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This note is to show that if f is a nonconstant entire function that shares two pairs of small functions ignoring multiplicities with
its first derivative f', then there exists a close linear relationship between f and f'. This result is a generalization of some results
obtained by Rubel and Yang, Mues and Steinmetz, Zheng and Wang, and Qiu. Moreover, examples are provided to show that the

conditions in the result are sharp.

1. Introduction and Main Result

Throughout this paper, we use standard notations in the Nev-
anlinna theory (see, e.g., [1-4]). Let f(z) be a meromorphic
function. Here and in the following the word “meromorphic”
means meromorphic in the whole complex plane. We denote
by S(r, f) any real function of growth o(T(r, f)) asr — oo
outside of a possible exceptional set of finite linear measure.
The meromorphic function a is called a small function with
respect to f provided that T(r,a) = S(r, f).

Let f and g be two nonconstant meromorphic functions,
and let a and b be two small functions with respect to f and
g. If the zeros of f — a and g — b coincide in locations and
multiplicities, then we say that f and g share the pair of small
functions (a,b) CM (counting multiplicities); if we do not
consider the multiplicities, then f and g are said to share the
pair of small functions (a, b) IM (ignoring multiplicities). We
see that f and g share the pair of small functions (a,a) CM
if and only if f and g share the small function a CM, and f
and g share the pair of small functions (a, a) IM if and only
if f and g share the small function a IM. The same argument
applies in the case when a and b are two values in the extended
plane.

Moreover, we introduce the following notations. Denote
the set of those points z € Cby S, ,(a;,a,) such that z is
a zero of f — a, of multiplicity m and a zero of f — a, of
multiplicity #. The set S,,, (b, b,) can be similarly defined.
Now the notations N, ., (r, 1/(f - a;)) and N(m,n)(r, 1/(f -
a,)) denote the counting function and the reduced counting

function of f with respect to the set S, ,,(a;, a,), respectively.
The notations N, (r, 1/(f' = a,)) and Ny, (r; 1/(f' - a,))
can be similarly defined.

Many mathematicians have been interested in the value
distribution of different expressions of an entire or meromor-
phic function and obtained a lot of fruitful and significant
results. When dealing with an entire function f and its
derivative f’, Rubel and Yang [5] proved the following.

Theorem A. Let f be a nonconstant entire function, and let a
and b be distinct finite complex numbers. If f and f' share a
and b CM, then f = f.

Mues and Steinmetz [6] improved Theorem A and
obtained the following.

Theorem B. Let f be a nonconstant entire function, and let a
and b be distinct finite complex numbers. If f and f' share a
and b IM, then f = f'.

When the values a and b were replaced by two small func-
tions related to f, Zheng and Wang [7] proved the follow-
ing.

Theorem C. Let f be a nonconstant entire function, and let a
and b be distinct small functions with respect to f. If f and f'
share a and b CM, then f = f.

Recently, Qiu [8] proved the following result which was
an improvement of Theorem C.
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Theorem D. Let f be a nonconstant entire function, and let a
and b be distinct small functions with respect to f. If f and f'
share a and b IM, then f = f'.

This paper is concerned with what can be said when the
IM shared small function is replaced by the IM shared the
pair of small functions in Theorem D. In fact, we prove the
following result by using the method of [8], which generalizes
the above theorems from the point of view of shared pairs.

Theorem 1. Let f be a nonconstant entire function, and let a,,
a,, by, and b, be four small functions of f such that none of
them is identically equal to co and a, # b, a, # b,. If f and
f' share (a,,a,) and (by, b,) IM, then (a, —b,) f — (a, — b)) f' +
ab, —a,b, = 0.

Remark 2. Leta, = a, and b; = b,. Then by Theorem 1 we can
get Theorem D.

Remark 3. Theorem 1 shows that a nonconstant entire func-
tion sharing two pairs of small functions ignoring multiplic-
ities with its first derivative implies that there exists a close
linear relationship between them.

Example 4 (see [9]). Let f = B+ (S — «)/(h — 1), where

1 _ 1 _ 1 _ 1 _
_eZZ__ez /3___622+_ez

5 = N h=e_e.
3 2 3

@

Seta = ﬁ', b = «'. Then T(r,a) = S(r, f)and T(r,b) =
S(r, f). It is easy to verify that

fl-a=e(f-a)(f-P).

fl=b=e"(f-b)(f-a).

Thus f and f’ share (a,a) and (b,b) IM, but f # f'. This
shows that the conclusion in Theorem 1 is not valid generally
for a meromorphic function f.

a=-

)

Example 5. Let f = ¢* +z,a, = 2z,a, = 2z + 1,b, = z,and
b, = z + 1. Then f and f’ share (a;,a,) IM but do not share
(b, b,) IM. Clearly, (a,~b,) f—(a,=b,) f +a,b,—a,b, # 0. This
shows that the condition in Theorem 1 that f and f' share
(ay,a,) and (b, b,) IM cannot be weakened.

2. Some Lemmas

Lemma 1. Let f be a nonconstant entire function, and let a,,
a,, by, and b, be four small functions of f such that none of them
is identically equal to co and a, # by, a, # b,. If f and f'
share (a,, a,) and (b;, b)) IM, then S(r, f) = S(r, f') = S(r).

Proof. Note that f and f' share (a,, a,) and (b;, b,) IM. By the
second fundamental theorem, we get

T(r,f)sﬁ<r,f_1a1>+ﬁ<7’,f_1bl>+s(”>f)

=N<r,ﬁ>+ﬁ(nﬁ>+8(nﬁ
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2T (r, ') +S(r. f),

T(r.f") sﬁ(r,ﬁ>+ﬁ(ﬂﬁ>+s(“f)

e ¥ e

<2T(r, ) +S(r. ) +S(r. f),
3)

which implies from the definition of S(r, f) that S(r, f) =
S(r, f') and S(r, f') = S(r, f), respectively.
This completes the proof of Lemma 1. O

Lemma 2. Let f be a nonconstant entire function, and let a,,
a,, by, and b, be four small functions of f such that none of
them is identically equal to co and a, # by, a, # b,. If f and
f' share (a,,a,) and (b;, b,) IM, then

m(r,f):K](r,f_lal>+N<r,fibl>+8(r), (4)
provided that (ay — b)) f — (a; — b)) f' +a,b, — ab, # 0.
Proof. Note that

(ay b)) f—(a,-b) f +ab,—ab £0, (5

(ay=b) f—(a; - b) f +ab, — ab
=(@-b)(f-a) - (@ -b)(f - a),

(a,-b) f—(a, - b) f +ab, - ab,
=(a,-b)(f-b)-(a,-b)(f -b).

Since f and f' share (a,,a,) and (b;,b,) IM, from Lemma 1,
(5)-(7), and the condition that f is entire, we have

(ra) )

: N(T’ @b —(a —lbl)f’ b, — agb; )
<T(r,(ay=b)f-(ay-by) f)+S(r)
=m(r.(a,=b) f - (a,-b) ')
+N(r(a=b) = (0 =) f) +S ()
=m(r,(a,~b) f~(a~b) f') +S(1)

<m (r, (a2 -b) f }(“1 - b1)f,

(6)

7)

)emien+s

<m(r, f)+S(r).
(8)
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On the other hand, by the second fundamental theorem,
Lemma 1, and the condition that f is entire, we get

m(r,f)=T(r,f)SN(r>ﬁ>

Now (8) and (9) imply

— 1 — 1
m(r,f)=N<r, >+N<r, )+S(r). (10)
f-a f-b
This completes the proof of Lemma 2. O

Lemma 3. Let f be a nonconstant entire function, and let a,,
a,, by, and b, be four small functions of f such that none of
them is identically equal to co and a, # by, a, # b,. Suppose
that f and f' share (a,,a,) and (b, b,) IM. Set

a=(a-b)(f-a)-(a,-b)(f -a})

(11)
:(ai_bll)(f_bl)_(al_bl)(f,_bll)’
B=(a-b)(f -a)-(a-b)(f"-a)
(12)
:(C‘;_bzl)(f’_bz)_(az_bz)(f”_bzl)’
_ « [(a2 -b) f-(a _bl)fl +ab, _azbl]) (13)
(f—a) (f-b)
h:[)’[(az—bz)f—(al—bl)f'+a1b2—a/2bl]’ (14)
(f'=a) (f' - b)
vi=ay+i(a,-b), (i=12). (15)

If(a, = b)f —(a; —b)f' +ab, —ab, # 0, then
(@) T(r, g) = S(r),
(i) T(r,h) < T(r, )~ N(r, 1/(f =) +S(r) fori = 1,2.

Proof. Since f and f' share (aj,a,) and (b,b,) IM, by
Lemma 1 we know S(r, f) = S(r, f’) := S(r). Noting

o (“{_bll)(f_al)_(‘ﬁ_51)(f’_a{)

f-a f-a
! / f’_a{
=a,-b —(a -b >
1= b= ( )f_a1
fo4 _(a{_b{)(f_bl)_(‘h_b1)(f’_b1’)
f_bl f_bl
1 ! f/_bll
_al_bl_(al_bl)f_bl’

(f_al)l(f_bl) ) alibl <f—1a1 _f—1b1>’

3
B (@-8)(f ~a) - (a-b) (/" -a)
fl-a f'-a
-t~ -b) =,
B (a-B)(f ~b)-(@-b)(f"-b)
f'-b fl-b
, ) " _bl
:az_bz_(az_bz)ﬁ,
1 _ 1 < 1 - 1 >
(f'-a)(f'-b) a-b\f-a f'-b)
(16)
and the lemma of the logarithmic derivative, we obtain
« «
m(r,f_a1>:S(r), m(r,m>zs(r))
17)
a
I e — = S s
m(r (f—%)(f—h)) v
B\ _ B > B
m<nf—%)_sm’ m(“ﬂ—% _“ﬂ’ua

(v airm) =

Clearly, @ # Oand 3 # 0. Otherwise from (11) and (12)
we have f = a, + C;(a; - b)) and f' = a, + C,(a, — b,) for
nonzero constants C;, C,, which implies that T'(r, f) = S(r)
and T(r, f') = S(r), a contradiction. Then by using a similar
method we can deduce that g # Oand h # 0. Itis easy to see
by (11) if any zero of f — a,(f — b;) of multiplicity [ is not the
pole of a; — b, and is not the zero of a; — by, then it must be a
zero of o of multiplicity I — 1 at least. Thus from (6), (7), (11),
(13), the condition that f and f' share (a,,a,) and (b;, b,) IM,
and the condition that f is entire, we get

N(r,g)=S(). (19)
Likewise,

N(r,h) =S(r). (20)
Now by (13) and (17) together with

af L« a,x
(f‘al)(f‘b1)_f_b1 (f_al)(f_bl)’

it follows that

(21)

“[(az_bz)f_(al _bl)f,]>

’““’”“”(” eI

()



“n(r s

S CELIE UL v

<S(r).
(22)
Thus from this and (19) we have
T(r,g)=S(r), (23)

implying (i). Next, it is easy to see that y; # a, and y; #
b, (i =1,2). Fori =1,2,by (14), 18),a, # b, a, # b,, and
the condition that f is entire, we have

ﬁ[(az_bz)f_(al_bl)fl]>
(f' —a) (f - b)

m(r,h)gm(r,
/j(albz_azbl) ) lo
G- (7 b)) 8

<m(r ﬁ(f’—}’i)
U -a)(f-b)

A

o
—m(r’ffb)w(n o)

LR SCELTA T

(0&—5)/6h—b)lf f ) "

<n(-
((@—M/w—wﬂ"%_g+un
n(-

_yz )
((a2 b)/(a-b)) f -y

N e )

_N(n«%—@)ﬁﬁ—@»f—w)

+S(r)

Sm@%%—@ﬁwrw>

f =
(@ -b)/(a,-

N(”’f - Vi)

%Dw)
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+N(r, (@ - 1)/ (a4 —b1))f—)’i)
_N<n%E%f—%>—N<n?%;>+Mﬂ

m(fﬁ—«(
gR(

+m (r,
1
A (T’ ((a2 -b)/ (‘11

_N(r,—fll_%>+8(r)

b))/ (a, - D,))
b)/(a, - b))y

(«%—Q)N%—%D%Y—%)
f- ((a - bl)/(az -b))y;

IN

—th—w)

<

m(nf—«%—h;N%—%Dn)

1

+N(nﬂ%—%w0a—hﬁf—w>

_N(r,—fll_%>+8(r)

1

*N(“«@—@>m%—h»f—n>

—N(r,ﬁ>+5(r)

ST(r,f)—N<r,

ﬁ>+8(r).

(24)

Thus from (20) and (24) it follows that

T (r,h) ST(r,f)—N(r,f,;_V>+S(r), i=1,2.
(25)

This proves (ii) and completes the proof of Lemma 3. [

Lemma 4 (see [10]; cf. [11, 12]). Let f be a nonconstant
meromorphic function, and let f"P(f) = Q(f), where P(f)
and Q(f) are differential polynomials in f and the degree of
Q(f) is at most n. Then

m(r,P(f))=S(r.f). (26)
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Lemma 5. Let f be a nonconstant entire function, and let a,,
a,, by, and b, be four small functions of f such that none of
them is identically equal to 0o and a, # by, a, # b,. Suppose
that f and f' share (a,,a,) and (b,,b,) IM. If

m(r, f) = m( )+S(r 1), (27)
then (ay — b)) f — (a, — b)) f' + a,b, — a,b, = 0.
Proof. Assume that (a, —b,) f —(a, —b) f' +a,b, —a,b, % 0.

Let«, 3, g, h, and y; be defined by (11)-(15), respectively. Then
from the proof process of Lemma 3 we knowa # 0, 8 # 0,
g#0,h%0,y #a,andy, # b, (i =1,2).Since f and f’
share (a,,a,) and (b}, b,) IM, by Lemmas 1, 2, and 3 it follows
that

m(r,f)zﬁ(r,f%) _< = b>+S(r) (28)
1
T (r,g)=S(r), (29)
T(r,h)ST(r,f)—N(r,ﬁ)+S(r), i=1,2.
’ (30)

Now from the second fundamental theorem, (27), (28), and
the assumption that f is entire, we deduce

2m (r,f') =2T (r,f')

+N<r,f,1_ ‘)+S(r)
=m(r,f)+N(r, ,1 ‘>+S(r)
:m(r,f')+N<r,f,1_ i>+S(r)
(1)
which yields
N<r, ﬁ) =m(r, f')+S(r). (32)

Again by (27), (30), (32), and the assumption that f is entire,
we obtain
T (r,h)=S(r). (33)

For any z, € S, ,)(a;,a,) U S,,,,)(b1,b,), from (13) and
(14), we can get ng(z,) — mh(z,) = 0.

If ng — mh = 0, then by (13) and (14) we deduce

(S (1
f-b f-a f'-b f'-a

which implies that

(o) =e(fmn) o

where ¢, is a nonzero constant. If n # m, then from (35)
and the condition that f is entire, we obtain nm(r, f) =
mm(r, f') + S(r), which contradicts (27). If n = m, then we
get

\H

f_a1502<ch _Zz)’ (6

where ¢, is a nonzero constant. We claim that ¢, # 1. Indeed,
if¢, = 1, then by (36) we deduce

!
f blzf, hz’ (37)
f-a [f-a
which leads to (a, — b,) f — (a, —= b)) f' + a,b, — ayb, = 0. This

contradicts the assumption. Thus ¢, # 1 and so from (36) we
have

f[(l_ f +6b, - ] (bl_oz“1)fl+cza1bz_a2b1-
(38)
This and Lemma 4 yield
m(r,(l—cz)f’+czb2—a2)=S(r), (39)

which gives m(r, f ") = S(r). From this and the condition that

f is entire, it follows that T(r, ') = S(r), a contradiction.

Hence ng — mh # 0, for any positive integers m and n.
Therefore by (29) and (33) we obtain

N (72 )+ Nown (725

SN<r)ng—mh>+S(r) (40)
<T(r,g)+T(r,h)+S(r)
=8(r),



for any positive integers m and n. It follows from this,
Lemma 1, the second fundamental theorem, and the condi-
tion that f is entire that

T(r. f)

1]

2
B

z|

8 ~

E/ p—
~

>

) o (7)) +50)
s <N(’“’") (r’ 7 - ) ) + N <r’ 7 - b, >) +8(r)
3 (o 75)

N (1 772
' mgzsé <N(m’n) (r, f —1 b, )

+ N (h ﬁ)) +8(r)

S tg) ()
() e (gt ) s

%T(r,f) N %T(r,f') £ S(r)

IN

IN

IN

= %T(r,f) + %m (r,f') +S(r)

_l r lf’l’l Tf—’ r

-1 dm(n L) ese
ST )+ 3m( f)+50)

IN

=T+ 3T () +S0)

= %T(r,f) +S(r),
(41)
which implies that T'(r, f) = S(r), a contradiction. Thus (a, —

b)f - (a -b)f +ab,—ab =0.
This completes the proof of Lemma 5. O

3. Proof of Theorem 1
Suppose that (a, — b)) f — (a; — b)) f' + a;b, — a,b, £ 0.

Since f and f' share (a,,a,) and (b,,b,) IM, by Lemma 1
we have S(r, f) = S(r, f') = S(r). Let &, B, g, h, and y; be
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defined by (11)-(15), respectively. Then from the proof process
of Lemma3weknowa # 0,8 # 0,g # 0,h £ 0,9, # a,,
andy; # b, (i = 1,2). Next we rewrite (13) as

[9 - (ai - b{) (ay - bz)] f2

= dlff’ +d2f+d3f, *'d4f’2 +ds,

(42)

where d, = (a, - b))(b| + b,— a, — a)), d, = (a] - b])(a,b, -
a,by) +(a,— by)(ab) - ajby) + (a;+ b)) g, ds = (a,— b)) (ayb; +
ab—ab,—ab)), d, = (a,-b))*,and ds = (alb{—a{bl)(albz—
a,b,) — a,b, g are all small functions with respect to f.

Now we divide into two cases.

Casel. g—(a,-b))(a,-b,) = 0;thatis, g = (a] —b})(a, —b,).
We again discuss the three subcases.

Subcase 1. a; # a,and b] % b,. Since f and f' share (a,,a,)
and (b;, b)) IM, the zeros of f — g, and f — b, of multiplicity

larger than one are the zeros a, — a, and b — b,, respectively.
It then follows that

— 1 — 1
N, <r,—>+Nmn <r, >>
m>22,n>1< () f-a o) f-b

1 1
<N|(r,— N(r,— S
< (r a{—a2>+ (r bl'—b2>+ (r)

(43)
<T (r, a)+T(ra)+T (r, bl')
+T(r,by) +S(r)
=S(r);
that is,
Z (ﬁ(mn) (T, ! ) +N(mn) <T', ! )) = S(T)
m>2,n>1 ’ f -0 ’ f - bl
(44)
Let zy € Sy ,,y(a;, a,). For n > 2, from (13) we get
9(z) = (“i (20) - a, (zo)) (a, (20) = b, (2)))
(45)

= (ai (20) - b{ (zo)) (a5 (29) = b, (20))

which implies that a,(z,) — bl'(zo) =0 ora,(z,) — by(zy) = 0.
Ifa, - b, = 0, then by (13) we deduce

! !
a, - b, ab, —ab,

fle e f : (46)

a, - b

which, in view of the condition that f is entire, implies that
m(r, f) = m(r, f') + S(r). From this and Lemma 5, it follows
that (a,—b,) f —(a, - b,) f' +a,b,—a,b, = 0, contradicting the
assumption. Thusa,~b] # 0.Bythe conditions in Theorem 1,
we know thata, - b, # 0.
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Hence

Noa(n 775)
VLZZ (1,n) f a,

1 1
<N(r,—— N\, S
<r az_bl,>+ <r az—b2)+ (r)

< 2T(r,a2)+T(r,b2)+T(r,b{)+S(r) =S(r);

(47)
that is,
ZNqux >=SU% (48)
n>2
Similarly,
g?hn(nf b>=SVL (49)

It then follows from (44)-(49) and the second fundamental
theorem that

T (r, f) sﬁ(r,ﬁ>+ﬁ(r,ﬁ> +S(r)

— 1 —
=N(1)1) (T’,m)‘l’N(Ll)( f b )+S(1")
(50)

For any z; € S(;;)(a;,a,) U S ,)(by,b,), from (13) and
(14), we can get g(z,) — h(z;) = 0.
If g — h = 0, then by (13) and (14) we have

A L S L
f-bo f-a  f'-b f-a’
which implies that
b, "~b
]J: ‘11 ;'_;’ 52

where ¢; is a nonzero constant. We claim that ¢; # 1. Indeed,
if ¢; = 1, then by (52) we have

!
f bl = f, bZ’ (53)
f-a f-a
which leads to (a, — b,) f — (a, = b)) f' + a,b, — a,b, = 0. This

contradicts the assumption. Thus ¢; # 1 and so from (52) we
get

f [(1 - Cs)f’ +Gb, - ‘12] = (b - C3a1)f, +Gga b, —ayby.
(54)
This and Lemma 4 yield
m(r,(l—%)f'+c3b2 az) =S(r), (55)

which gives m(r, f ") = S(r). From this and the condition that
f is entire, it follows that T(r, ') = S(r), a contradiction.
Henceg—-h # 0.

Therefore by (50) and Lemma 3 we obtain

T(r,f)sﬁ(u)<r,f_lal>+N(11)<r,f b)+S(r)

SN(r, ih>+3(7’)

<T(r,g)+T(r,h)+S(r)

ST(T,f)—N(r,ﬁ)+S(r),
' (56)

which implies that

N<n7%z)250% i=1,2. (57)

This is impossible by the second fundamental theorem.

Subcase 2. Eithera, = a,andb, # b,ora; # a,andb| = b,.
Without loss of generality, we assume that a, = a, and b] #
b,. It is easy to see by (13) that the zeros of f —a, and f' - a,
of multiplicity all larger than one are the zeros of g. Thus by
Lemma 3,

— 1 1
N, (r, )gw(r,—)+s<r>
mzzz,;zzz o f-a g (58)

<T(r,g)+S(r)=S(r);

that is,

f %)=SUL (59)

By the discussion of Subcase 1, we see

N(“ﬁ) N“”(“f b>+s(”

)
<N|r, +S(r)
( g-h (60)
<T(r,g)+T(r,h)+S(r)
<T(rf)- N(”>f, >+S(T);
that is,
— 1 1
N{r, <T(r,f)-N|r,— S(r),
(n 7o) 57NN (g )+ 50 (61)
i=1,2.

Note that the zeros of f — a; of multiplicity larger than one
are all the zeros of f' —a, = f' —a,. Since f and f' share
(a;,a,) IM, it follows that

— 1
N(l,l) <r, m) = S (r) . (62)



Now from (59)-(62) and the second fundamental theo-
rem, we obtain

TUJ)SN(nfE%>+N<n?%E)+SW

<Ny (r, ﬁ) £ T(r f) (63)

- () + 500

that is,
N(r;><ﬁ <r ! >+S(r) i=12
f-y) T B foq ’ o
(64)
Let
" ! ! ! ! ! ! !
¢:2f, bz_zf b1+a1 bl_ ) bz. (65)
f'=b f-b  a-b @ - b

It is easily seen from (65) and the lemma of the logarithmic
derivative that

m(r,¢) =S(r). (66)

Note that common simple zeros of f — b, and f' - b, are not
the poles of ¢. In terms of the discussion of Subcase 1, from
(65) we know N(r, ¢) = S(r), which together with (66) gives
that

T (r,¢)=S(r). (67)

Let z, € S y(a;,a,). Then by (65) and (13) we have

¢(z,) = 0.
If ¢ = 0, then from (65) we derive

(f, - b2)2 - C4((Z_—I?2)(f - b1)2, (68)

1

where ¢, is a nonzero constant. This, in view of the condition

that f is entire, implies that m(r, f) = m(r, f') + S(r). From

this and Lemma 5, it follows that (a, — b,) f — (a, — b)) f' +

a;b, — a,b, = 0, contradicting the assumption. Thus ¢ # 0.
Hence by (64) and (67) we obtain

1 — 1
N(r, —f’ —Yi> < Ngqy (r, —f—a1 ) +S(r)

SN(r,%>+S(r) (69)
<T(r.¢)+S(r)
<S(r);

that is,

N(r,ﬁ)zS(r), i:1,2. (70)

This is also impossible by the second fundamental theorem.
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Subcase 3. a{ =a,and bll = b,. By the discussion of Subcase 2,
we see

— 1 — 1
T 5> > P > T~ 4 .
(r.f) <Ny <r —a1)+N(2’1) <r f_b1>+S(r)

i
(71)
We claim that
— 1
N b} = S b
@1 <” F-a ) (r) (72)
N (r ;> =S(r) (73)
AN f - bl - .
Let
f”_bZ/_fI_bll_za;_bZI. (74)

=2
v f'=b,  f-b a, - b,

It is easily known from (74) and the lemma of the logarithmic
derivative that

m(r,y) =S(r). (75)
Note that common zeros of f — b, of multiplicity two and
f' = b, of multiplicity one are not the poles of . In terms of
the discussion of Subcase 2, we know N(r,y) = S(r), which
together with (75) gives that

T (r,y)=S(r). (76)

Let z; € S, y(a;,a,). Then by (74) and (13) we have

y(z;) = 0.
If y # 0, then from (76) we get

_ 1 1
Naon <r, Fa > <N <r, a) +S(r) -

<T(r,y)+S(r) <S(r),

that is,
— 1
N <r,—> =S(r). (78)
@ f-a
If y = 0, then by (74) we deduce
2
(f'=b) =@ =) (F-b), (79)

where ¢; is a nonzero constant. This implies a, (z5) — b, (z5) —
l/cs = 0.Since a, = ay, b] = by, and a, # b, we obtain
a, —b, —1/c; # 0. Thus

— 1 1
N r,—— |<N|r,— | +S(r)
(2’1)< f—a1> < al_bl_l/‘:S)

<T(r,a;)+T(r,b)+S(r)<S(r);
(80)

that is,

— 1

N <r, —) =S(r). (81)

@ f-a

Hence (72) follows. In the same manner as above, we can

prove (73). The proof of the claim is complete. Now by (71)-
(73) we get T'(r, f) = S(r), a contradiction.
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Case 2. g - (a{ - bl')(a2 —-b,) # 0. Then by (42) and (i) in
Lemma 3 we have

Zm(”’f)Sm<r’g—(a{—l9l{)(a2_b2)>

+m(rdyff +dyf +dsf +d,f +ds)
< m<r,f(d1f' +d, +d3f7/ +d4f'f7,))
+m(r,ds) +S(r)

<m(r, f) +m<r,f' (dl +d4f7’>) +8(r)

gm(r,f)+m(r,f’)+5(r),

(82)

which implies that
m(r,f)Sm(r,f')+S(r). (83)

On the other hand,

!

m(r,f')Sm(r,fJ%)Sm(r,f)+S(r). (84)

Combining (83) with (84) yields
m(r,f)=m(r,f’)+8(r). (85)

Thisand Lemma 5lead to (a,— b,) f—(a,~ b)) f' + a,b,— a,b, =
0, contradicting the assumption.
This completes the proof of Theorem 1.
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