼3 (𝜌, 𝜀) = −𝑖 ∫
VV󸀠≤2𝜀2−𝜀4

∫

𝜌𝑟𝑒
𝑖𝑎

𝜌𝑟𝑒−𝑖𝑎
(𝑠

𝑛−1
𝜑𝑏1

(𝑠))
(𝑛−1)

𝑑𝑠 𝑑V. (73)

By integration by parts, the inside integral with respect to the
variable 𝑡 becomes

∫

𝑎

−𝑎

(𝑡
𝑛−1

𝜑𝑏1
(𝑡))

(𝑛−1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝜌𝑟𝑒𝑖𝜃

𝑑𝜃

= [

[

𝑛−1

∑

𝑘=1

(𝑘 − 1)!

(𝑡
𝑛−1

𝜑𝑏1
(𝑡))

(𝑛−𝑘−1)

𝑡𝑘
]

]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜌𝑟𝑒
𝑖𝑎

𝜌𝑟𝑒−𝑖𝑎

+ (𝑛 − 1)! ∫

𝜌𝑟𝑒
𝑖𝑎

𝜌𝑟𝑒−𝑖𝑎

𝜑𝑏1
(𝑡)

𝑡
𝑑𝑡

=

𝑛−1

∑

𝑘=1

[𝐽𝑘 (𝑡)]
𝜌𝑟𝑒
𝑖𝑎

𝜌𝑟𝑒−𝑖𝑎
+ 𝐿 (𝑟, 𝑎) .

(74)

We first estimate 𝐽𝑘,

∫
VV󸀠≤2𝜀2−𝜀4

𝐽𝑘 (𝜌𝑟𝑒
±𝑖𝑎

) 𝑑V

≲ ∫
VV󸀠≤2𝜀2−𝜀4

(𝑘 − 1)!

(𝜌𝑟𝑒
±𝑖𝑎

)
𝑘

(𝜌𝑟𝑒±𝑖𝑎)
𝑘

1

󵄨󵄨󵄨󵄨1 − 𝜌𝑟𝑒±𝑖𝑎󵄨󵄨󵄨󵄨

𝑛−𝑘
𝑑V

≲ ∫
VV󸀠≤2𝜀2−𝜀4

1

󵄨󵄨󵄨󵄨1 − 𝜌𝑟𝑒±𝑖𝑎󵄨󵄨󵄨󵄨

𝑛−𝑘
𝑑V.

(75)
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Because |1 − 𝜌𝑟𝑒
±𝑖𝑎

|
2

= 1 + 𝜌
2
𝑟
2
− 2𝜌𝑟 cos 𝑎,

󵄨󵄨󵄨󵄨󵄨
1 − 𝜌𝑟𝑒

±𝑖𝑎󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
1 − 𝑟𝑒

±𝑖𝑎󵄨󵄨󵄨󵄨󵄨

2

= 𝜌
2
𝑟
2
− 2𝜌𝑟 cos 𝑎 − (𝑟

2
− 2𝑟 cos 𝑎)

= 𝑟
2
(𝜌

2
− 1) + 2𝑟 cos 𝑎 (1 − 𝜌) .

(76)

Since cos 𝑎 = (1 + 𝑟
2
− 𝜀

4
)/2𝑟, we have

󵄨󵄨󵄨󵄨󵄨
1 − 𝜌𝑟𝑒

±𝑖𝑎󵄨󵄨󵄨󵄨󵄨

2

−
󵄨󵄨󵄨󵄨󵄨
1 − 𝑟𝑒

±𝑖𝑎󵄨󵄨󵄨󵄨󵄨

2

= 𝑟
2
(𝜌

2
− 1) + (1 + 𝑟

2
− 𝜀

4
) (1 − 𝜌)

= (1 − 𝜌) [1 + 𝑟
2
− 𝜀

4
− (1 + 𝜌) 𝑟

2
]

= (1 − 𝜌) (1 − 𝜌𝑟
2
− 𝜀

4
) > 0.

(77)

So
󵄨󵄨󵄨󵄨󵄨
1 − 𝜌𝑟𝑒

±𝑖𝑎󵄨󵄨󵄨󵄨󵄨
≥

󵄨󵄨󵄨󵄨󵄨
1 − 𝑟𝑒

±𝑖𝑎󵄨󵄨󵄨󵄨󵄨
= 𝜀

2
. (78)

For 𝑘, when 𝜀 → 0, we obtain

∫
VV󸀠≤2𝜀2−𝜀4

𝐽𝑘 (𝜌𝑟𝑒
±𝑖𝑎

) 𝑑V ≲
1

𝜀2𝑛−2𝑘
∫
VV󸀠≤2𝜀2−𝜀4

𝑑V

≲
1

𝜀2𝑛−2𝑘
∫

√2𝜀2−𝜀4

0

𝑡
2𝑛−3

𝑑𝑡

≲
𝜀
2𝑛−2

𝜀2𝑛−2𝑘
≲ 1.

(79)

On the other hand,

(𝑛 − 1)! ∫

𝜌𝑟𝑒
𝑖𝑎

𝜌𝑟𝑒−𝑖𝑎

𝜑𝑏1
(𝑡)

𝑡
𝑑𝑡

= 𝑖(𝑛 − 1)! ∫

𝑎

−𝑎

𝜑𝑏1
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=𝜌𝑟𝑒𝑖𝜃

𝑑𝜃

≲ 1, (when 𝜌 󳨀→ 0)

(80)

that implies

∫
VV󸀠≤2𝜀2−𝜀4

𝐿 (𝜌𝑟, 𝑎) 𝑑V. (81)

4.2. Sobolev Spaces on 𝜕B𝑛 via Fourier Multipliers. Sobolev
spaces on the 𝑛-complex unit sphere 𝜕B𝑛 are defined as
follows. We define the fractional integral operatorI𝑠 on 𝜕B𝑛

as follows. Let

𝑓 (𝑧) =

∞

∑

𝑘=0

𝑁𝑘

∑

V=0

𝑐𝑘V𝑝
𝑘

V (𝑧) . (82)

For −∞ < 𝑠 < ∞, the operatorI𝑠 is defined by

I
𝑠
𝑓 (𝑧) =

∞

∑

𝑘=0

𝑁𝑘

∑

V=0

𝑘
𝑠
𝑐𝑘V𝑝

𝑘

V (𝑧) . (83)

For 𝑠 ∈ Z+, we can see that the operatorsI𝑠 become the
ordinary differential operators with higher orders.

Theorem 8. Let 𝑠 ∈ Z+.𝐷𝑠

𝑧
= I𝑠 on 𝐿

2
(𝜕B𝑛).

Proof. Without loss of generality, we assume that 𝑓 ∈ A.
Then

𝑓 (𝑧) =

∞

∑

𝑘=0

𝑁𝑘

∑

V=0

𝑐𝑘V𝑝
𝑘

V (𝑧) , (84)

where 𝑐𝑘V are the Fourier coefficients of 𝑓:

𝑐𝑘V = ∫
𝜕B𝑛

𝑝𝑘
V (𝜉)𝑓 (𝜉) 𝑑𝜎 (𝜉) . (85)

So

𝐷
𝑠

𝑧
𝑓 (𝑧) =

∞

∑

𝑘=0

𝑁𝑘

∑

V=0

∫
𝜕B𝑛

𝑝𝑘
V (𝜉)𝑓 (𝜉) 𝑑𝜎 (𝜉)𝐷

𝑠

𝑧
(𝑝

𝑘

V) (𝑧)

=

∞

∑

𝑘=0

𝑘
𝑠

𝑁𝑘

∑

V=0

∫
𝜕B𝑛

𝑝𝑘
V (𝜉)𝑓 (𝜉) 𝑑𝜎 (𝜉) 𝑝

𝑘

V (𝑧) .

(86)

Definition 9. Let 𝑠 ∈ [0, +∞). The Sobolev norm ‖ ⋅ ‖𝑊2,𝑠(𝜕B𝑛)

on 𝜕B𝑛 is defined as
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝑊2,𝑠(𝜕B𝑛)
=:

󵄩󵄩󵄩󵄩I
𝑠
𝑓
󵄩󵄩󵄩󵄩2

< ∞. (87)

The Sobolev spaces on 𝜕B𝑛 are defined as the closure of A
under the norm ‖ ⋅ ‖𝑊2,𝑠(𝜕B𝑛)

, that is,𝑊2,𝑠
(𝜕B𝑛) = A

‖⋅‖
𝑊
2,𝑠
(𝜕B𝑛) .

Remark 10. By the Plancherel theorem, 𝑓 ∈ 𝑊
2,𝑠
(𝜕B𝑛) if and

only if

(

∞

∑

𝑘=1

𝑘
2𝑠

𝑁𝑘

∑

V=0

󵄨󵄨󵄨󵄨𝑐𝑘V
󵄨󵄨󵄨󵄨

2
)

1/2

< ∞. (88)

Now we consider the Sobolev boundedness of𝑀𝑏.

Theorem 11. Given 𝑟, 𝑠 ∈ [0, +∞) and 𝑏 ∈ 𝐻
𝑠
(𝑆𝜔). The

Fourier multiplier operator 𝑀𝑏 is bounded from 𝑊
2,𝑟+𝑠

(𝜕B𝑛)

to𝑊
2,𝑟

(𝜕B𝑛).

Proof. Write

I
𝑠
𝑓 (𝑧) =

∞

∑

𝑘=0

𝑁𝑘

∑

V=0

𝑐
𝑠

𝑘V𝑝
𝑘

V (𝑧) . (89)

By the orthogonality of {𝑝𝑘

V }, we can see that 𝑐𝑠
𝑘V = 𝑘

𝑠
𝑐𝑘V. Let

𝑏(𝑧) = 𝑧
−𝑠
𝑏(𝑧). Because 𝑏 ∈ 𝐻

𝑠
(𝑆𝜔), we can see that 𝑏1 ∈

𝐻
∞
(𝑆𝜔). This implies that

I
𝑟
(𝑀𝑏 (𝑓)) (𝜉) =

∞

∑

𝑘=1

𝑏 (𝑘) 𝑘
𝑟

𝑁𝑘

∑

V=0

𝑐𝑘V𝑝
𝑘

V (𝜉)

=

∞

∑

𝑘=1

𝑏1 (𝑘) 𝑘
𝑟+𝑠

𝑁𝑘

∑

V=0

𝑐𝑘V𝑝
𝑘

V (𝜉)

= 𝑀𝑏1
(I

𝑟+𝑠
𝑓) (𝜉) .

(90)
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Finally, by [5, Theorem 3], we can see that
󵄩󵄩󵄩󵄩𝑀𝑏 (𝑓)

󵄩󵄩󵄩󵄩𝑊2,𝑟
=

󵄩󵄩󵄩󵄩I
𝑟
(𝑀𝑏 (𝑓))

󵄩󵄩󵄩󵄩2

=
󵄩󵄩󵄩󵄩󵄩
𝑀𝑏1

(I
𝑟+𝑠

𝑓)
󵄩󵄩󵄩󵄩󵄩2

≤ 𝐶
󵄩󵄩󵄩󵄩I

𝑟+𝑠
𝑓
󵄩󵄩󵄩󵄩2
.

(91)

This completes the proof of Theorem 11.
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