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The natural filtration of the infinite-dimensional contact superalgebra over an algebraic closed field of positive characteristic is
proved to be invariant under automorphisms by characterizing ad-nilpotent elements and the subalgebras generated by certain ad-
nilpotent elements. Moreover, we obtain an intrinsic characterization of contact superalgebras and a property of automorphisms
of these Lie superalgebras.

1. Introduction

Filtration structures play an important role in the classifi-
cation of modular Lie algebras (see [1, 2]) and nonmodular
Lie superalgebras (see [3, 4]), respectively. We know that the
Lie algebras and Lie superalgebras of Cartan type possess a
natural filtration structure. The natural filtrations of finite-
dimensionalmodular Lie algebras of Cartan typewere proved
to be invariant in [5, 6]. In the infinite-dimensional case,
the same conclusion was proved in [7], by determining ad-
nilpotent elements. In the case of Lie superalgebras of Cartan
type, the invariance of the natural filtrations of some Lie
superalgebras was proved in [8, 9]. Similar results for Lie
superalgebras of generalized Cartan type were obtained in
[10–12], respectively.

In this paper, we consider the infinite-dimensional mod-
ular contact superalgebra 𝐾(2𝑟 + 1, 𝑛), which is analogous
to the one in the nonmodular situation (see [13]). But since
the principal Z-gradations of Lie superalgebras of Cartan
type are different (see [13]), most results and proofs for other
Lie superalgebras cannot be applied to contact superalgebras.
Therefore the corresponding results and proofs for contact
superalgebras have to be established separately. By determin-
ing the ad-nilpotent elements and subalgebras generated by
certain ad-nilpotent elements, we prove themain result of this
paper.

Theorem 1. The natural filtration of the infinite-dimensional
contact Lie superalgebra is invariant under automorphisms.

Thereby, one obtains the following theorems.

Theorem 2. Suppose that 𝑟, 𝑟, 𝑛, 𝑛 are positive integers.Then
𝐾(2𝑟 + 1, 𝑛) ≅ 𝐾(2𝑟


+ 1, 𝑛


) if and only if (𝑟, 𝑛) = (𝑟, 𝑛).

Theorem 3. Let 𝜙, 𝜓 be automorphisms of 𝐾(2𝑟 + 1, 𝑛). Then
𝜙 = 𝜓 if and only if 𝜙|

𝐾[−1]
= 𝜓|

𝐾[−1]
.

The paper is organized as follows. In Section 2, we recall
the necessary definitions concerning the modular contact
superalgebra 𝐾(2𝑟 + 1, 𝑛). In Section 3, we study the ad-
nilpotent elements of𝐾(2𝑟 + 1, 𝑛). In Section 4, we complete
the proofs of Theorems 1–3.

2. Preliminaries

Throughout this paper, F denotes an algebraic closed field of
characteristic 𝑝 > 2 and Z

2
= {0, 1} the ring of integers

modulo 2. Let N and N
0
denote the sets of positive integers

and nonnegative integers, respectively. Given 𝑚 ∈ N, 𝑚 > 1

and 𝛼 = (𝛼
1
, 𝛼

2
, . . . , 𝛼

𝑚
) ∈ N𝑚

0
, we put |𝛼| = ∑

𝑚

𝑖=1
𝛼
𝑖
. Let

O(𝑚) denote the divided power algebra over F with basis
{𝑥

(𝛼)
| 𝛼 ∈ N𝑚

0
}. For 𝜀

𝑖
= (𝛿

𝑖1
, 𝛿

𝑖2
, . . . , 𝛿

𝑖𝑚
), 𝑖 = 1, 2, . . . , 𝑚, we
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abbreviate 𝑥(𝜀𝑖) to 𝑥
𝑖
. Let Λ(𝑛) be the exterior superalgebra

over F in 𝑛 variables 𝑥
𝑚+1

, 𝑥
𝑚+2

, . . . , 𝑥
𝑠
, where 𝑠 = 𝑚 + 𝑛.

Denote byO(𝑚, 𝑛) the tensor productO(𝑚)⊗Λ(𝑛).The trivial
Z

2
-gradation of O(𝑚) and the natural Z

2
-gradation of Λ(𝑛)

induce a Z
2
-gradation of O(𝑚, 𝑛) such that O(𝑚, 𝑛) is an

associative superalgebra. For 𝑔 ∈ O(𝑚) and 𝑓 ∈ Λ(𝑛), we
abbreviate 𝑔 ⊗ 𝑓 to 𝑔𝑓. For 𝛼, 𝛽 ∈ N𝑚

0
and 𝑖, 𝑗 = 𝑚 + 1,𝑚 +

2, . . . , 𝑠, the following formulas in O(𝑚, 𝑛) hold:

𝑥
(𝛼)
𝑥
(𝛽)

= (
𝛼 + 𝛽

𝛼
)𝑥

(𝛼+𝛽)
, 𝑥

𝑖
𝑥
𝑗
= −𝑥

𝑗
𝑥
𝑖
,

𝑥
(𝛼)
𝑥
𝑗
= 𝑥

𝑗
𝑥
(𝛼)
,

(1)

where

(
𝛼 + 𝛽

𝛼
) =

𝑚

∏

𝑖=1

(
𝛼
𝑖
+ 𝛽

𝑖

𝛼
𝑖

) . (2)

Put 𝑌
0
= {1, 2, . . . , 𝑚}, 𝑌

1
= {𝑚 + 1,𝑚 + 2, . . . , 𝑠}, and

𝑌 = 𝑌
0
∪ 𝑌

1
. Let

B
𝑘
= {(𝑖

1
, 𝑖

2
, . . . , 𝑖

𝑘
) | 𝑚 + 1 ≤ 𝑖

1
< 𝑖

2
< ⋅ ⋅ ⋅ < 𝑖

𝑘
≤ 𝑠} ,

B (𝑛) =
𝑛

⋃

𝑘=0

B
𝑘
,

(3)

where B
0
= ⌀. Given 𝑢 = (𝑖

1
, 𝑖

2
, . . . , 𝑖

𝑘
) ∈ B

𝑘
, set |𝑢| = 𝑘,

{𝑢} = {𝑖
1
, 𝑖

2
, . . . , 𝑖

𝑘
}, and 𝑥𝑢

= 𝑥
𝑖1
𝑥
𝑖2
⋅ ⋅ ⋅ 𝑥

𝑖𝑘
(|⌀| = 0, 𝑥

⌀
= 1).

Then {𝑥(𝛼)
𝑥
𝑢
| 𝛼 ∈ N𝑚

0
, 𝑢 ∈ B(𝑛)} is an F-basis of the infinite-

dimensional superalgebra O(𝑚, 𝑛).
Let 𝐷

1
, 𝐷

2
, . . . , 𝐷

𝑠
be the linear transformations of

O(𝑚, 𝑛) such that

𝐷
𝑖
(𝑥

(𝛼)
𝑥
𝑢
) =

{{

{{

{

𝑥
(𝛼−𝜀𝑖)𝑥

𝑢
𝑖 ∈ 𝑌

0

𝑥
(𝛼)

⋅
𝜕𝑥

𝑢

𝜕𝑥
𝑖

𝑖 ∈ 𝑌
1
.

(4)

Then𝐷
1
, 𝐷

2
, . . . , 𝐷

𝑠
are superderivations of the superalgebra

O(𝑚, 𝑛). Let

𝑊(𝑚, 𝑛) = {

𝑠

∑

𝑖=1

𝑎
𝑖
𝐷

𝑖
| 𝑎

𝑖
∈ O (𝑚, 𝑛) , 𝑖 ∈ 𝑌} . (5)

Then 𝑊(𝑚, 𝑛) is an infinite-dimensional Lie superalgebra
contained in Der(O(𝑚, 𝑛)) (see [14]). If deg(𝑥) appears in
some expression in this paper, we always regard 𝑥 as a Z

2
-

homogeneous element and deg(𝑥) as the Z
2
-degree of 𝑥.

Then deg(𝐷
𝑖
) = 𝜇(𝑖), where

𝜇 (𝑖) = {
0 𝑖 ∈ 𝑌

0

1 𝑖 ∈ 𝑌
1
.

(6)

The following formula holds in𝑊(𝑚, 𝑛) (see [14]):

[𝑎𝐷
𝑖
, 𝑏𝐷

𝑗
] = 𝑎𝐷

𝑖
(𝑏)𝐷

𝑗
− (−1)

deg(𝑎𝐷𝑖) deg(𝑏𝐷𝑗)𝑏𝐷
𝑗
(𝑎)𝐷

𝑖
,

(7)

where 𝑎, 𝑏 ∈ O(𝑚, 𝑛) and 𝑖, 𝑗 ∈ 𝑌.

Hereafter let 𝑟 be a positive integer and let𝑚 = 2𝑟+1. Put
𝐽 = 𝑌 \ {𝑚} and 𝐽

0
= 𝑌

0
\ {𝑚}. For 𝑖 ∈ 𝐽, define

𝑖

=

{{

{{

{

𝑖 + 𝑟 1 ≤ 𝑖 ≤ 𝑟

𝑖 − 𝑟 𝑟 < 𝑖 ≤ 2𝑟

𝑖 𝑚 < 𝑖 ≤ 𝑠,

𝜎 (𝑖) =

{{

{{

{

1 1 ≤ 𝑖 ≤ 𝑟

−1 𝑟 < 𝑖 ≤ 2𝑟

1 𝑖 ∈ 𝑌
1
.

(8)

Let 𝐷
𝐾
: O(𝑚, 𝑛) → 𝑊(𝑚, 𝑛) be the linear mapping such

that

𝐷
𝐾
(𝑓) =

𝑠

∑

𝑖=1

𝑓
𝑖
𝐷

𝑖
, (9)

where

𝑓
𝑖
= (−1)

𝜇(𝑖) deg(𝑓)
(𝑥

𝑖
𝐷

𝑚
(𝑓) + 𝜎 (𝑖


)𝐷

𝑖
 (𝑓)) , ∀𝑖 ∈ 𝐽,

𝑓
𝑚
= 2𝑓 −∑

𝑖∈𝐽

𝑥
𝑖
𝐷

𝑖
(𝑓) .

(10)

Then

[𝐷
𝐾
(𝑓) , 𝐷

𝐾
(𝑔)] = 𝐷

𝐾
(⟦𝑓, 𝑔⟧) , (11)

where ⟦𝑓, 𝑔⟧ = 𝐷
𝐾
(𝑓)(𝑔) − 2𝐷

𝑚
(𝑓)𝑔 (see [14]). It follows

directly from (11) and the injectivity of 𝐷
𝐾
that ⟦, ⟧ defines a

Lie multiplication onO(𝑚, 𝑛).This Lie superalgebra, denoted
by 𝐾(2𝑟 + 1, 𝑛), is called the infinite-dimensional contact
superalgebra. In the sequel, we simply write𝐾 for𝐾(2𝑟+1, 𝑛).

The following formula holds in𝐾 (see [14]):

⟦𝑓, 𝑔⟧ = ∑

𝑖∈𝐽

𝜎 (𝑖) (−1)
𝜇(𝑖) deg(𝑓)

𝐷
𝑖
(𝑓)𝐷

𝑖
 (𝑔)

+ (2𝑓 −∑

𝑖∈𝐽

𝑥
𝑖
𝐷

𝑖
(𝑓))𝐷

𝑚
(𝑔)

− (−1)
deg(𝑓) deg(𝑔)

(2𝑔 −∑

𝑖∈𝐽

𝑥
𝑖
𝐷

𝑖
(𝑔))𝐷

𝑚
(𝑓) .

(12)

Then 𝐾 = ⨁
∞

𝑖=−2
𝐾

[𝑖]
is a Z-graded Lie superalgebra, where

𝐾
[𝑖]
= spanF {𝑥

(𝛼)
𝑥
𝑢
| |𝛼| + 𝛼

𝑚
+ |𝑢| = 𝑖 + 2} . (13)

Let 𝐾
𝑗
= ⨁

𝑖≥𝑗
𝐾

[𝑖]
for 𝑗 ≥ −2. Then 𝐾 = 𝐾

−2
⊃ 𝐾

−1
⊃ 𝐾

0
⊃

⋅ ⋅ ⋅ is referred to as the natural filtration of𝐾.

Lemma 4. 𝐾 = ⨁
∞

𝑖=−2
𝐾

[𝑖]
is transitively graded.

Proof. Assume the contrary, then there exists 𝑦 ∈ 𝐾
[ℓ]

such
that ⟦𝑦, 𝑥

𝑗
⟧ = 0 for all 𝑗 ∈ 𝐽, where ℓ ≥ 0. Suppose that the

largest exponent of 𝑥
𝑚
among the nonzero summands in the

expression of 𝑦 is equal to 𝑡, and write

𝑦 = ∑

𝛼,𝑢,𝛼𝑚=𝑡

𝑐
𝛼,𝑢
𝑥
(𝛼)
𝑥
𝑢
+ ∑

𝛽,V,𝛽𝑚<𝑡
𝑑
𝛽,V𝑥

(𝛽)
𝑥
V
, (14)
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where 𝑐
𝛼,𝑢
, 𝑑

𝛽,V ∈ F . Hence, for 𝑗 ∈ 𝐽
0
,

0 = ⟦𝑦, 𝑥
𝑗
⟧ = ∑

𝛼,𝑢,𝛼𝑚=𝑡

𝜎 (𝑗

) 𝑐

𝛼,𝑢
𝑥
(𝛼−𝜀𝑗)𝑥

𝑢
+ ℎ, (15)

where each exponent of 𝑥
𝑚

of all nonzero summands
in the expression of ℎ is less than 𝑡. Then
∑

𝛼,𝑢,𝛼𝑚=𝑡
𝜎(𝑗


)𝑐

𝛼,𝑢
𝑥
(𝛼−𝜀𝑗)𝑥

𝑢
= 0. Note that all nonzero

summands of ∑
𝛼,𝑢,𝛼𝑚=𝑡

𝜎(𝑗

)𝑐

𝛼,𝑢
𝑥
(𝛼−𝜀𝑗)𝑥

𝑢 are F-linear
independent. It follows that each 𝑥

(𝛼−𝜀𝑗)𝑥
𝑢 is equal to 0.

Hence the exponents of 𝑥
𝑗
in each 𝑥

(𝛼)
𝑥
𝑢 are equal to 0.

Similarly, for 𝑗 ∈ 𝑌
1
, we can prove that 𝑥

𝑗
does not appear

in each 𝑥
(𝛼)
𝑥
𝑢. Consequently, we see that all 𝑥(𝛼)

𝑥
𝑢 are of

the form 𝑥
(𝑡𝜀𝑚). If 𝑡 = 0, then 𝑦 ∈ 𝐾

[−2]
, contradicting ℓ ≥ 0.

Hence 𝑡 > 0, and we can write

𝑦 = 𝑐
𝑡𝜀𝑚
𝑥
(𝑡𝜀𝑚) + ∑

𝛼,𝑢,𝛼𝑚=𝑡−1

𝑐
𝛼,𝑢
𝑥
(𝛼)
𝑥
𝑢
+ ∑

𝛽,V,𝛽𝑚<𝑡−1
𝑑
𝛽,V𝑥

(𝛽)
𝑥
V
,

(16)

where 𝑐
𝑡𝜀𝑚

̸= 0. Note that, for 𝑗 ∈ 𝑌
1
,

0 = ⟦𝑦, 𝑥
𝑗
⟧ = −𝑐

𝑡𝜀𝑚
𝑥
((𝑡−1)𝜀𝑚)𝑥

𝑗

+ ∑

𝛼,𝑢,𝛼𝑚=𝑡−1

(−1)
|𝑢|
𝑐
𝛼,𝑢
𝑥
(𝛼)
𝐷

𝑗
(𝑥

𝑢
) + ℎ,

(17)

where each exponent of 𝑥
𝑚
of the nonzero summands in the

expression of ℎ is less than 𝑡 − 1. Therefore,

−𝑐
𝑡𝜀𝑚
𝑥
((𝑡−1)𝜀𝑚)𝑥

𝑗
+ ∑

𝛼,𝑢,𝛼𝑚=𝑡−1

(−1)
|𝑢|
𝑐
𝛼,𝑢
𝑥
(𝛼)
𝐷

𝑗
(𝑥

𝑢
) = 0. (18)

Since 𝑥
𝑗
appears in 𝑥

((𝑡−1)𝜀𝑚)𝑥
𝑗
and does not appear in

∑
𝛼,𝑢,𝛼𝑚=𝑡−1

(−1)
|𝑢|
𝑐
𝛼,𝑢
𝑥
(𝛼)
𝐷

𝑗
(𝑥

𝑢
), we conclude that 𝑡 = 0, a

contradiction.

3. ad-Nilpotent Elements

Recall that 𝑦 ∈ 𝐾 is called ad-nilpotent if there exists 𝑡 ∈ N

such that (ad𝑦)𝑡(𝐾) = 0. For a subset𝑅 of𝐾, let nil(𝑅) denote
the set of ad-nilpotent elements in𝑅, and letNil(𝑅)denote the
subalgebra of𝐾 generated by nil(𝑅).

Lemma 5. Suppose that 𝑦
[𝑖]
∈ 𝐾

[𝑖]
for 𝑖 ≥ −2. The following

statements hold.

(1) If 𝑦 = ∑𝑡

𝑖=𝑘
𝑦
[𝑖]
∈ nil(𝐾), then 𝑦

[𝑘]
∈ nil(𝐾).

(2) If 𝑦 = ∑𝑡

𝑖=−2
𝑦
[𝑖]
∈ nil(𝐾), then 𝑦

[−2]
= 0.

(3) If 𝑦 = ∑𝑡

𝑖=−2
𝑦
[𝑖]
∈ nil(𝐾

0
), then 𝑦

[−1]
= 0.

(4) If 𝑦 = ∑𝑡

𝑖=−2
𝑦
[𝑖]
∈ nil(𝐾

0
), then 𝑦

[0]
∈ nil(𝐾

0
).

(5) If 𝑦 = ∑
𝑡

𝑖=−2
𝑦
[𝑖]
∈ nil(𝐾), then 𝑦

[−1]
∈ spanF {𝑥𝑗

| 𝑗 ∈

𝑌
1
}.

Proof. (1) See [15, Lemma 5.1].

(2) Suppose that 𝑦
[−2]

̸= 0. As 𝑦 is ad-nilpotent, 𝑦
[−2]

is ad-
nilpotent by (1). Note that

(ad 1)𝑘 (𝑥(𝑘𝜀𝑚)) = (ad 1)𝑘−1 (2𝑥((𝑘−1)𝜀𝑚)) = 2
𝑘
̸= 0, (19)

for all 𝑘 > 0. This shows that 𝑦
[−2]

is not ad-nilpotent, a
contradiction.

(3) By (1), we see that 𝑦
[−1]

is ad-nilpotent. Suppose that
𝑦
[−1]

= ∑
𝑖∈𝐽0

𝑎
𝑖
𝑥
𝑖
̸= 0, where 𝑎

𝑖
∈ F . Then there exists some

𝑎
𝑗
̸= 0. A direct calculation shows that

(ad𝑦
[−1]

)
𝑘

(𝑥
(𝑘𝜀
𝑗
)
) = (ad𝑦

[−1]
)
𝑘−1

(𝜎 (𝑗) 𝑎
𝑗
𝑥
((𝑘−1)𝜀

𝑗
)
)

= 𝜎(𝑗)
𝑘

𝑎
𝑘

𝑗
̸= 0,

(20)

for all 𝑘 > 0. It follows that 𝑦
[−1]

is not ad-nilpotent.
(4) is an immediate consequence of (2), (3), and (1). (5)

follows from (2), (1), and the proof of (3).

Let 𝑎 ∈ N
0
and 𝑎 = ∑

∞

𝑙=0
𝑎
𝑙
𝑝
𝑙 be the 𝑝-adic expression of

𝑎, where 0 ≤ 𝑎
𝑙
< 𝑝. Then,

pad (𝑎) = (pad
0
(𝑎) , pad

1
(𝑎) , pad

2
(𝑎) , . . .) (21)

is said to be the 𝑝-adic sequence of 𝑎, where pad
𝑗
(𝑎) = 𝑎

𝑗
for

all 𝑗 ∈ N
0
. For 𝛼 = (𝛼

1
, 𝛼

2
, . . . , 𝛼

𝑚
) ∈ N𝑚

0
, define the 𝑝-adic

matrix of 𝛼 to be

pad (𝛼) = (

pad (𝛼
1
)

pad (𝛼
2
)

...
pad (𝛼

𝑚
)

) . (22)

As pad(𝛼) is an 𝑚 × ∞ matrix with finitely many nonzero
elements,

ht (𝛼) = max {𝑗 ∈ N
0
| ∃𝑖 ∈ 𝑌

0
: pad

𝑗
(𝛼

𝑖
) ̸= 0} (23)

is well defined. Let

‖𝛼‖
𝑏,𝑐
=

𝑚

∑

𝑖=1

𝑐

∑

𝑗=𝑏

pad
𝑗
(𝛼

𝑖
) , (24)

for 𝑏 ∈ N
0
and 𝑐 ∈ N. We abbreviate ‖𝛼‖

0,𝑞
to ‖𝛼‖

𝑞
.

Suppose that 𝑦 = ∑
𝛼,𝑢

𝑐
𝛼,𝑢
𝑥
(𝛼)
𝑥
𝑢 is a nonzero element of

𝐾, where 𝑐
𝛼,𝑢

∈ F . Define

ht (𝑦) = max {ht (𝛼) | 𝑐
𝛼,𝑢

̸= 0} . (25)

Given that 𝑞 > 0 and 𝑥(𝛼)
𝑥
𝑢
∈ 𝐾, we define

F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
) = ‖𝛼‖

𝑞
+ 2‖𝛼‖

1,𝑞
+ |𝑢| + pad

0
(𝛼

𝑚
) . (26)

Lemma 6. Let 𝛼, 𝛽 ∈ N𝑚

0
, 𝑖 ∈ 𝑌

0
, and 𝑞 ∈ N. Then,

(1) 𝑥(𝛼)
𝑥
(𝛽)

̸= 0 if and only if pad(𝛼)+pad(𝛽) = pad(𝛼+𝛽);
(2) If 𝛽

𝑖
̸= 0, then ‖𝛽 − 𝜀

𝑖
‖
𝑞
+2‖𝛽 − 𝜀

𝑖
‖
1,𝑞

≥ ‖𝛽‖
𝑞
+2‖𝛽‖

1,𝑞
−

1;
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(3) If 𝑥(𝛽)
𝑥
V
∈ 𝐾

1
and 𝑞 ≥ ht(𝑥(𝛽)

𝑥
V
), then F

𝑞
(𝑥

(𝛽)
𝑥
V
) ≥

3.

Proof. (1) See [7, Lemma 2.5].
(2) First consider the case pad

0
(𝛽

𝑖
) ̸= 0. Then,

pad (𝛽
𝑖
− 1) = (pad

0
(𝛽

𝑖
) − 1, pad

1
(𝛽

𝑖
) , . . .) . (27)

It follows that ‖𝛽 − 𝜀
𝑖
‖
𝑞
= ‖𝛽‖

𝑞
− 1 and ‖𝛽 − 𝜀

𝑖
‖
1,𝑞

= ‖𝛽‖
1,𝑞
,

and thus (2) holds.
Next consider the case pad

0
(𝛽

𝑖
) = 0. We may assume that

pad (𝛽
𝑖
)

= (0, . . . , 0, pad
𝑡
(𝛽

𝑖
) , pad

𝑡+1
(𝛽

𝑖
) , . . .) ,

(28)

where pad
𝑡
(𝛽

𝑖
) ̸= 0 and 𝑡 ≥ 1. Hence,

pad (𝛽
𝑖
− 1)

= (𝑝 − 1, . . . , 𝑝 − 1, pad
𝑡
(𝛽

𝑖
) − 1, pad

𝑡+1
(𝛽

𝑖
) , . . .) .

(29)

If 𝑞 < 𝑡, then
𝛽 − 𝜀𝑖

𝑞
+ 2

𝛽 − 𝜀𝑖
1,𝑞

= (𝑞 + 1) (𝑝 − 1) + 2𝑞 (𝑝 − 1)

> −1

=
𝛽
𝑞
+ 2

𝛽
1,𝑞

− 1.

(30)

If 𝑞 = 𝑡, noting that 𝑝 > 2, then
𝛽 − 𝜀𝑖

𝑞
+ 2

𝛽 − 𝜀𝑖
1,𝑞

= 𝑡 (𝑝 − 1) + 2 (𝑡 − 1) (𝑝 − 1) + 3 (pad
𝑡
(𝛽

𝑖
) − 1)

≥ 2 + 3pad
𝑡
(𝛽

𝑖
) − 3

= 3pad
𝑡
(𝛽

𝑖
) − 1

=
𝛽
𝑞
+ 2

𝛽
1,𝑞

− 1.

(31)

If 𝑞 > 𝑡, then
𝛽 − 𝜀𝑖

𝑞
+ 2

𝛽 − 𝜀𝑖
1,𝑞

=
𝛽 − 𝜀𝑖

𝑡
+ 2

𝛽 − 𝜀𝑖
1,𝑡

+ 3
𝛽 − 𝜀𝑖

𝑡+1,𝑞

≥
𝛽
𝑡
+ 2

𝛽
1,𝑡

− 1 + 3
𝛽 − 𝜀𝑖

𝑡+1,𝑞

=
𝛽
𝑞
+ 2

𝛽
1,𝑞

− 1.

(32)

(3)Theassumption𝑥(𝛽)
𝑥
V
∈ 𝐾

1
implies that |𝛽|+𝛽

𝑚
+|V| ≥

3. Then it is trivially verified that (3) holds.

Lemma 7. Suppose that 𝑥(𝛽)
𝑥
V
∈ 𝐾

1
, 𝑥(𝛼)

𝑥
𝑢
∈ 𝐾, 𝑞 ≥

max{1, ht(𝑥(𝛽)
𝑥
V
)}, and 𝑖 ∈ 𝐽. The following statements hold.

(1) If𝑥(𝛽)
𝑥
V
𝐷

𝑚
(𝑥

(𝛼)
𝑥
𝑢
) ̸= 0, thenF

𝑞
(𝑥

(𝛽)
𝑥
V
𝐷

𝑚
(𝑥

(𝛼)
𝑥
𝑢
)) ≥

F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
) + 1.

(2) If𝑥(𝛼)
𝑥
𝑢
𝐷

𝑚
(𝑥

(𝛽)
𝑥
V
) ̸= 0, thenF

𝑞
(𝑥

(𝛼)
𝑥
𝑢
𝐷

𝑚
(𝑥

(𝛽)
𝑥
V
)) ≥

F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
) + 1.

(3) If 𝐷
𝑖
(𝑥

(𝛽)
𝑥
V
) 𝐷

𝑖
(𝑥

(𝛼)
𝑥
𝑢
) ̸= 0, then F

𝑞
(𝐷

𝑖
(𝑥

(𝛽)
𝑥
V
)

𝐷
𝑖
(𝑥

(𝛼)
𝑥
𝑢
)) ≥F

𝑞
(𝑥

(𝛼)
𝑥
𝑢
) + 1.

Proof. (1)The assumption 𝑥(𝛽)
𝑥
V
𝐷

𝑚
(𝑥

(𝛼)
𝑥
𝑢
) ̸= 0 implies that

𝑥
(𝛽)
𝑥
(𝛼−𝜀𝑚) ̸= 0. By Lemma 6(1), we have

pad (𝛽 + (𝛼 − 𝜀
𝑚
)) = pad (𝛽) + pad (𝛼 − 𝜀

𝑚
) . (33)

Consequently,

pad
0
(𝛽

𝑚
+ (𝛼

𝑚
− 1)) = pad

0
(𝛽

𝑚
) + pad

0
(𝛼

𝑚
− 1) , (34)

𝛽 + (𝛼 − 𝜀𝑚)
𝑞
=
𝛽
𝑞
+
𝛼 − 𝜀𝑚

𝑞
, (35)

𝛽 + (𝛼 − 𝜀𝑚)
1,𝑞

=
𝛽
1,𝑞

+
𝛼 − 𝜀𝑚

1,𝑞
. (36)

By (2) and (3) of Lemma 6, we obtain

𝛼 − 𝜀𝑚
𝑞
+
𝛼 − 𝜀𝑚

1,𝑞
≥ ‖𝛼‖

𝑞
+ ‖𝛼‖

1,𝑞
− 1, (37)

F
𝑞
(𝑥

(𝛽)
𝑥
V
) ≥ 3. (38)

Combining (34)–(38), we have

F
𝑞
(𝑥

(𝛽)
𝑥
V
𝐷

𝑚
(𝑥

(𝛼)
𝑥
𝑢
))

= F
𝑞
(𝑥

(𝛽+(𝛼−𝜀𝑚))𝑥
V
𝑥
𝑢
)

=
𝛽 + (𝛼 − 𝜀𝑚)

𝑞
+ 2

𝛽 + (𝛼 − 𝜀𝑚)
1,𝑞

+ |𝑢| + |V|

+ pad
0
(𝛽

𝑚
+ (𝛼

𝑚
− 1))

=
𝛽
𝑞
+
𝛼 − 𝜀𝑚

𝑞
+ 2

𝛽
1,𝑞

+ 2
𝛼 − 𝜀𝑚

1,𝑞
+ |𝑢| + |V|

+ pad
0
(𝛽

𝑚
) + pad

0
(𝛼

𝑚
− 1)

=
𝛽
𝑞
+ 2

𝛽
1,𝑞

+ |V| + pad
0
(𝛽

𝑚
) +

𝛼 − 𝜀𝑚
𝑞

+ 2
𝛼 − 𝜀𝑚

1,𝑞
+ |𝑢| + pad

0
(𝛼

𝑚
− 1)

≥ F
𝑞
(𝑥

(𝛽)
𝑥
V
) + ‖𝛼‖

𝑞
+ 2‖𝛼‖

1,𝑞
− 1 + |𝑢| + pad

0
(𝛼

𝑚
) − 1

≥ F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
) + 1.

(39)

(2) Suppose that 𝑥(𝛼)
𝑥
𝑢
𝐷

𝑚
(𝑥

(𝛽)
𝑥
V
) ̸= 0. Then,

F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
𝐷

𝑚
(𝑥

(𝛽)
𝑥
V
))

= F
𝑞
(𝑥

(𝛼+(𝛽−𝜀𝑚))𝑥
V
𝑥
𝑢
)

=
𝛼 + (𝛽 − 𝜀𝑚)

𝑞
+ 2

𝛼 + (𝛽 − 𝜀𝑚)
1,𝑞

+ |𝑢| + |V|

+ pad
0
(𝛼

𝑚
+ (𝛽

𝑚
− 1))
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= ‖𝛼‖
𝑞
+
𝛽 − 𝜀𝑚

𝑞
+ 2‖𝛼‖

1,𝑞
+ 2

𝛽 − 𝜀𝑚
1,𝑞

+ |𝑢| + |V|

+ pad
0
(𝛼

𝑚
) + pad

0
(𝛽

𝑚
− 1)

= ‖𝛼‖
𝑞
+ 2‖𝛼‖

1,𝑞
+ |𝑢| + pad

0
(𝛼

𝑚
) +

𝛽 − 𝜀𝑚
𝑞

+ 2
𝛽 − 𝜀𝑚

1,𝑞
+ |V| + pad

0
(𝛽

𝑚
− 1)

≥ F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
) +

𝛽
𝑞
+ 2

𝛽
1,𝑞

− 1 + |V| + pad
0
(𝛽

𝑚
) − 1

≥ F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
) + 1.

(40)

(3) Similarly, we have

F
𝑞
(𝐷

𝑖
(𝑥

(𝛽)
𝑥
V
)𝐷

𝑖
 (𝑥

(𝛼)
𝑥
𝑢
))

= F
𝑞
(𝑥

((𝛽−𝜀𝑖)+(𝛼−𝜀𝑖
))
𝑥
V
𝑥
𝑢
)

=
(𝛽 − 𝜀𝑖) + (𝛼 − 𝜀𝑖)

𝑞
+ 2

(𝛽 − 𝜀𝑖) + (𝛼 − 𝜀𝑖)
1,𝑞

+ |V|

+ |𝑢| + pad
0
(𝛽

𝑚
+ 𝛼

𝑚
)

=
𝛽 − 𝜀𝑖

𝑞
+
𝛼 − 𝜀𝑖

𝑞
+ 2

𝛽 − 𝜀𝑖
1,𝑞

+ 2
𝛼 − 𝜀𝑖

1,𝑞
+ |V|

+ |𝑢| + pad
0
(𝛽

𝑚
) + pad

0
(𝛼

𝑚
)

=
𝛽 − 𝜀𝑖

𝑞
+ 2

𝛽 − 𝜀𝑖
1,𝑞

+
𝛼 − 𝜀𝑖

𝑞
+ 2

𝛼 − 𝜀𝑖
1,𝑞

+ |V|

+ |𝑢| + pad
0
(𝛽

𝑚
) + pad

0
(𝛼

𝑚
)

≥
𝛽
𝑞
+ 2

𝛽
1,𝑞

− 1 + ‖𝛼‖
𝑞
+ 2‖𝛼‖

1,𝑞
− 1 + |V| + |𝑢|

+ pad
0
(𝛽

𝑚
) + pad

0
(𝛼

𝑚
)

= F
𝑞
(𝑥

(𝛽)
𝑥
V
) +F

𝑞
(𝑥

(𝛼)
𝑥
𝑢
) − 2

≥ F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
) + 1.

(41)

Lemma 8. Suppose that 𝑥(𝛽)
𝑥
V
∈ 𝐾

1
, 𝑥(𝛼)

𝑥
𝑢

∈ 𝐾, and
𝑞 ≥ max{1, ht(𝑥(𝛽)

𝑥
V
)}. Let 𝑥(𝛼


)
𝑥
𝑢


be a nonzero summand
of ⟦𝑥(𝛽)

𝑥
V
, 𝑥

(𝛼)
𝑥
𝑢
⟧. ThenF

𝑞
(𝑥

(𝛼

)
𝑥
𝑢


) ≥ F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
) + 1.

Proof. A direct calculation shows that 𝑥(𝛼

)
𝑥
𝑢


fulfills the
conditions of Lemma 7.

Given that 𝑞 ∈ N, let

ℓ
𝑞
= 𝑚 (𝑞 + 1) (𝑝 − 1) + 2𝑚𝑞 (𝑝 − 1) + (𝑝 − 1) + 𝑛 + 1.

(42)

Clearly, the inequality F
𝑞
(𝑥

(𝛼)
𝑥
𝑢
) < ℓ

𝑞
holds for all 𝑥(𝛼)

𝑥
𝑢
∈

𝐾.

Lemma 9. 𝐾
1
⊂ nil(𝐾).

Proof. Suppose that 𝑦 = ∑
𝛽,𝑢

𝑐
𝛼,V𝑥

(𝛽)
𝑥
V is an arbitrary

element of 𝐾
1
, where 𝑐

𝛽,V ∈ F and 𝑐
𝛽,V ̸= 0. Let 𝑞 ∈ N such

that 𝑞 ≥ ht(𝑦). Let 𝑥(𝛼)
𝑥
𝑢 be a standard basis element of 𝐾.

By using Lemma 8 repeatedly, we see that (ad𝑦)ℓ𝑞(𝑥(𝛼)
𝑥
𝑢
) =

0.

Lemma 10. For 𝑖, 𝑗 ∈ 𝐽
0
, the following statements hold.

(1) 𝑥(2𝜀𝑖) ∈ nil(𝐾
[0]
∩ 𝐾

0
).

(2) If 𝜎(𝑖) = 𝜎(𝑗) and 𝑖 ̸= 𝑗, then 𝑥
𝑖
𝑥
𝑗
∈ nil(𝐾

[0]
∩ 𝐾

0
).

(3) If 𝜎(𝑖) ̸= 𝜎(𝑗) and 𝑖 ̸= 𝑗
, then 𝑥

𝑖
𝑥
𝑗
∈ nil(𝐾

[0]
∩ 𝐾

0
).

(4) 𝑥
𝑖
𝑥
𝑖
 ∈ Nil(𝐾

[0]
∩ 𝐾

0
).

Proof. (1) Let 𝑥(𝛼)
𝑥
𝑢 be a standard basis element of 𝐾. A

direct calculation shows that

(ad𝑥(2𝜀𝑖))
𝑝

(𝑥
(𝛼)
𝑥
𝑢
) = (ad𝑥(2𝜀𝑖))

𝑝−1

(𝜎 (𝑖) 𝑥
𝑖
𝑥
(𝛼−𝜀
𝑖
)
𝑥
𝑢
)

= 𝜎(𝑖)
𝑝
𝑥
𝑝

𝑖
𝑥
(𝛼−𝑝𝜀

𝑖
)
𝑥
𝑢
= 0.

(43)

(2) Since ad𝑥
𝑖
𝑥
𝑗

= 𝜎(𝑖)(𝑥
𝑗
𝐷

𝑖
 + 𝑥

𝑖
𝐷

𝑗
) and 𝑥

𝑗
𝐷

𝑖
 ∘

𝑥
𝑖
𝐷

𝑗
 = 𝑥

𝑖
𝐷

𝑗
 ∘ 𝑥

𝑗
𝐷

𝑖
 , it follows from the binomial theorem

that (ad𝑥
𝑖
𝑥
𝑗
)
𝑝
= 𝜎(𝑖)

𝑝
(𝑥

𝑗
𝐷

𝑖
 + 𝑥

𝑖
𝐷

𝑗
)

𝑝
= 𝜎(𝑖)

𝑝
((𝑥

𝑗
𝐷

𝑖
)

𝑝
+

(𝑥
𝑖
𝐷

𝑗
)

𝑝
) = 0.

(3) Since ad𝑥
𝑖
𝑥
𝑗
= 𝜎(𝑖)(𝑥

𝑗
𝐷

𝑖
 −𝑥

𝑖
𝐷

𝑗
) and 𝑥

𝑗
𝐷

𝑖
 ∘𝑥

𝑖
𝐷

𝑗
 =

𝑥
𝑖
𝐷

𝑗
 ∘ 𝑥

𝑗
𝐷

𝑖
 , we have (ad𝑥

𝑖
𝑥
𝑗
)
𝑝
= 𝜎(𝑖)

𝑝
(𝑥

𝑗
𝐷

𝑖
 − 𝑥

𝑖
𝐷

𝑗
)

𝑝
=

𝜎(𝑖)
𝑝
((𝑥

𝑗
𝐷

𝑖
)

𝑝
− (𝑥

𝑖
𝐷

𝑗
)

𝑝
) = 0.

(4) It follows from (1) that 𝑥
𝑖
𝑥
𝑖
 = 𝜎(𝑖)⟦𝑥

(2𝜀𝑖), 𝑥
(2𝜀
𝑖
)
⟧ ∈

Nil(𝐾
[0]
∩ 𝐾

0
).

Lemma 11. Suppose that 𝑛 ≥ 3. The following statements hold.
(1) Let 𝑖, 𝑗, 𝑘 be distinct elements of 𝑌

1
, and let 𝑎, 𝑏 ∈ F be

such that 𝑎2 + 𝑏2 = 0. Then 𝑦 = 𝑎𝑥
𝑖
𝑥
𝑗
+ 𝑏𝑥

𝑖
𝑥
𝑘
∈ nil(𝐾).

(2)𝑥
𝑖
𝑥
𝑗
∈ Nil(𝐾

[0]
∩ 𝐾

0
) holds for all distinct 𝑖, 𝑗 ∈ 𝑌

1
.

Proof. (1) A direct calculation shows that ad𝑦 =

𝑎𝑥
𝑗
𝐷

𝑖
− 𝑎𝑥

𝑖
𝐷

𝑗
+ 𝑏𝑥

𝑘
𝐷

𝑖
− 𝑏𝑥

𝑖
𝐷

𝑘
. For simplicity, we denote

𝑎𝑥
𝑗
𝐷

𝑖
, −𝑎𝑥

𝑖
𝐷

𝑗
, 𝑏𝑥

𝑘
𝐷

𝑖
, −𝑏𝑥

𝑖
𝐷

𝑘
by 𝐴, 𝐵, 𝐶, 𝐷, respectively.

Clearly,

𝐴
2
= 𝐵

2
= 𝐶

2
= 𝐷

2
= 0, 𝐴𝐶 = 𝐶𝐴 = 𝐵𝐷 = 𝐷𝐵 = 0.

(44)

Then

(ad𝑦)2 = 𝐴𝐵 + 𝐵𝐴 + 𝐴𝐷 + 𝐷𝐴 + 𝐵𝐶 + 𝐶𝐵 + 𝐷𝐶 + 𝐶𝐷.

(45)

By 𝐴𝐷𝐴 = 𝐷𝐴𝐷 = 𝐵𝐶𝐵 = 𝐶𝐵𝐶 = 0, we obtain

(ad𝑦)3 = 𝐴𝐵𝐴 + 𝐴𝐵𝐶 + 𝐴𝐷𝐶 + 𝐵𝐴𝐵 + 𝐵𝐴𝐷 + 𝐵𝐶𝐷

+ 𝐶𝐵𝐴 + 𝐶𝐷𝐴 + 𝐶𝐷𝐶 + 𝐷𝐴𝐵 + 𝐷𝐶𝐵 + 𝐷𝐶𝐷.

(46)
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Note that

𝐴𝐵𝐴 = −𝑎
2
𝐴, 𝐵𝐴𝐵 = −𝑎

2
𝐵,

𝐶𝐷𝐶 = −𝑏
2
𝐶, 𝐷𝐶𝐷 = −𝑏

2
𝐷,

𝑎
2
𝐴 = 𝐶𝐷𝐴 + 𝐴𝐷𝐶, 𝑎

2
𝐵 = 𝐵𝐶𝐷 + 𝐷𝐶𝐵,

𝑏
2
𝐶 = 𝐴𝐵𝐶 + 𝐶𝐵𝐴, 𝑏

2
𝐷 = 𝐵𝐴𝐷 + 𝐷𝐴𝐵.

(47)

It follows that

𝐴𝐵𝐴 + 𝐶𝐷𝐴 + 𝐴𝐷𝐶 = 0, 𝐵𝐴𝐵 + 𝐵𝐶𝐷 + 𝐷𝐶𝐵 = 0,

𝐶𝐷𝐶 + 𝐴𝐵𝐶 + 𝐶𝐵𝐴 = 0, 𝐷𝐶𝐷 + 𝐵𝐴𝐶 + 𝐷𝐴𝐵 = 0,

(48)

thus proving that (ad𝑦)3 = 0.
(2) Let 𝑎 ∈ F such that 𝑎2 = −1. Since char(F) > 2, we

have 𝑎2 − 1 = −2 ̸= 0. Let 𝑘 ∈ 𝑌
1
\ {𝑖, 𝑗}. Then (1) yields

𝑦
1
= 𝑎𝑥

𝑖
𝑥
𝑗
+ 𝑥

𝑖
𝑥
𝑘
∈ Nil (𝐻

[0]
∩ 𝐻

0
) ,

𝑦
2
= 𝑥

𝑖
𝑥
𝑗
+ 𝑎𝑥

𝑖
𝑥
𝑘
∈ Nil (𝐻

[0]
∩ 𝐻

0
) .

(49)

Hence 𝑥
𝑖
𝑥
𝑗
= −(1/2)(𝑎𝑦

1
− 𝑦

2
) ∈ Nil(𝐻

[0]
∩ 𝐻

0
).

Lemma 12. Let 𝑖 ∈ 𝐽
0
and 𝑗 ∈ 𝑌

1
. Then 𝑥

𝑖
𝑥
𝑗
∈ nil(𝐾

[0]
∩ 𝐾

1
).

Proof. A direct calculation shows that

ad𝑥
𝑖
𝑥
𝑗
= 𝜎 (𝑖) 𝑥

𝑗
𝐷

𝑖
 − 𝑥

𝑖
𝐷

𝑗
,

(ad𝑥
𝑖
𝑥
𝑗
)
2

= −𝜎 (𝑖) (𝑥
𝑖
𝐷

𝑗
∘ 𝑥

𝑗
𝐷

𝑖
 + 𝑥

𝑗
𝐷

𝑖
 ∘ 𝑥

𝑖
𝐷

𝑗
) .

(50)

Since

(𝑥
𝑖
𝐷

𝑗
∘ 𝑥

𝑗
𝐷

𝑖
) ∘ (𝑥

𝑗
𝐷

𝑖
 ∘ 𝑥

𝑖
𝐷

𝑗
)

= 0 = (𝑥
𝑗
𝐷

𝑖
 ∘ 𝑥

𝑖
𝐷

𝑗
) ∘ (𝑥

𝑖
𝐷

𝑗
∘ 𝑥

𝑗
𝐷

𝑖
) ,

(51)

we have

(ad𝑥
𝑖
𝑥
𝑗
)
2𝑝

= −𝜎 (𝑖) ((𝑥
𝑖
𝐷

𝑗
∘ 𝑥

𝑗
𝐷

𝑖
)

𝑝

+ (𝑥
𝑗
𝐷

𝑖
 ∘ 𝑥

𝑖
𝐷

𝑗
)
𝑝

) = 0.

(52)

Lemma 13. (1) Nil(𝐾
[0]
) = spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽}.

(2) Nil(𝐾
0
) = Nil(𝐾

[0]
) + 𝐾

1
.

(3) If 𝑛 ≥ 3, then Nil(𝐾
[0]

∩ 𝐾
0
) = spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈

𝐽, 𝜇(𝑖) = 𝜇(𝑗)}.
(4) If 𝑛 ≤ 2, then Nil(𝐾

[0]
∩ 𝐾

0
) = spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽

0
}.

(5) Nil(𝐾
0
∩ 𝐾

0
) = Nil(𝐾

[0]
∩ 𝐾

0
) + 𝐾

1
∩ 𝐾

0
.

Proof. (1) Let 𝑦 = 𝑎
𝑚
𝑥
𝑚
+ ∑

𝑖,𝑗∈𝐽
𝑎
𝑖𝑗
𝑥
𝑖
𝑥
𝑗
be an arbitrary

element of nil(𝐾
[0]
). Suppose that 𝑎

𝑚
̸= 0. Since (ad𝑦)𝑡(1) =

(−2𝑎
𝑚
)
𝑡
̸= 0 and ∀𝑡 ∈ N, it follows that 𝑦 is not ad-nilpotent,

a contradiction. Hence 𝑎
𝑚

= 0, and therefore nil(𝐾
[0]
) ⊆

spanF {𝑥𝑖
𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽}. Noting that spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽} is a

subalgebra of𝐾, we obtain Nil(𝐾
[0]
) ⊆ spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽}.

Conversely, Lemma 10 shows that spanF {𝑥𝑖
𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽

0
} ⊆

Nil(𝐾
[0]
), and Lemma 12 implies that spanF {𝑥𝑖

𝑥
𝑗
| 𝑖 ∈ 𝐽

0
, 𝑗 ∈

𝑌
1
} ⊆ Nil(𝐾

[0]
). Moreover, since 𝑥

𝑖
𝑥
𝑗
= ⟦𝑥

1
𝑥
𝑖
, 𝑥

1
𝑥

𝑗
⟧ for

all 𝑖, 𝑗 ∈ 𝑌
1
, we have spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝑌

1
} ⊆ Nil(𝐾

[0]
).

Therefore spanF {𝑥𝑖
𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽} ⊆ Nil(𝐾

[0]
).

(2) It is clear that Nil(𝐾
[0]
) ⊆ Nil(𝐾

0
), which combined

with Lemma 9 yields Nil(𝐾
[0]
) + 𝐾

1
⊆ Nil(𝐾

0
).

On the other hand, suppose that 𝑦 = 𝑦
[0]

+ 𝑦
1
is an

arbitrary element of nil(𝐾
0
), where 𝑦

[0]
∈ 𝐾

[0]
and 𝑦

1
∈ 𝐾

1
.

By Lemma 5, we have 𝑦
[0]

∈ Nil(𝐾
[0]
), and hence 𝑦 = 𝑦

[0]
+

𝑦
1
∈ Nil(𝐾

[0]
) +𝐾

1
. Since Nil(𝐾

[0]
) +𝐾

1
is a subalgebra of𝐾,

it follows that Nil(𝐾
0
) ⊆ Nil(𝐾

[0]
) + 𝐾

1
.

(3) By (1), we see that Nil(𝐾
[0]
∩ 𝐾

0
) ⊆ Nil(𝐾

[0]
) ∩ 𝐾

0
=

spanF {𝑥𝑖
𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽, 𝜇(𝑖) = 𝜇(𝑗)}. The reverse inclusion

follows from Lemmas 10 and 11.
(4) Clearly the statement holds when 𝑛 = 1. Now we

consider the case 𝑛 = 2. By (1), we can suppose that 𝑦 =

𝑎𝑥
𝑚+1

𝑥
𝑠
+ ∑

𝑖,𝑗∈𝐽0
𝑎
𝑖𝑗
𝑥
𝑖
𝑥
𝑗
is an arbitrary element of nil(𝐾

[0]
∩

𝐾
0
), where 𝑎, 𝑎

𝑖𝑗
∈ F . If 𝑎 ̸= 0, a direct calculation shows that

(ad𝑦)2𝑡(𝑥
𝑠
) = (−1)

𝑡
𝑎
2𝑡
𝑥
𝑠
̸= 0 for all 𝑡 ∈ N, contradicting that

𝑦 is ad-nilpotent. Hence 𝑎 = 0 and 𝑦 ∈ spanF {𝑥𝑖
𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽

0
},

proving nil(𝐾
[0]

∩ 𝐾
0
) ⊆ spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽

0
}. Since

spanF {𝑥𝑖
𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽

0
} is a subalgebra of 𝐾, it follows that

Nil(𝐾
[0]
∩𝐾

0
) ⊆ spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝐽

0
}. The reverse inclusion

follows from Lemma 10.
(5) is completely analogous to the proof of (2).

Let 𝜌 be the corresponding representation with respect to
𝐾

[0]
-module 𝐾

[−1]
; that is, 𝜌(𝑦) = ad𝑦|

𝐾[−1]
, ∀𝑦 ∈ 𝐾

[0]
. It is

easy to see that 𝜌 is faithful. For 𝑦 ∈ 𝐾
[0]
, we also denote by

𝜌(𝑦) the matrix of 𝜌(𝑦) relative to the fixed ordered F-basis
as follows:

{𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑚−1
, 𝑥

𝑚+1
, . . . , 𝑥

𝑠
} . (53)

Denote by gl(2𝑟, 𝑛) the general linear Lie superalgebra of (2𝑟+
𝑛) × (2𝑟 + 𝑛)matrices over F . Let 𝑒

𝑖𝑗
denote the (𝑠 − 1) × (𝑠 −

1) matrix whose (𝑖, 𝑗)-entry is 1 and 0 elsewhere, and 𝐺 =

(
0 𝐼𝑟

−𝐼𝑟 0
), where 𝐼

𝑟
is 𝑟 × 𝑟 unit matrix. Let sp(2𝑟, F) be the Lie

algebra consisting of all 2𝑟 × 2𝑟 matrices 𝐴 over F satisfying
𝐴

𝑇
𝐺 + 𝐺𝐴 = 0, where 𝐴𝑇 is the transpose of 𝐴. Set K =

L ⊕ F𝐼
𝑠−1

; here

L = {(
𝐴 𝐵

𝐶 𝐷
) ∈ gl (2𝑟, 𝑛) | 𝐴 ∈ sp (2𝑟, F) , 𝐵𝑇

𝐺 + 𝐶 = 0,

𝐷 anti-symmetric} .

(54)

Lemma 14. (1) 𝜌(𝐾
[0]
) = K.

(2) If 𝑦 ∈ nil(𝐾
[0]
), then 𝜌(𝑦) is a nilpotent matrix.

Proof. (1) For 𝑖, 𝑗 ∈ 𝐽, a direct calculation shows that

⟦𝑥
𝑖
𝑥
𝑗
, 𝑥

𝑘
⟧ = 𝜎 (𝑖) (−1)

𝜇(𝑖)(𝜇(𝑖)+𝜇(𝑗))
𝛿
𝑖

𝑘
𝑥
𝑗

+ 𝜎 (𝑗) (−1)
𝜇(𝑗)(𝜇(𝑖)+𝜇(𝑗))+𝜇(𝑖)𝜇(𝑗)

𝛿
𝑗

𝑘
𝑥
𝑖
.

(55)
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Therefore

𝜌 (𝑥
𝑖
𝑥
𝑗
) = 𝜎 (𝑖) (−1)

𝜇(𝑖)+𝜇(𝑖)𝜇(𝑗)
𝑒
𝑗
̂
𝑖
 + 𝜎 (𝑗) (−1)

𝜇(𝑗)
𝑒
�̂�
̂
𝑗
 , (56)

where

�̂� = {
𝑙 if 𝑙 ∈ 𝐽

0
,

𝑙 − 1 if 𝑙 ∈ 𝑌
1
.

(57)

Since ⟦𝑥
𝑚
, 𝑥

𝑘
⟧ = −𝑥

𝑘
, ∀𝑘 ∈ 𝐽, we see that

𝜌 (𝑥
𝑚
) = −𝐼

𝑠−1
. (58)

From (56) and (58), we can easily verify (1).
(2) follows from the definition of 𝜌.

If 𝐴 = (𝑎
𝑖𝑗
) is an 𝑛 × 𝑛 antisymmetric matrix over F , we

write Γ(𝐴) to denote ∑
1≤𝑖<𝑗≤𝑛

𝑎
2

𝑖𝑗
. As tr(𝐴2

) = −2∑
1≤𝑖<𝑗≤𝑛

𝑎
2

𝑖𝑗
,

it is clear that if 𝐴 is a nilpotent matrix then Γ(𝐴) = 0.

Lemma 15. Suppose that 𝑛 ≥ 3. Let 𝐴 = (𝑎
𝑖𝑗
) be an

antisymmetric matrix over F of order 𝑛. If 𝐴 satisfies the
following properties:

(1) Γ(𝐴) = 0;
(2) Γ([𝐴, 𝐵]) = 0 holds for every 𝑛 × 𝑛 antisymmetric

matrix 𝐵.

Then, 𝐴 = 0.

Proof. Let𝑁 = {1, 2, . . . , 𝑛}. Three cases arise as follows.

Case 1 (𝑛 > 4). By the property (2) of 𝐴, we see that

Γ ([𝐴, 𝐸
𝑖𝑗
− 𝐸

𝑗𝑖
+ 𝐸

𝑘𝑙
− 𝐸

𝑙𝑘
]) − Γ ([𝐴, 𝐸

𝑖𝑗
− 𝐸

𝑗𝑖
])

− Γ ([𝐴, 𝐸
𝑘𝑙
− 𝐸

𝑙𝑘
]) = 0

(59)

holds for all 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁. Therefore, if 𝑖 < 𝑗 < 𝑘 < 𝑙, a direct
calculation shows that the left-hand side of (59) is equal to
4𝑎

𝑖𝑙
𝑎
𝑗𝑘
− 4𝑎

𝑖𝑘
𝑎
𝑗𝑙
. Hence 4𝑎

𝑖𝑙
𝑎
𝑗𝑘
− 4𝑎

𝑖𝑘
𝑎
𝑗𝑙
= 0. Similarly, if 𝑖 <

𝑘 < 𝑗 < 𝑙, then −4𝑎
𝑖𝑙
𝑎
𝑘𝑗
− 4𝑎

𝑖𝑘
𝑎
𝑗𝑙
= 0, and if 𝑖 < 𝑘 < 𝑙 < 𝑗,

then −4𝑎
𝑖𝑙
𝑎
𝑘𝑗
+ 4𝑎

𝑖𝑘
𝑎
𝑙𝑗
= 0. Thus, for all 𝑖

1
< 𝑖

2
< 𝑖

3
< 𝑖

4
, we

see that 𝑎
𝑖1𝑖3
𝑎
𝑖2𝑖4

= 𝑎
𝑖1𝑖4
𝑎
𝑖2𝑖3

= −𝑎
𝑖1𝑖2
𝑎
𝑖3𝑖4

= −𝑎
𝑖1𝑖3
𝑎
𝑖2𝑖4

. Then

𝑎
𝑖1𝑖2
𝑎
𝑖3𝑖4

= 𝑎
𝑖1𝑖3
𝑎
𝑖2𝑖4

= 𝑎
𝑖1𝑖4
𝑎
𝑖2𝑖3

= 0. (60)

Denote 𝜂
𝑖
= ∑

𝑛

𝑡=1
𝑎
2

𝑖𝑡
for 𝑖 ∈ 𝑁. If 𝑖 ̸= 𝑗, a direct calculation

shows that

0 = Γ ([𝐴, 𝐸
𝑖𝑗
− 𝐸

𝑗𝑖
]) = 𝜂

𝑖
+ 𝜂

𝑗
− 2𝑎

2

𝑖𝑗
. (61)

Let 𝑘 ∈ 𝑁 \ {𝑖, 𝑗}. Then

𝜂
𝑖
+ 𝜂

𝑘
− 2𝑎

2

𝑖𝑘
= 0, 𝜂

𝑗
+ 𝜂

𝑘
− 2𝑎

2

𝑗𝑘
= 0. (62)

From the equalities above, we see that 𝜂
𝑖
= 𝑎

2

𝑖𝑗
+ 𝑎

2

𝑖𝑘
− 𝑎

2

𝑗𝑘

holds for all distinct 𝑖, 𝑗, 𝑘 ∈ 𝑁. Pick 𝑙 ∈ 𝑁 \ {𝑖, 𝑗, 𝑘}. Then
𝜂
𝑖
= 𝑎

2

𝑖𝑗
+ 𝑎

2

𝑖𝑙
− 𝑎

2

𝑗𝑙
. Hence 𝑎2

𝑖𝑙
+ 𝑎

2

𝑗𝑘
= 𝑎

2

𝑖𝑘
+ 𝑎

2

𝑗𝑙
holds for all

distinct 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁. It follows that

𝑎
2

𝑖1𝑖2
+ 𝑎

2

𝑖3𝑖4
= 𝑎

2

𝑖1𝑖3
+ 𝑎

2

𝑖2𝑖4
= 𝑎

2

𝑖2𝑖3
+ 𝑎

2

𝑖1𝑖4
(63)

holds for all 𝑖
1
< 𝑖

2
< 𝑖

3
< 𝑖

4
.

Assume that there exists some 𝑎
𝑖𝑗

̸= 0. For distinct 𝑘, 𝑙 ∈
𝑁 \ {𝑖, 𝑗}, we have 𝑎

𝑘𝑙
= 0 by (60). Then we can write the

following:

𝐴 = ∑

𝑡∈𝑁

𝑎
𝑖𝑡
𝐸

𝑖𝑡
+ ∑

𝑡∈𝑁

𝑎
𝑗𝑡
𝐸

𝑗𝑡
− ∑

𝑡∈𝑁

𝑎
𝑖𝑡
𝐸

𝑡𝑖
− ∑

𝑡∈𝑁

𝑎
𝑗𝑡
𝐸

𝑡𝑗
. (64)

A direct calculation shows that

0 = Γ ([𝐴, 𝐸
𝑘𝑙
− 𝐸

𝑙𝑘
]) = 𝑎

2

𝑖𝑙
+ 𝑎

2

𝑗𝑙
+ 𝑎

2

𝑖𝑘
+ 𝑎

2

𝑗𝑘
. (65)

Since 𝑎2
𝑖𝑙
+ 𝑎

2

𝑗𝑘
= 𝑎

2

𝑗𝑙
+ 𝑎

2

𝑖𝑘
by (63), we obtain 𝑎2

𝑖𝑙
+ 𝑎

2

𝑗𝑘
= 0.

Hence 𝑎2
𝑖𝑗
= 𝑎

2

𝑖𝑗
+ 𝑎

2

𝑘𝑙
= 𝑎

2

𝑖𝑙
+ 𝑎

2

𝑗𝑘
= 0 by (63), contradicting the

assumption that 𝑎
𝑖𝑗

̸= 0.

Case 2 (𝑛 = 4). Note that (60) and (63) hold; that is,

𝑎
12
𝑎
34
= 𝑎

13
𝑎
24
= 𝑎

14
𝑎
23
= 0,

𝑎
2

12
+ 𝑎

2

34
= 𝑎

2

13
+ 𝑎

2

24
= 𝑎

2

23
+ 𝑎

2

14
.

(66)

Moreover, since 0 = Γ(𝐴) − Γ([𝐴, 𝐸
12
− 𝐸

21
]) = 𝑎

2

12
+ 𝑎

2

34
, we

see that 𝐴 = 0.

Case 3 (𝑛 = 3). Since 0 = Γ(𝐴) = 𝑎2
12
+𝑎

2

23
+𝑎

2

13
and Γ([𝐴, 𝐸

12
−

𝐸
21
]) = 𝑎

2

23
+ 𝑎

2

13
, it follows that 𝑎

12
= 0. Similarly 𝑎

23
= 𝑎

13
=

0.

Lemma 16. Let 𝑦 be a nonzero element of nil(𝐾
[0]
∩𝐾

0
). Then

there exists 𝑧 ∈ 𝐾
[0]
∩ 𝐾

0
such that ⟦𝑦, 𝑧⟧ is not 𝑎𝑑-nilpotent.

Proof. By Lemma 13, we can suppose that

𝑦 = ∑

𝑙∈𝐽0

𝑎
𝑙
𝑥
(2𝜀𝑙) + ∑

𝑙,𝑡∈𝐽0,𝑙<𝑡

𝑏
𝑙𝑡
𝑥
𝑙
𝑥
𝑡
+ ∑

𝑙,𝑡∈𝑌1,𝑙<𝑡

𝑐
𝑙𝑡
𝑥
𝑙
𝑥
𝑡
, (67)

where 𝑎
𝑙
, 𝑏

𝑙𝑡
, 𝑐

𝑙𝑡
∈ F . Three cases arise as follows.

Case 1. There exists some 𝑎
𝑖
̸= 0. Let 𝑧 = 𝑥

(2𝜀
𝑖
). Then 𝑦, 𝑧 =

𝜎(𝑖)𝑎
𝑖
𝑥
𝑖
𝑥
𝑖
 + ℎ, where 𝑥

𝑖
does not appear in the expression

of ℎ. Noting that (ad⟦𝑦, 𝑧⟧)ℓ(𝑥
𝑖
) = 𝑎

ℓ

𝑖
𝑥
𝑖
 for all ℓ ∈ N, we

conclude that ⟦𝑦, 𝑧⟧ is not ad-nilpotent.

Case 2. All 𝑎
𝑙
= 0, and there exists 𝑏

𝑖𝑗
̸= 0. Let 𝑧 = 𝑥

𝑖
𝑥
𝑗
 .

A direct calculation shows that ⟦𝑦, 𝑧⟧ = 𝜎(𝑗)𝑎
𝑖𝑗
𝑥
𝑖
𝑥
𝑖
 +

ℎ, where 𝑥
𝑖
does not appear in the expression of ℎ. As

(ad⟦𝑦, 𝑧⟧)ℓ(𝑥
𝑖
) = 𝜎(𝑖)

ℓ
𝜎(𝑗)

ℓ
𝑎
ℓ

𝑖𝑗
𝑥
𝑖
 and ∀ℓ ∈ N, we see that

⟦𝑦, 𝑧⟧ is not ad-nilpotent.

Case 3. All 𝑎
𝑙
= 0 and 𝑏

𝑙𝑡
= 0. So 𝑦 ∈ spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝑌

1
}.

This can happen only if 𝑛 ≥ 3 by Lemma 13(4). Note that
𝜌(𝑦) is an antisymmetric nilpotent matrix. Then Lemma 15
provides an element 𝑧 of spanF {𝑥𝑖

𝑥
𝑗
| 𝑖, 𝑗 ∈ 𝑌

1
} such that

⟦𝜌(𝑦), 𝜌(𝑧)⟧ is not a nilpotent matrix. Hence ⟦𝑦, 𝑧⟧ is not ad-
nilpotent.

4. Proofs of Theorems

Proof of Theorem 1. We proceed in several steps.
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(I) Nil(𝐾
0
) = Nil(𝐾

0
∩𝐾

0
). Suppose that 𝑦 is an arbitrary

element of nil(𝐾
0
). It follows from (2) and (3) of Lemma 5

that 𝑦 ∈ 𝐾
0
, which combined with 𝑦 ∈ nil(𝐾

0
) yields 𝑦 ∈

nil(𝐾
0
∩ 𝐾

0
), thus proving nil(𝐾

0
) ⊆ nil(𝐾

0
∩ 𝐾

0
). Hence

Nil(𝐾
0
) ⊆ Nil(𝐾

0
∩ 𝐾

0
).

The reverse inclusion is clear.
(II) 𝐾

0
∩ 𝐾

0
= Nor

𝐾0
(Nil(𝐾

0
)). We first prove 𝐾

0
∩ 𝐾

0
⊆

Nor
𝐾0
(Nil(𝐾

0
)). It follows from (I) that

Nor
𝐾0
(Nil (𝐾

0
)) = Nor

𝐾0
(Nil (𝐾

0
∩ 𝐾

0
)) . (68)

Therefore

Nil (𝐾
0
∩ 𝐾

0
) ⊆ Nor

𝐾0
(Nil (𝐾

0
∩ 𝐾

0
)) = Nor

𝐾0
(Nil (𝐾

0
)) .

(69)

By formula (12), we see that ⟦𝑥
𝑚
, 𝐾

[0]
⟧ = 0 and ⟦𝑥

𝑚
, 𝐾

1
∩

𝐾
0
⟧ ⊆ 𝐾

1
∩ 𝐾

0
, proving

𝑥
𝑚
∈ Nor

𝐾0
(Nil (𝐾

0
)) . (70)

In the case of 𝑛 ≥ 3, by (3) and (5) of Lemma 13, we obtain
𝐾

0
∩ 𝐾

0
= Nil(𝐾

0
∩ 𝐾

0
) + F𝑥

𝑚
. By (69) and (70), we have

𝐾
0
∩𝐾

0
⊆ Nor

𝐾0
(Nil(𝐾

0
)). In the case of 𝑛 = 2, by (4) and (5)

of Lemma 13, we have𝐾
0
∩𝐾

0
= Nil(𝐾

0
∩𝐾

0
)+F𝑥

𝑚
+F𝑥

𝑚+1
𝑥
𝑠
.

Note that 𝑥
𝑚+1

𝑥
𝑠
∈ Nor

𝐾0
(Nil(𝐾

0
)), which combined with

(69) and (70) yields 𝐾
0
∩ 𝐾

0
⊆ Nor

𝐾0
(Nil(𝐾

0
)). In the case

of 𝑛 = 1, by (4) and (5) of Lemma 13, we have 𝐾
0
∩ 𝐾

0
=

Nil(𝐾
0
∩𝐾

0
)+F𝑥

𝑚
. Hence𝐾

0
∩𝐾

0
⊆ Nor

𝐾0
(Nil(𝐾

0
)) by (69)

and (70).
Conversely, suppose that 𝑦 = 𝑦

[−2]
+ 𝑦

−1
∈

Nor
𝐾0
(Nil(𝐾

0
)), where 𝑦

[−2]
∈ 𝐾

[−2]
, 𝑦

−1
∈ 𝐾

−1
. If 𝑦

[−2]
̸= 0,

then ⟦𝑦, 𝑥
1
𝑥
𝑚
⟧ = 2𝑦

[−2]
𝑥
1
+ ℎ ∉ Nil(𝐾

0
) by Lemma 13(5),

contradicting 𝑦 ∈ Nor
𝐾0
(Nil(𝐾

0
)), where ℎ ∈ 𝐾

0
. Hence

𝑦
[−2]

= 0 and we can write 𝑦 = 𝑦
[−1]

+ 𝑦
0
, where 𝑦

[−1]
=

∑
𝑖∈𝐽0

𝑎
𝑖
𝑥
𝑖
∈ 𝐾

[−1]
, 𝑎

𝑖
∈ F , 𝑦

0
∈ 𝐾

0
. If there is some 𝑎

𝑗
̸= 0, then

⟦𝑦, 𝑥
(2𝜀
𝑗
)
⟧ = 𝜎(𝑗)𝑎

𝑗
𝑥
𝑗
+ℎ, where ℎ ∈ 𝐾

0
. Lemma 13(5) shows

that ⟦𝑦, 𝑥(2𝜀
𝑗
)
⟧ ∉ Nil(𝐾

0
), contradicting 𝑦 ∈ Nor

𝐾0
(Nil(𝐾

0
)).

Hence 𝑦
[−1]

= 0 and 𝑦 ∈ 𝐾
0
∩ 𝐾

0
, proving Nor

𝐾0
(Nil(𝐾

0
)) ⊆

𝐾
0
∩ 𝐾

0
.

(III) Let 𝑀 = {𝑦 ∈ nil(𝐾
0
) | ⟦𝑦,𝐾

0
∩ 𝐾

0
⟧ ⊆ nil(𝐾

0
)}.

Then𝑀 = 𝐾
1
∩𝐾

0
. Suppose that 𝑦 = 𝑦

[0]
+ 𝑦

1
is an arbitrary

element of 𝑀, where 𝑦
[0]

∈ 𝐾
[0]
∩ 𝐾

0
and 𝑦

1
∈ 𝐾

1
∩ 𝐾

0
. If

𝑦
[0]

̸= 0, since 𝑦
[0]
∈ nil(𝐾

[0]
) by Lemma 5(4), then Lemma 16

provides an element 𝑧 ∈ 𝐾
[0]
∩𝐾

0
such that ⟦𝑦

[0]
, 𝑧⟧ is not ad-

nilpotent. Hence ⟦𝑦, 𝑧⟧ is not ad-nilpotent by Lemma 5(4),
contradicting 𝑦 ∈ 𝑀. Therefore 𝑦

[0]
= 0 and 𝑦 ∈ 𝐾

1
∩ 𝐾

0
,

thus proving𝑀 ⊆ 𝐾
1
∩ 𝐾

0
.

On the other hand, since ⟦𝐾
1
∩𝐾

0
, 𝐾

0
∩𝐾

0
⟧ ⊆ 𝐾

1
∩𝐾

0
⊆

nil(𝐾
0
∩ 𝐾

0
) by Lemma 9, it follows that𝐾

1
∩ 𝐾

0
⊆ 𝑀.

(IV) Let 𝑄 = {𝑦 ∈ 𝐾
1
| ⟦𝑦,𝐾

1
⟧ ⊆ 𝐾

0
∩ 𝐾

0
}. Then 𝑄 =

𝐾
1
∩ 𝐾

1
. Suppose that 𝑦 = 𝑦

[−1]
+ 𝑦

0
∈ 𝑄, where 𝑦

[−1]
=

∑
𝑖∈𝑌1

𝑎
𝑖
𝑥
𝑖
∈ 𝐾

[−1]
∩ 𝐾

1
and 𝑦

0
∈ 𝐾

0
∩ 𝐾

1
. If there is some

𝑎
𝑗
̸= 0, then ⟦𝑦, 𝑥

𝑗
⟧ = −𝑎

𝑗
+ ⟦𝑦

0
, 𝑥

𝑗
⟧ ∉ 𝐾

−1
∩ 𝐾

0
, and hence

⟦𝑦, 𝑥
𝑗
⟧ ∉ 𝐾

0
∩ 𝐾

0
, contradicting 𝑦 ∈ 𝑄. Therefore 𝑦

[−1]
= 0,

andwe canwrite𝑦 = 𝑦
[0]
+𝑦

1
, where𝑦

[0]
= ∑

𝑖∈𝐽0,𝑗∈𝑌1
𝑎
𝑖𝑗
𝑥
𝑖
𝑥
𝑗
∈

𝐾
[0]
∩ 𝐾

1
and 𝑦

1
∈ 𝐾

1
∩ 𝐾

1
. If there exists some 𝑎

𝑙𝑡
̸= 0, then

⟦𝑦, 𝑥
𝑡
⟧ = −∑

𝑖∈𝐽0
𝑎
𝑖𝑡
𝑥
𝑖
+ ⟦𝑦

1
, 𝑥

𝑡
⟧ ∉ 𝐾

0
∩ 𝐾

0
, a contradiction

which yields 𝑦
[0]
= 0 and 𝑦 ∈ 𝐾

1
∩ 𝐾

1
.

The reverse inclusion follows from the fact that𝐾
1
⊂ 𝐾

−1
.

(V) ⟦𝐾
1
, 𝐾

1
∩ 𝐾

0
⟧ = 𝐾

0
∩ 𝐾

1
. It suffices to show that

𝐾
0
∩ 𝐾

1
⊆ ⟦𝐾

1
, 𝐾

1
∩ 𝐾

0
⟧. Suppose that 𝑥(𝛼)

𝑥
𝑢 is an arbitrary

basis element of𝐾
0
∩𝐾

1
with 𝑥𝑢

= 𝑥
𝑖
𝑥
V. Note that 𝑥(𝛼+𝜀𝑚)𝑥

V
∈

𝐾
1
∩𝐾

0
. Since𝑥(𝛼)

𝑥
𝑢
= ⟦𝑥

𝑖
, 𝑥

(𝛼+𝜀𝑚)𝑥
V
⟧, it follows that𝑥(𝛼)

𝑥
𝑢
∈

⟦𝐾
1
, 𝐾

1
∩ 𝐾

0
⟧, as desired.

It follows from (II) and (V) that𝐾
0
= 𝐾

0
∩ 𝐾

0
+ 𝐾

0
∩ 𝐾

1

is invariant under automorphisms of𝐾. By (III) and (IV), we
obtain that 𝐾

1
= 𝐾

1
∩ 𝐾

0
+ 𝐾

1
∩ 𝐾

1
is invariant. Therefore

𝐾
−1
= {𝑥 ∈ 𝐾 | ⟦𝑥,𝐾

1
⟧ ⊆ 𝐾

0
} is invariant. By the transitivity

of 𝐾, we conclude that

𝐾
𝑖+1

= {𝑥 ∈ 𝐾
𝑖
| ⟦𝑥, 𝐾

−1
⟧ ⊆ 𝐾

𝑖
} , ∀𝑖 ≥ 0. (71)

Hence the natural filtration of𝐾 is invariant under automor-
phisms of𝐾.

Proof of Theorem 2. Let 𝜑 : 𝐾(2𝑟 + 1, 𝑛) → 𝐾(2𝑟

+

1, 𝑛

) be an isomorphism of Lie superalgebras. Let 𝐾 and 𝐾

denote 𝐾(2𝑟 + 1, 𝑛) and 𝐾(2𝑟

+ 1, 𝑛


), respectively. Since

𝜑(𝐾
0
) = 𝐾



0
and 𝜑(Nil(𝐾

0
)) = Nil(𝐾

0
), it follows that

𝜑(Nor
𝐾0
(Nil(𝐾

0
))) = Nor

𝐾


0

(Nil(𝐾

0
)). By (II) in the proof of

Theorem 1, we have

𝜑 (𝐾
0
∩ 𝐾

0
) = 𝜑 (Nor

𝐾0
(Nil (𝐾

0
)))

= Nor
𝐾


0

(Nil (𝐾

0
)) = 𝐾



0
∩ 𝐾



0
.

(72)

Consequently

𝜑 ({𝑦 ∈ nil (𝐾
0
) | ⟦𝑦,𝐾

0
∩ 𝐾

0
⟧ ⊆ nil (𝐾

0
)})

= {𝑦 ∈ nil (𝐾

0
) | ⟦𝑦,𝐾



0
∩ 𝐾



0
⟧ ⊆ nil (𝐾

0
)} .

(73)

Applying (III) in the proof of Theorem 1, we see that 𝜑(𝐾
1
∩

𝐾
0
) = 𝐾



1
∩ 𝐾



0
, which combined with (V) yields

𝜑 (𝐾
0
∩ 𝐾

1
) = 𝜑 (⟦𝐾

1
, 𝐾

1
∩ 𝐾

0
⟧) = ⟦𝐾



1
, 𝐾



1
∩ 𝐾



0
⟧

= 𝐾


0
∩ 𝐾



1
.

(74)

It follows from (72) and (74) that 𝜑(𝐾
0
) = 𝐾



0
. Therefore 𝜑

induces an isomorphism of Z
2
-graded spaces 𝜑 : 𝐾/𝐾

0
→

𝐾

/𝐾



0
. A comparison of dimensions shows that 𝑟 = 𝑟

 and
𝑛 = 𝑛

. The converse implication is clear.

Proof of Theorem 3. It suffices to prove that 𝜙|
𝐾[−1]

= 𝜓|
𝐾[−1]

implies that 𝜙 = 𝜓. Since 𝜑(1) = 𝜑(⟦𝑥
1
, 𝑥

1
⟧) =

𝜓(⟦𝑥
1
, 𝑥

1
⟧) = 𝜓(1), it follows that 𝜑|

𝐾[−2]
= 𝜓|

𝐾[−2]
. We use

induction on ℓ to show that

𝜑|
𝐾[ℓ]

= 𝜓|
𝐾[ℓ]

, ∀ℓ ≥ −1. (75)

Assume that ℓ ≥ 0 and (75) holds for ℓ − 1. Suppose that
𝑦 ∈ 𝐾

[ℓ]
and let 𝑧 = 𝜑(𝑦) − 𝜓(𝑦). We want to prove 𝑧 =

0. The induction hypothesis yields that 𝜑(𝑥
𝑖
) = 𝜓(𝑥

𝑖
) and

𝜑(⟦𝑦, 𝑥
𝑖
⟧) = 𝜓(⟦𝑦, 𝑥

𝑖
⟧), 𝑖 ∈ 𝐽. Therefore,

⟦𝑧, 𝜑 (𝑥
𝑖
)⟧ = ⟦𝜑 (𝑦) − 𝜓 (𝑦) , 𝜑 (𝑥

𝑖
)⟧

= 𝜑 (⟦𝑦, 𝑥
𝑖
⟧) − 𝜓 (⟦𝑦, 𝑥

𝑖
⟧) = 0.

(76)
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Since 𝜑(𝐾
0
) = 𝐾

0
and 𝜑(𝐾

−1
) = 𝐾

−1
by Theorem 1,

𝜑 induces an automorphism 𝜑 of the Z
2
-graded space

𝐾
−1
/𝐾

0
. Consequently there exists a homogeneous basis

{ℎ
1
, . . . , ℎ

𝑚−1
, ℎ

𝑚+1
, . . . , ℎ

𝑠
} of 𝐾

[−1]
such that (𝑥

𝑖
) ≡ ℎ

𝑖
(mod

𝐾
0
). Thus there exist 𝑔

𝑖
∈ 𝐾

0
such that 𝜑(𝑥

𝑖
) = ℎ

𝑖
− 𝑔

𝑖
, 𝑖 ∈ 𝐽.

Therefore, (76) shows that ⟦𝑧, ℎ
𝑖
⟧ = ⟦𝑧, 𝑔

𝑖
⟧ for all 𝑖 ∈ 𝐽. As

𝑧 = 𝜑(𝑦)−𝜓(𝑦) ∈ 𝐾
0
byTheorem 1, it can be decomposed into

𝑧 = ∑
𝑡

𝑗=0
𝑧
[𝑗]
, where 𝑧

[𝑗]
∈ 𝐾

[𝑗]
. Noting that ⟦𝑧

[0]
, ℎ

𝑖
⟧ ∈ 𝐾

[−1]

and ⟦𝑧, 𝑔
𝑖
⟧ ∈ 𝐾

0
, we obtain ⟦𝑧

[0]
, ℎ

𝑖
⟧ = 0 for all 𝑖 ∈ 𝐽, and

hence 𝑧
[0]

= 0 since 𝐾 is transitively graded. By induction,
we conclude that 𝑧

[𝑗]
= 0, 𝑗 = 0, 1, . . . , 𝑡. Hence, 𝑧 = 0, as

desired.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] R. E. Block and R. L. Wilson, “Classification of the restricted
simple Lie algebras,” Journal of Algebra, vol. 114, no. 1, pp. 115–
259, 1988.

[2] H. Strade, “The classification of the simplemodular Lie algebras.
IV. Determining the associated graded algebra,” Annals of
Mathematics, vol. 138, no. 1, pp. 1–59, 1993.

[3] V. G. Kac, “Lie superalgebras,”Advances inMathematics, vol. 26,
no. 1, pp. 8–96, 1977.

[4] M. Scheunert,The theory of Lie superalgebras, vol. 716 of Lecture
Notes in Mathematics, Springer, Berlin, Germany, 1979.

[5] V. G. Kac, “Description of filtered Lie algebras with which
graded Lie algebras of Cartan type are associated,,” Izvestiya
Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 8, no. 4,
article 801, 1974.

[6] A. I. Kostrikin and I. R. Shafarevic, “Graded Lie algebras of finite
characteristic,”Mathematics of the USSR-Izvestiya, vol. 3, no. 2,
pp. 237–304, 1969.

[7] N. Jin, “ad-nilpotent elements, quasi-nilpotent elements and
invariant filtrations of infinite-dimensional Lie algebras of
Cartan type,” Science inChina, vol. 35, no. 10, pp. 1191–1200, 1992.

[8] Y. Zhang and J. Nan, “Finite-dimensional Lie superalgebras
𝑊(𝑚, 𝑛, 𝑡) and 𝑆(𝑚, 𝑛, 𝑡) of Cartan type,” Advances in Mathe-
matics, vol. 27, no. 3, pp. 240–246, 1998.

[9] Y. Zhang and H. Fu, “Finite-dimensional Hamiltonian Lie
superalgebra,” Communications in Algebra, vol. 30, no. 6, pp.
2651–2673, 2002.

[10] L. Ma, L. Chen, and Y. Zhang, “Finite-dimensional simple
modular Lie superalgebra 𝑀,” Frontiers of Mathematics in
China, vol. 8, no. 2, pp. 411–441, 2013.

[11] X. Xu, L. Chen, andY. Zhang, “On themodular Lie superalgebra
Ω,” Journal of Pure and Applied Algebra, vol. 215, no. 5, pp. 1093–
1101, 2011.

[12] K. Zheng and Y. Zhang, “The natural filtration of finite dimen-
sional modular Lie superalgebras of special type,” Abstract and
Applied Analysis, vol. 2013, Article ID 891241, 7 pages, 2013.

[13] V. G. Kac, “Classification of infinite-dimensional simple linearly
compact Lie superalgebras,” Advances in Mathematics, vol. 139,
no. 1, pp. 1–55, 1998.

[14] Y. Zhang, “Finite-dimensional Lie superalgebras of Cartan type
over fields of prime characteristic,” Chinese Science Bulletin, vol.
42, no. 9, pp. 720–724, 1997.

[15] Q.Mu andY. Zhang, “Infinite-dimensionalmodular special odd
contact superalgebras,” Journal of Pure and Applied Algebra, vol.
214, no. 8, pp. 1456–1468, 2010.


