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A performance assessment method for nonlinear feedforward and feedback control systems is proposed in this paper. First, the
existence of minimum variance performance bound for two nonlinear systems with different structures is analyzed, and the closed-
loop model of nonlinear system is obtained with the help of iterative orthogonal least squares identification method. Then, the
technology of variance analysis is introduced to establish the variance contributions due to both disturbances and controller.
A nonlinear performance index for the feedforward and feedback control systems is estimated using an ANOVA-like variance
decomposition method. Finally, a meaningful example is simulated to show the effectiveness of our method.

1. Introduction

The technology of control performance assessment (CPA)
has attracted much attention in recent years, due to the
extensive application of automatic control systems in indus-
trial area. CPA is a management tool to maintain efficient
operation performance of automation systems.Themain aim
is to evaluate the performance of control loops in control
systems, diagnose the reason of poor performance, and
present effective proposals for improvement once the control
performance of a running controller cannot meet the desired
requirements.

The study of CPA began to blossom some 20 years
ago with the pioneering work by Harris [1]; he proposed
a linear performance index based on minimum variance
benchmark. Desborough and Harris [2] proposed a nor-
malized performance index for assessment of linear SISO
controller performance, which can be estimated by linear
regressionmethods. Stanfelj et al. [3] presented amethod that
utilized autocorrelation and cross correlation functions for
monitoring and diagnosing the cause of poor performance
of feedforward and feedback control systems. Desborough
and Harris [4] developed a performance assessment algo-
rithm based on variance table to investigate the variance
contributions due to disturbances and controllers for a linear

feedforward and feedback system. Harris et al. [5] developed
a method for assessing the performance of linear MIMO
control systems, and this method requires an estimate of the
process interactor matrix that characterizes the dead-time
structure. Almost at the same time,Huang et al. [6] developed
a new approach based on filtering and correlation (FCOR)
analysis of the process output and filtered data, which can
be used to estimate the controller performance of a general
class of linear MIMO processes. Subsequently, Huang et al.
[7] developed a method for the performance assessment of
linearmultivariate feedback plus feedforward control systems
using minimum variance control as the benchmark. CPA
theoretical issues have been reported by several literatures,
such as the references published by Qin [8], Huang and Shah
[9], and Jelali [10].

Although the field of CPA has received much attention
in theory and engineering in recent years [11–14], the most
previous studies are focused on linear systems. In real
applications, the industrial processes are naturally nonlinear
systems. The estimation of the minimum variance perfor-
mance lower bound (MVPLB) and the performance index
using the linear control performance assessment techniques
may be distorted by these nonlinearities. Due to the internal
complexity and lack of effective mathematical tools, far less
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has been written on the CPA methods for nonlinear systems.
For a special class of nonlinear SISO processes that can
be described by the superposition of a nonlinear dynamic
model and additive linear disturbance, Harris and Yu [15]
presented a method to estimate the MVPLB using closed-
loop data. Continuing this idea, estimates of the MVPLB for
the moderate valve stiction cases are proposed by Yu et al.
[16]. Yu et al. [17] proposed a new CPA performance index
for general nonlinear SISO models based on an ANOVA-
like variance decomposition method. This new performance
index is not based on the MVPLB, but it can be used to
estimate the MVPLB for some nonlinear systems detailed
are discussed in [15]. Considering the process nonlinearity
and valve stiction nonlinearity in control system, Zhang [18]
proposed some CPA methods for nonlinear systems based
on minimum variance benchmark. Yu et al. [19] extended
CPA to nonlinearMIMO systems. However, in order tomake
the problem tractable, they restrict the system structure to
be a model with additive linear disturbances and where the
nonlinearity is in the form of valve stiction.

In spite of the fact that multivariate control schemes are
justified from an economic and quality improvement stand-
point, the univariate controllers are the mostly used con-
trollers in practical applications. The performance of these
SISO control schemes can be enhanced by including feed-
forward elements. In this paper, we study the performance
assessment for nonlinear feedforward and feedback control
systems. The objective of our work is to estimate the MVPLB
for this nonlinear system and analyze the contribution of
each controller for the overall performance bound.This study
has an important guiding significance for the adjustment and
design of the actual control system. Two common situations
are often encountered in pragmatic feedforward and feedback
control systems. The first case is, although a feedforward
variable can bemeasured, it is not used in the control systems;
in such situation, the result of CPA for nonlinear feedforward
and feedback control systems can provide an estimation of the
variance reductions if feedforward controller is considered.
In the other case, a feedforward variable is both measured
and used in a feedforward and feedback control scheme,
and then, the performance of the individual controllers can
be assessed by the result of this paper, such that we can
determine which controller should be principally adjusted
to improve the performance of feedforward and feedback
control systems.

Based on some methods for the performance assessment
of linear feedforward and feedback control systems, this
paper is an extension to nonlinear systems. The outline of
this paper is organized as follows. As a prerequisite, the
performance assessment of linear feedforward and feedback
systems is discussed in Section 2. In Section 3, the existence
ofMVPLB for nonlinear feedforward and feedback systems is
analyzed. In Section 4, a description of the ANOVA-like vari-
ance decomposition method is given and a new performance
index of nonlinear control systems is proposed. Finally,
a simulation is made to illustrate the proposed method-
ology in Section 5, and this is followed by a conclusion
in Section 6.
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Figure 1: Schematic of feedforward and feedback control system.

2. Analysis of Variance in Linear Feedforward
and Feedback Control System

A structural schematic of general feedforward and feedback
control system is given in Figure 1, where 𝑦

𝑡
is output variable

of the process, 𝑢
𝑡
is manipulated variable which is adjusted by

summing the outputs from the feedback controller 𝑢fb
𝑡
and

feedforward controller 𝑢ff
𝑓
. 𝐺fb

𝑐
is feedback controller transfer

function, and 𝐺ff
𝑐
is feedforward controller transfer function.

𝑞
−𝑏
𝑓
𝑃
represents the process model that may be linear or

nonlinear. 𝑏 is the number of whole periods of process delay.
𝑞
−𝑙
𝑓
𝑑
𝐷

1,𝑡
represents the effect that the measured disturbance

𝐷
1,𝑡

has on the process output, and 𝑙 is the number of periods
of delay it takes for a change in 𝐷

1,𝑡
to begin to affect

the output. In linear systems, 𝑞−𝑙
𝑓
𝑑
𝐷

1,𝑡
is often expressed

by transfer function as 𝑞−𝑙
𝑁

𝑑
𝐷

1,𝑡
. 𝐷

0,𝑡
and 𝐷

1,𝑡
represent

the unmeasured and measured disturbances, respectively. In
this paper, work is based on the assumption that there is
no cross correlation among the unmeasured and measured
disturbances, and this is reasonable for many industrial
processes.

In linear systems, the delay-free process model 𝑓
𝑃
can be

represented by the following equation:

𝑓
𝑃
=
𝜔 (𝑞

−1
)

𝛿 (𝑞−1)
, (1)

where 𝜔(𝑞−1
) and 𝛿(𝑞−1

) are stable polynomials in the back-
shift operator 𝑞−1. Disturbances𝐷

0,𝑡
and𝐷

1,𝑡
are represented

by autoregressive integrated moving average (ARIMA) time
series models:

𝐷
𝑖,𝑡
=

𝜃
𝑖
(𝑞

−1
)

𝜑
𝑖
(𝑞−1) ∇𝑑𝑖

𝛼
𝑖,𝑡
, 𝑖 = 0, 1. (2)

{𝛼
𝑖,𝑡
} is a sequence of independently and identically dis-

tributed random variables with mean zero and constant
variance 𝜎2

𝑖
. 𝜃

𝑖
(𝑞

−1
) and 𝜑

𝑖
(𝑞

−1
) are monic and stable poly-

nomials. The difference operator is defined as ∇ def
= (1 − 𝑞

−1
),

and 𝑑
𝑖
is the degree of differencing. The linear feedforward
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and feedback control system can be modeled as the sum of
two disturbances and a linear transfer function:

𝑦
𝑡
= 𝑞

−𝑏
𝜔 (𝑞

−1
)

𝛿 (𝑞−1)
𝑢
𝑡
+ 𝐷

0,𝑡
+ 𝑞

−𝑙
𝑁

𝑑
𝐷

1,𝑡
. (3)

Substituting the feedforward and feedback controller repre-
sentation into above equation and multiplying both sides by
𝑞
𝑑 and collecting terms

𝑦
𝑡+𝑏
=
𝜔 (𝑞

−1
)

𝛿 (𝑞−1)
𝑢
fb
𝑡
+ 𝐷

0,𝑡+𝑏
+
𝜔 (𝑞

−1
)

𝛿 (𝑞−1)
𝑢
ff
𝑡
+ 𝑞

−𝑙
𝑁

𝑑
𝐷

1,𝑡+𝑏
.

(4)

In an analogous manner to the minimum variance feedback
controller, the design of minimum variance feedforward and
feedback controller can be derived. The research result of
Desborough and Harris [4] reported that the linear closed-
loop system can be described in terms of the unmeasured
disturbance driving force and the measured feedforward
variable. We do the similar work, which yields

𝑦
𝑡+𝑏
=
𝜔 (𝑞

−1
)

𝛿 (𝑞−1)
(−𝐺

fb
𝑐
𝑦

𝑡
) +

𝜃
0
(𝑞

−1
)

𝜑
0
(𝑞−1) ∇𝑑0

𝛼
0,𝑡+𝑏

+
𝜔 (𝑞

−1
)

𝛿 (𝑞−1)
𝐺
ff
𝑐
𝐷

1,𝑡
+ 𝑞

−𝑙
𝑁

𝑑
𝐷

1,𝑡+𝑏

=
𝜃
0
(𝑞

−1
) /𝜑

0
(𝑞

−1
) ∇

𝑑0

1 + 𝑞−𝑏 [𝜔 (𝑞−1) /𝛿 (𝑞−1)] 𝐺fb
𝑐

𝛼
0,𝑡+𝑏

+
𝑞
−𝑏
𝐺

𝑃
(𝑞

−1
)𝐺

ff
𝑐
+ 𝑞

−𝑙
𝑁

𝑑

1 + 𝑞−𝑏 [𝜔 (𝑞−1) /𝛿 (𝑞−1)] 𝐺fb
𝑐

𝐷
1,𝑡+𝑏

= 𝜓
0
(𝑞

−1
) 𝛼

0,𝑡+𝑏
+ 𝜓

1
(𝑞

−1
)𝐷

1,𝑡+𝑏
,

(5)

where 𝜓
0
(𝑞

−1
) is the closed-loop transfer function between

𝑦
𝑡
and the driving force for the unmeasured disturbance.

𝜓
1
(𝑞

−1
) is the closed-loop transfer function between 𝑦

𝑡

and measured feedforward variable 𝐷
1,𝑡
. Alternatively, the

process can be described in terms of the driving forces alone:

𝑦
𝑡
= 𝜓

0
(𝑞

−1
) 𝛼

0,𝑡+𝑏
+ 𝜓

1
(𝑞

−1
) 𝛼

1,𝑡+𝑏
. (6)

Each of the closed-loop transfer functions in (6) can be
expanded in a convergent power series in 𝑞−1:

𝜓
𝑖
(𝑞

−1
) =

∞

∑

ℎ=0

𝜓
𝑖,ℎ
𝑞
−ℎ
. (7)

This expansion is obtained by writing each transfer function
as a ratio of polynomials 𝑞−1 and then dividing the numerator
into the denominator using polynomial long division. Then
the process output can be extended as

𝑦
𝑡+𝑏
= 𝑦

0,𝑡+𝑏
+ 𝑦

1,𝑡+𝑏
=

∞

∑

ℎ=0

𝜓
0,ℎ
𝑞
−ℎ
𝛼

0,𝑡+𝑏
+

∞

∑

ℎ=0

𝜓
1,ℎ
𝑞
−ℎ
𝛼

1,𝑡+𝑏
.

(8)

The term 𝑦
0,𝑡+𝑏

is the contribution of unmeasured distur-
bance𝐷

0,𝑡
to the process output; it can be written as

𝑦
0,𝑡+𝑏

= (1 + 𝜓
0,1
𝑞
−1
+ ⋅ ⋅ ⋅ + 𝜓

0,𝑏−1
𝑞
−(𝑏−1)

) 𝛼
0,𝑡+𝑏

+ (𝜓
0,𝑏
𝑞
−𝑏
+ 𝜓

0,𝑏+1
𝑞
−(𝑏+1)

+ ⋅ ⋅ ⋅ ) 𝛼
1,𝑡+𝑏

= 𝑒
0,𝑡+𝑏/𝑡

+

∞

∑

ℎ=𝑏

𝜓
0,ℎ
𝑞
−ℎ
𝛼

0,𝑡+𝑏
= 𝑒

0,𝑡+𝑏/𝑡
+ 𝑦

fb
0,𝑡+𝑏
.

(9)

The first term 𝑒
0,𝑡+𝑏/𝑡

in above function is recognized as
the prediction error, which is independent of the second
term. The second term is the contribution to the process
output 𝑦

0,𝑡+𝑏
which arises from the nonoptimality of the

control associated with the unmeasured disturbance, and it
is also a function of the process dynamics, the unmeasured
disturbance, and the feedback controller only.

In a similar manner, the contribution of the measured
disturbance𝐷

1,𝑡
to the process output can be written as

𝑦
1,𝑡+𝑏

= 𝑒
1,𝑡+𝑏/𝑡

+ (𝜓
1,𝑏
𝑞
−𝑏
+ ⋅ ⋅ ⋅ + 𝜓

1,𝑏+𝑙−1
𝑞
−(𝑏+𝑙−1)

) 𝛼
1,𝑡+𝑏

+ (𝜓
1,𝑏+𝑙
𝑞
−(𝑏+𝑙)

+ 𝜓
1,𝑏+𝑙+1

𝑞
−(𝑏+𝑙+1)

+ ⋅ ⋅ ⋅ ) 𝛼
1,𝑡+𝑏

= 𝑒
1,𝑡+𝑏/𝑡

+

𝑏+𝑙−1

∑

ℎ=𝑏

𝜓
1,ℎ
𝑞
−ℎ
𝛼

1,𝑡+𝑏

+

∞

∑

ℎ=𝑏+𝑙

𝜓
1,ℎ
𝑞
−ℎ
𝛼

1,𝑡+𝑏
= 𝑒

1,𝑡+𝑏/𝑡
+ 𝑦

ff
1,𝑡+𝑏

+ 𝑦
ff&fb
1,𝑡+𝑏
,

(10)
where
𝑒
1,𝑡+𝑏/𝑡

=

{{{{{{{{

{{{{{{{{

{

0, 𝑙 ≥ 𝑏

(𝜓
1,0
𝑞
0
+ ⋅ ⋅ ⋅ + 𝜓

1,𝑙−1
𝑞
−(𝑙−1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

0

+ 𝜓
1,𝑙
𝑞
−𝑙

+ 𝜓
1,𝑙+1
𝑞
−(𝑙+1)

+ ⋅ ⋅ ⋅ + 𝜓
1,𝑏−1

𝑞
−(𝑏−1)

)𝛼
1,𝑡+𝑏

𝑙 < 𝑏.

(11)
In (10), the first term 𝑒

1,𝑡+𝑏/𝑡
is the prediction error for the

measured disturbance, and it is independent of the second
and third terms. The second term is the contribution to
the output 𝑦

1,𝑡+𝑏
which arises from the nonoptimality of

the feedforward controller only, and the third term is the
contribution which arises from the combined effect of the
nonoptimality of the feedforward controller and the feedback
controller.

Since it has been assumed that the measured and unmea-
sured disturbances are not cross correlated, the prediction
error 𝑒

0,𝑡+𝑏/𝑡
and 𝑒

1,𝑡+𝑏−𝑙/𝑡
are independent of all the con-

trollers. Then, the process output under minimum variance
control is given by the sum of the individual error in
forecasting the effect of the disturbances:

𝑦
mv
𝑡+𝑏
= 𝑒

0,𝑡+𝑏/𝑡
+ 𝑒

1,𝑡+𝑏−𝑙/𝑡
, (12)

and the MVPLB can be written as
𝜎

2

mv = var (𝑒
0,𝑡+𝑏/𝑡

) + var (𝑒
1,𝑡+𝑏/𝑡

) . (13)
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3. MVPLB of Nonlinear Feedforward and
Feedback Control System

Due to the effect of various factors such as complexity of
nonlinear behavior and challenges in model determination
and parameter estimation, far less has been written to
extend themethods for performance assessment to nonlinear
systems. In order to simplify the analysis and without loss of
generality, the problem of estimation for minimum variance
performance bound for nonlinear feedforward and feedback
systems is given in two aspects.

First, we only assume that the process model has a
nonlinear representation in the structural schematic Figure 1,
and this is not very restrictive inmany applications.Then, the
closed output 𝑏-steps into the future of the nonlinear system
can be expressed as

𝑦
𝑡+𝑏
= 𝑓

𝑃
(𝑢

∗

𝑡
) + 𝐷

0,𝑡+𝑏
+ 𝑁

𝑑
𝐷

1,𝑡+𝑏−𝑙
, (14)

where the notation 𝑓
𝑃
(⋅) denotes a nonlinear function of

process model, and the superscript ∗ is used to represent
the vector collecting the immediate historical values; that
is, 𝑢∗

𝑡

def
= (𝑢

𝑡−1
, . . . , 𝑢

𝑡−𝑛𝑢
). Decomposing the unmeasured

disturbance𝐷
0,𝑡+𝑏

into a prediction error and a prediction

𝐷
0,𝑡+𝑏

= 𝑒
0,𝑡+𝑏/𝑡

+ 𝐷
0,𝑡+𝑏/𝑡

, (15)

the prediction 𝐷
0,𝑡+𝑏/𝑡

is the 𝑏-step ahead minimum mean
square error prediction for the value of the unmeasured dis-
turbance 𝑏 steps into the future. The effects of the measured
feedforward variables are also decomposed into a prediction
error and a prediction

𝑁
𝑑
𝐷

1,𝑡+𝑏−𝑙
= 𝑒

1,𝑡+𝑏−𝑙/𝑡
+ 𝐷

1,𝑡+𝑏−𝑙/𝑡
. (16)

The prediction 𝐷
1,𝑡+𝑏−𝑙/𝑡

is the 𝑏 − 𝑙 step ahead minimum
mean square error prediction for the value of the measured
disturbance 𝑏 − 𝑙 steps into the future. Note that if 𝑙 is greater
than or equal to 𝑏, then 𝑒

1,𝑡+𝑏−𝑙/𝑡
= 0. This implies that there

is no prediction error since we exactly know the future value
of the effect on the process of the measured disturbance.

The minimum variance control law is found by minimiz-
ing the mean square error of the output:

𝑦
𝑡+𝑏
= 𝑓

𝑃
(𝑢

∗

𝑡
) + 𝐷

0,𝑡+𝑏
+ 𝑁

𝑑
𝐷

1,𝑡+𝑏−𝑙

= 𝑓
𝑃
(𝑢

∗

𝑡
) + 𝑒

0,𝑡+𝑏/𝑡
+ 𝐷

0,𝑡+𝑏/𝑡
+ 𝑒

1,𝑡+𝑏−𝑙/𝑡
+ 𝐷

1,𝑡+𝑏−𝑙/𝑡

= 𝑒
0,𝑡+𝑏/𝑡

+ 𝑒
1,𝑡+𝑏−𝑙/𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 1

+ 𝑓
𝑃
(𝑢

∗

𝑡
) + 𝐷

0,𝑡+𝑏/𝑡
+ 𝐷

1,𝑡+𝑏−𝑙/𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

term 2

.

(17)

It follows from this formula that the minimum variance
controller (MVC) set the manipulated variables to exactly
cancel the predictions; that is,

𝑓
𝑃
(𝑢

fb
𝑡
, 𝑢

ff
𝑡
) + 𝐷

0,𝑡+𝑏/𝑡
+ 𝐷

1,𝑡+𝑏−𝑙/𝑡
= 0. (18)

Then the process output under this control scheme can be
denoted by

𝑦
mv
𝑡+𝑏
= 𝑒

0,𝑡+𝑏/𝑡
+
{

{

{

0, 𝑙 ≥ 𝑏

𝑒
1,𝑡+𝑏−𝑙/𝑡

, 𝑙 < 𝑏.

(19)

As we have assumed that there is no cross correlation among
the unmeasured and measured disturbances, the prediction
errors 𝑒

0,𝑡+𝑏/𝑡
and 𝑒

1,𝑡+𝑏−𝑙/𝑡
are independent and unrelated

with controller parameters.Then, the MVPLB of closed-loop
output is

𝜎
2

mv = var (𝑒
0,𝑡+𝑏/𝑡

) + var (𝑒
1,𝑡+𝑏−𝑙/𝑡

)

= (1 + 𝜓
󸀠2

0,1
+ ⋅ ⋅ ⋅ + 𝜓

󸀠2

0,𝑏−1
) 𝜎

2

0

+
{

{

{

0 𝑙 ≥ 𝑏

(𝜓
󸀠2

1,0
+ 𝜓

󸀠2

1,1
+ ⋅ ⋅ ⋅ + 𝜓

󸀠2

1,𝑏−𝑙−1
) 𝜎

2

1
𝑙 < 𝑏.

(20)

From above derivation, we can conclude that the MVPLB
of nonlinear feedforward and feedback system is identical
to that of linear system. The difference is that it is possible
to adopt different controllers for obtaining same minimum
variance.

Second, a more general form of nonlinear feedforward
and feedback control systems is considered:

𝑦
𝑡
= 𝑞

−𝑏
𝑓
𝑃
(𝑢

∗

𝑡
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

nonlinear

+ 𝐷
0,𝑡⏟⏟⏟⏟⏟⏟⏟

nonlinear

+ 𝐷
1,𝑡−𝑙⏟⏟⏟⏟⏟⏟⏟⏟⏟

nonlinear

, (21)

where the terms𝐷
0,𝑡
and𝐷

1,𝑡−𝑙
are called output disturbances

which represent the effect that the unmeasured andmeasured
disturbances have on the process output, respectively. They
are also nonlinear and can be represented by nonlinear
ARMAmodel as

𝐷
0,𝑡
= 𝑓

0,𝐷
(𝐷

∗

0,𝑡−1
, 𝛼

∗

0,𝑡−1
) + 𝛼

0,𝑡
,

𝐷
1,𝑡
= 𝑓

𝑑
𝐷

1,𝑡
= 𝑓

1,𝐷
(𝐷

∗

1,𝑡−1
, 𝛼

∗

1,𝑡−1
) + 𝛼

1,𝑡
.

(22)

Further, we assume that the output disturbance admits a
representation of the form

𝛾
𝑖
(𝑞

−1
) ∇

𝑑𝑖𝐷
𝑖,𝑡
=

𝑚

∑

𝑘=1

𝜃
𝑖,𝑘
𝛼

𝑖,𝑡−𝑘
+

𝑚

∑

𝑘1=1

𝑚

∑

𝑘2=𝑘1

𝜃
𝑖,𝑘1𝑘2

𝛼
𝑖,𝑡−𝑘1

𝛼
𝑡−𝑘2
+ ⋅ ⋅ ⋅ +

𝑚

∑

𝑘1=1

⋅ ⋅ ⋅

𝑚

∑

𝑘𝑘=𝑘𝑘−1

𝜃
𝑖,𝑘1 ⋅⋅⋅𝑘𝑘

𝛼
𝑖,𝑡−𝑘1

⋅ ⋅ ⋅ 𝛼
𝑖,𝑡−𝑘𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓𝑖,𝐷(𝛼
∗

𝑖,𝑡−1
)

+ 𝛼
𝑖,𝑡
,

(23)
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where {𝛼
𝑖,𝑡
} is a white noise sequence with mean 𝜇

𝑖,𝛼
and

variance 𝜎2

𝑖,𝛼
, and 𝛾

𝑖
(𝑞

−1
) is monic and stable polynomial,

and we also assume that the disturbance model is invertible.
Multiply both sides by 𝑞𝑏 and substitute for all values of𝑦

𝑡+𝑏−𝑖
,

𝑖 = 1, . . . , 𝑏 − 1, in (21):

𝑦
𝑡+𝑏
= 𝑓

𝑃
(𝑢

∗

𝑡
) +

𝑏−1

∑

𝑗

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) + 𝛼

0,𝑡+𝑏−𝑗
)

+ 𝐾
0,𝑏
(𝐷

0,𝑡
, 𝛼

∗

0,𝑡
)

+

𝑏−𝑙−1

∑

𝑗

𝜏
1,𝑗
(𝑓

1,𝐷
(𝛼

∗

1,𝑡+𝑏−𝑙−1−𝑗
) + 𝛼

1,𝑡+𝑏−𝑙−𝑗
)

+ 𝐾
1,𝑏
(𝐷

1,𝑡
, 𝛼

∗

1,𝑡
) ,

(24)

where 𝜏
𝑖,𝑗
is the 𝑗th impulse coefficient of [𝛾

𝑖
(𝑞

−1
)∇

𝑑𝑖]
−1, 𝑖 =

0 or 1. 𝐾
𝑖,𝑏
(𝐷

𝑖,𝑡
, 𝛼

∗

𝑖,𝑡
) is a remainder term that is obtained by

successive substitutions.The unmeasured output disturbance
is represented as

𝐷
0,𝑡+𝑏

=

𝑏−1

∑

𝑗

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) + 𝛼

0,𝑡+𝑏−𝑗
)

+ 𝐾
0,𝑏
(𝐷

0,𝑡
, 𝛼

∗

0,𝑡
) .

(25)

According to the definition of conditional expectation, the 𝑏-
step ahead prediction is

̂̃
𝐷

0,𝑡+𝑏/𝑡
= 𝐸

{

{

{

𝑏−1

∑

𝑗

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) + 𝛼

0,𝑡+𝑏−𝑗
) | 𝐼

𝑡

}

}

}

+ 𝐸 {𝐾
0,𝑏
(𝐷

0,𝑡
, 𝛼

∗

0,𝑡
)}

= 𝐸
{

{

{

𝑏−1

∑

𝑗

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) + 𝛼

0,𝑡+𝑏−𝑗
) | 𝐼

𝑡

}

}

}

+ 𝐾
0,𝑏
(𝐷

0,𝑡
, 𝛼

∗

0,𝑡
) .

(26)

Now in the aforementioned equation, we know

𝐸 {𝛼
0,𝑡+𝑘

| 𝐼
𝑡
} = 𝜇

0,𝛼
, 𝑘 = 1, . . . .𝑏,

𝐸 {𝛼
0,𝑡−𝑘

| 𝐼
𝑡
} = 𝛼

0,𝑡−𝑘
= 𝐷

0,𝑡−𝑘
−
̂̃
𝐷

0,𝑡−𝑘/𝑡−𝑘−1
, 𝑘 ≥ 0,

𝐸 {𝑓
0,𝐷
(𝛼

∗

0,𝑡+𝑘
)
󵄨󵄨󵄨󵄨𝐼𝑡 }

= ∫

∞

−∞

⋅ ⋅ ⋅ ∫

∞

−∞

𝑓
0,𝐷
(𝛼

∗

0,𝑡+𝑘
)

× 𝑝
0
(𝛼

0,𝑡+𝑘
, . . . , 𝛼

0,𝑡+1
) 𝑑𝛼

0,𝑡+𝑘
⋅ ⋅ ⋅ 𝑑𝛼

0,𝑡+1
,

(27)

where 𝑝
0
(𝛼

0,𝑡+𝑘
, . . . , 𝛼

0,𝑡+1
) is the joint distribution of

𝛼
0,𝑡+𝑘

⋅ ⋅ ⋅ 𝛼
0,𝑡+1

. Then the prediction error for the unmeasured
output disturbance is

𝑒
0,𝑡+𝑏/𝑡

= 𝐷
0,𝑡+𝑏

−
̂̃
𝐷

0,𝑡+𝑏/𝑡

=

𝑏−1

∑

𝑗=0

𝜏
0,𝑗
(𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) − 𝐸 {𝑓

0,𝐷
(𝛼

∗

0,𝑡+𝑏−1−𝑗
) | 𝐼

𝑡
}

+𝛼
0,𝑡+𝑏−𝑗

− 𝜇
0,𝛼
) .

(28)

In a same manner, the prediction error for the measured
output disturbance is

𝑒
1,𝑡+𝑏−𝑙/𝑡

= 𝐷
1,𝑡+𝑏−𝑙

−
̂̃
𝐷

1,𝑡+𝑏−𝑙/𝑡

=

{{{{{{{{{

{{{{{{{{{

{

0, 𝑙 ≥ 𝑏

𝑏−𝑙−1

∑

𝑗=0

𝜏
1,𝑗
(𝑓

1,𝐷
(𝛼

∗

1,𝑡+𝑏−𝑙−1−𝑗
)

−𝐸 {𝑓
1,𝐷
(𝛼

∗

1,𝑡+𝑏−𝑙−1−𝑗
) | 𝐼

𝑡
}

+𝛼
1,𝑡+𝑏−𝑙−𝑗

− 𝜇
1,𝛼
) , 𝑙 < 𝑏.

(29)

The process output can be written as

𝑦
𝑡+𝑏
= 𝑓

𝑃
(𝑢

∗

𝑡
) +
̂̃
𝐷

0,𝑡+𝑏/𝑡
+
̂̃
𝐷

1,𝑡+𝑏−𝑙/𝑡
+ 𝑒

0,𝑡+𝑏/𝑡
+ 𝑒

1,𝑡+𝑏−𝑙/𝑡
.

(30)

If it is possible to find the control action at time 𝑡 such that

𝑓
𝑃
(𝑢

∗

𝑡
) +
̂̃
𝐷

0,𝑡+𝑏/𝑡
+
̂̃
𝐷

1,𝑡+𝑏−𝑙/𝑡
= 0, (31)

then the resulting controller is the minimum variance con-
troller. It may not be possible to implement a minimum
variance controller due to the various reasons. For instance,
it may lead to excessive manipulated variable action and
may not be robust to modeling errors. However, the output
variance set by minimum variance provides a theoretical
lower bound on the system output and can be used as a useful
guide for controller assessment.

The process output under minimum variance control is
given by the sum of the individual error in predicting the
effect of the disturbances:

𝑦
mv
𝑡+𝑏
= 𝑒

0,𝑡+𝑏/𝑡
+ {
0, 𝑙 ≥ 𝑏

𝑒
1,𝑡+𝑏−𝑙/𝑡

, 𝑙 < 𝑏.
(32)

It should be pointed out that the terms 𝑒
0,𝑡+𝑏/𝑡

and 𝑒
1,𝑡+𝑏−𝑙/𝑡

are
very complicated functions, and they may not be expanded
in convergent time series as that in linear systems. Therefore,
it is difficult to estimate the MVPLB from the closed-loop
operation data of feedforward and feedback control system
by using traditional linear regression method. But we can
get a conclusion that the MVPLB does not depend on the
manipulated variable and only related with the most recent
𝑏 past unmeasured disturbance driving force and 𝑏 − 𝑙 past
measured disturbance driving force.
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4. ANOVA-Based Performance Assessment
of Nonlinear Feedforward and Feedback
Control System

Analysis of variance (ANOVA) methods are a class of statis-
tical methods that are useful in process systems engineering.
Its primary task is to decompose the variance of a response
variable into contributions arising from the inputs and assess
themagnitude and significance of each of their contributions.
Historically, the ANOVA variance decomposition techniques
were used to provide variance analysis for nonlinear systems
with the multidisturbance sources [20].

For the output of a static system such as 𝑌 =

𝑓(𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑃
), the relative importance of the indepen-

dent inputs can be quantified by the fractional variance, and
this can be calculated using an ANOVA-like decomposition
formula [21]:

Var [𝑌] = ∑
𝑖

𝑉
𝑖
+∑

𝑖

∑

𝑗>𝑖

𝑉
𝑖𝑗
+ ⋅ ⋅ ⋅ + 𝑉

12⋅⋅⋅𝑝
, (33)

where 𝑉
𝑖
= Var[𝐸[𝑌 | 𝑋

𝑖
= 𝑥

𝑖
]], 𝑉

𝑖
= Var[𝐸[𝑌 | 𝑋

𝑖
= 𝑥

𝑖
]],

𝑉
𝑖𝑗
= Var[𝐸[𝑌 | 𝑋

𝑖
= 𝑥

𝑖
, 𝑋

𝑗
= 𝑥

𝑗
]] − Var[𝐸[𝑌 | 𝑋

𝑖
=

𝑥
𝑖
]] − Var[𝐸[𝑌 | 𝑋

𝑗
= 𝑥

𝑗
]] and so on. 𝐸[𝑌 | 𝑋

𝑖
= 𝑥

𝑖
]

denotes the expectation of 𝑌 conditional on 𝑋
𝑖
when fixing

the value 𝑥
𝑖
, and 𝑉 stands for variance over all the possible

values of 𝑥
𝑖
. In the same way, if we partition the variable set

(𝑋
1
, 𝑋

2
, . . . , 𝑋

𝑃
) into two groups: 𝑈

1
= (𝑋

1
, . . . , 𝑋

𝑘
) and

𝑈
2
= (𝑋

𝑃−𝑘+1
, . . . , 𝑋

𝑃
), then the variance of 𝑌 = 𝑓(𝑈

1
, 𝑈

2
)

can be decomposed into 𝑉[𝑌] = 𝑉
𝑈1
+ 𝑉

𝑈2
+ 𝑉

𝑈1𝑈2
.

For the nonlinear feedforward and feedback control
systems described by Figure 1, we separate the disturbance
entering the system after time 0, say [𝛼

0,𝑡+𝑏
, 𝛼

0,𝑡+𝑏−1
, . . .,

𝛼
0,1
, 𝛼

1,𝑡+𝑏−𝑙
, 𝛼

1,𝑡+𝑏−𝑙−1
, . . . , 𝛼

1,1
], into two groups: 𝑥

1
=

[𝛼
0,𝑡+𝑏
, . . . , 𝛼

0,𝑡+1
, 𝛼

1,𝑡+𝑏−𝑙
, . . . , 𝛼

1,𝑡+1
] and 𝑥

2
= [𝛼

0,𝑡
, . . .,

𝛼
0,1
, 𝛼

1,𝑡
, . . . , 𝛼

1,1
]. The first group includes all the

disturbances entering the system after time 𝑡 and the
second group includes all the disturbances entering the
system up to and including time 𝑡 and including time 𝑡
starting from the initial time 𝑡 = 0. Now, we are interested
in determining the sensitivity of output 𝑦

𝑡+𝑏
variations of

two vector series 𝑥
1
and 𝑥

2
. Since the future behavior of

𝑦
𝑡+𝑏

is possibly dependent on initial conditions due to the
nonlinearity, the initial condition must be considered before
using the ANOVA-like decomposition equation. Using the
well-known variance decomposition theorem, the variance
of 𝑦

𝑡+𝑏
can be decomposed into two terms:

𝑉 [𝑦
𝑡+𝑏
] = 𝐸

𝐼0
[𝑉

𝑥
[𝑦

𝑡+𝑏
| 𝐼

0
]] + 𝑉

𝐼0
[𝐸

𝑥
[𝑦

𝑡+𝑏
| 𝐼

0
]] , (34)

where 𝑥 = [𝑥
1
, 𝑥

2
] denotes all of disturbances entering

the system from time 1 to time 𝑡 + 𝑏 and 𝐼
0
denotes initial

conditions. The first term in above equation is the fractional
contribution to the variance of 𝑦

𝑡+𝑏
from the disturbance

signal and the interaction between disturbance and the initial
condition. The second term is the fractional contribution
to the output solely due to the uncertainties in the initial
condition. Given the initial condition 𝐼

0
, conditional variance

𝑉
𝑥
[𝑦

𝑡+𝑏
| 𝐼

0
] can be decomposed as

𝑉
𝑥
| 𝐼

0
= 𝑉

𝑥
[𝑦

𝑡+𝑏
| 𝐼

0
] = 𝑉

1
| 𝐼

0
+ 𝑉

2
| 𝐼

0
+ 𝑉

12
| 𝐼

0
, (35)

where 𝑉
1
| 𝐼

0
= 𝑉

𝑥1
[𝐸

𝑥2
[𝑦

𝑡+𝑏
| (𝑥

1
, 𝐼

0
)]], 𝑉

2
| 𝐼

0
=

𝑉
𝑥2
[𝐸

𝑥1
[𝑦

𝑡+𝑏
| (𝑥

2
, 𝐼

0
)]], and 𝑉

12
| 𝐼

0
= 𝑉

𝑥
[𝐸

𝑥
[𝑦

𝑡+𝑏
|

(𝑥, 𝐼
0
)]] − 𝑉

1
| 𝐼

0
− 𝑉

2
| 𝐼

0
. 𝐸

𝐼0
[𝑉

1
| 𝐼

0
] denotes the main

effect of 𝑥
1
on the𝑉[𝑦

𝑡+𝑏
].𝐸

𝐼0
[𝑉

2
| 𝐼

0
] denotes the interaction

contributing to the𝑉[𝑦
𝑡+𝑏
] that is not accounted for the main

effects of 𝑥
1
and 𝑥

2
. Consequently, a suitable performance

index can be constructed by referring to Harris index:

𝜂
𝑡
=
𝐸

𝐼0
[𝑉

1
| 𝐼

0
]

Var [𝑦
𝑡+𝑏
]
. (36)

If the nonlinear model is stationary, then the distribution
of lim

𝑡→∞
𝑦

𝑡+𝑏
can reach an equilibrium. For linear time

series, this limiting distribution is independent of initial
condition. But for a stationary nonlinear model, the limiting
distribution may depend on the initial condition. Therefore,
the performance index 𝜂

𝑡
will depend on the initial condition.

If the distribution of lim
𝑡→∞

𝑦
𝑡+𝑏

does not depend on the
initial conditions, the process is termed ergodic. In actual
industry, the cases that processes are strongly nonergodic
are more pathological than common cases. For an ergodic
nonlinear system, 𝑉

𝐼0
[𝐸

𝑥
[𝑌

𝑡+𝑏
|𝐼

0
]] in (34) will be zero for

𝑡 → ∞, and the variance decomposition can be expressed
when 𝑡 → ∞ as

Var [𝑦
𝑡+𝑏
] = 𝐸

𝐼0
[𝑉

1
| 𝐼

0
+ 𝑉

2
| 𝐼

0
+ 𝑉

12
| 𝐼

0
] = 𝑉

1
+ 𝑉

2
+ 𝑉

12
,

(37)

where𝑉
1
= 𝑉

𝑥1
[𝐸

𝑥2
[𝑦

𝑡+𝑏
| 𝑥

1
]],𝑉

2
= 𝑉

𝑥2
[𝐸

𝑥1
[𝑦

𝑡+𝑏
| 𝑥

2
]], and

𝑉
12
= 𝑉[𝑦

𝑡+𝑏
]−𝑉

1
−𝑉

2
.The performance index will turn into

lim
𝑡→∞

𝜂
𝑡
= lim

𝑡→∞

𝑉
1

Var [𝑦
𝑡+𝑏
]
. (38)

Generally, we will approximate the infinite limit in above
equation by some suitably large value 𝜂

𝑀
.

In Section 3, we conclude that the MVPLB of nonlin-
ear feedforward and feedback control systems is existent
and only related with the most recent 𝑏 past unmea-
sured disturbance driving force and 𝑏 − 𝑙 past mea-
sured disturbance driving force. Moreover, we have 𝑥

1
=

[𝛼
0,𝑡+𝑏
, . . . , 𝛼

0,𝑡+1
, 𝛼

1,𝑡+𝑏−𝑙
, . . . , 𝛼

1,𝑡+1
], so 𝜂

𝑡
just is the mini-

mum variance performance index of the nonlinear feedfor-
ward and feedback control systems.

For the computation of the performance index, the
principal task is to estimate the closed-loop model of non-
linear feedforward and feedback control system. Firstly, the
measured feedforward variable transfer function, given in (2),
must be estimated.Using the linear regression techniques and
past values of𝐷

1,𝑡
.Themodel ofmeasured disturbance can be

estimated by

𝐷
1,𝑡
=

𝐽𝐷

∑

𝑖=1

𝜆
𝑖
𝐷

1,𝑡−𝑖
+ 𝛼̂

1,𝑡
. (39)

𝛼̂
1,𝑡

is an estimate of the independent driving force for
measured disturbance. If the process is controlled by a linear
or nonlinear feedforward and feedback controller such as
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𝑢
𝑡
= 𝑔(𝑦

𝑡
, . . . , 𝑦

𝑡−𝑛𝑦
), then the output of closed-loop system

can be written as

𝑦
𝑡+𝑏

= 𝑓
1
(𝑦

𝑡
, . . . , 𝑦

𝑡−𝑛𝑦
, 𝛼

0,𝑡+𝑏
, . . . , 𝛼

0,𝑡−𝑛0
, 𝐷

1,𝑡+𝑏−𝑙
, . . . , 𝐷

1,𝑡−𝑛𝐷
)

= 𝑓
2
(𝑦

𝑡
, . . . , 𝑦

𝑡−𝑛𝑦
, 𝛼

0,𝑡+𝑏
, . . . , 𝛼

0,𝑡−𝑛0
, 𝛼̂

1,𝑡+𝑏−𝑙
, . . . , 𝛼̂

1,𝑡−𝑛1
) .

(40)

According to the existing knowledge, any continuous 𝑓(⋅)
can be arbitrarily well approximated by polynomial models.
Therefore, expanding𝑓

2
(⋅) in above equation as a polynomial

of degree 𝑙 gives the representation

𝑦
𝑡+𝑏
= 𝜀

0
+

𝑛

∑

𝑖1=1

𝜀
𝑖1
𝑥

𝑖1 ,𝑡
+

𝑛

∑

𝑖1=1

𝑛

∑

𝑖2=𝑖1

𝜀
𝑖1𝑖2
𝑥

𝑖1 ,𝑡
𝑥

𝑖2 ,𝑡
+ ⋅ ⋅ ⋅

+

𝑛

∑

𝑖1=1

⋅ ⋅ ⋅

𝑛

∑

𝑖𝑙=𝑖𝑙−1

𝜀
𝑖1 ⋅⋅⋅𝑖𝑙
𝑥

𝑖1 ,𝑡
⋅ ⋅ ⋅ 𝑥

𝑖𝑙 ,𝑡
+ 𝜉

𝑡
,

(41)

where

𝑛 = 𝑛
𝑦
+ 𝑛

0
+ 𝑛

1
, (42)

and 𝑥
1,𝑡
= 𝑦

𝑡
, 𝑥

2,𝑡
= 𝑦

𝑡−1
, . . . , 𝑥

𝑛𝑦,𝑡
= 𝑦

𝑡−𝑛𝑦
, 𝑥

𝑛𝑦+1,𝑡
=𝛼

0,𝑡+𝑏
, . . .,

𝑥
𝑛𝑦+𝑛0 ,𝑡

= 𝛼
0,𝑡−𝑛0

, and 𝑥
𝑛𝑦+𝑛0+1,𝑡

= 𝛼
1,𝑡+𝑏−𝑙

, . . . , 𝑥
𝑛,𝑡
= 𝛼

1,𝑡−𝑛1
.

Moreover, the output of closed-loop system can be written as
a linear regression model:

𝑦
𝑡+𝑏
=

𝑀

∑

𝑖=1

𝑝
𝑖,𝑡
𝜀
𝑖
+ 𝜉

𝑡
, 𝑡 = 1, . . . , 𝑁, (43)

where 𝑁 is the data length, the 𝑝
𝑖,𝑡

are monomials of 𝑥
1,𝑡

to 𝑥
𝑛,𝑡

up to degree 𝑙, 𝑝
1,𝑡
= 1 corresponding to a constant

term, 𝜉
𝑡
is some modeling error, and the 𝜀

𝑖
, 𝑖 = 1, . . . ,𝑀, are

unknown parameters to be estimated. Then above equation
can be written in the matrix form

Y = PΘ + Ε, (44)

where

Y = [[
[

𝑦
1

...
𝑦

𝑁

]
]

]

, P = [[
[

𝑝
1

...
𝑝

𝑀

]
]

]

𝑇

=
[
[

[

𝑝
1,1
⋅ ⋅ ⋅ 𝑝

𝑀,1

... d
...

𝑝
1,𝑁

⋅ ⋅ ⋅ 𝑝
𝑀,𝑁

]
]

]

,

Θ =
[
[

[

𝜀
1

...
𝜀
𝑀

]
]

]

, Ε =
[
[

[

𝜉
1

...
𝜉
𝑁

]
]

]

.

(45)

In reality, as parameters 𝑛
𝑦
, 𝑛

0
, and 𝑛

1
are unknown, we must

consider the combined problem of structure selection and
parameter estimation. To avoid losing significant termswhich
must be included in the final model, we are forced to consider
the full model set at the beginning of the identification
and then to select a subset from full model set and find
the corresponding parameter. The orthogonal least squares

(OLS) method [22] can be used to determine the order and
estimate the parameters of the model. Denote

𝑃̃
(0)
= [𝑃 : 𝑌] . (46)

After a series of Householder transformations 𝐻(𝑖), 𝑖 =
1, . . . , 𝑘 − 1 have been successively applied to 𝑃̃(0); it is
transformed to

𝑃̃
(𝑘−1)

= [𝑅̃
𝑘−1

𝑝
(𝑘−1)

𝑘
⋅ ⋅ ⋅ 𝑝

(𝑘−1)

𝑀
: 𝑌

(𝐾−1)
] , (47)

where 𝑅̃
𝑘−1
= (𝑅

𝑘−1
0)

𝑇, 𝑝(𝑘−1)

𝑘
= (𝑝

(𝑘−1)

1,𝑘
, . . . , 𝑝

(𝑘−1)

𝑁,𝑘
)
𝑇

, and

𝑌
(𝑘−1)

= (𝑦
(𝑘−1)

1
, . . . , 𝑦

(𝑘−1)

𝑁
)
𝑇

, and 𝑅
𝑘−1

is the (𝑘 − 1) × (𝑘 − 1)
upper triangular matrix. Further denote

𝑎
(𝑘)

𝑗
= (

𝑁

∑

𝑖=𝑘

(𝑝
(𝑘−1)

𝑖,𝑗
)
2

)

1/2

; 𝑏
(𝑘)

𝑗
=

𝑁

∑

𝑖=𝑘

𝑝
(𝑘−1)

𝑖,𝑗
𝑦

(𝑘−1)

𝑖
,

𝑗 = 𝑘, . . . ,𝑀.

(48)

Assume that the maximum of (𝑏(𝑘)
𝑗
/𝑎

(𝑘)

𝑗
)
2, 𝑗 = 𝑘, . . . ,𝑀, is

achieved at 𝑗 = 𝑗
𝑚
. Then interchange the 𝑗

𝑚
th column of

𝑝
(𝑘−1)

𝑘
with the 𝑘th column. The procedure is terminated at

𝑀
𝑠
th stage when

1 −

𝑀𝑠

∑

𝑖=1

(𝑦
(𝑀𝑠)

𝑗
)
2

⟨𝑌, 𝑌⟩
≤ 𝜌, or 𝑀

𝑠
= 𝑀, (49)

where 𝜌(0 < 𝜌 ≤ 1) is a desired tolerance. Using backward
substitution, the subset model parameter estimate Θ

𝑠
is

computed from

𝑅
𝑀𝑠
Θ

𝑠
= [𝑦

(𝑀𝑠)

1
⋅ ⋅ ⋅ 𝑦

(𝑀𝑠)

𝑀𝑠
]
𝑇

. (50)

In addition, since the terms of unmeasured disturbance
driving force are generally unmeasured, the identificationwill
require an iterative approach. The identification procedures
can be clarified as follows.

Step 1. Set the initial sequence 𝛼
0,𝑡
by fitting a linear model or

setting the 𝛼
0,𝑡

to zero, and set iteration number 𝑖 = 1.

Step 2. Identify the nonlinear model and get the prediction
errors or residuals 𝜉[𝑖]

𝑘
, 𝑘 = 1, . . . 𝑁.

Step 3. If certain identification criteria are achieved, then the
program jumps to Step 6. Otherwise, Step 4 is run.

Step 4. Replace the initial sequence by the prediction errors
or residuals.

Step 5. Set iteration number 𝑖 = 𝑖 + 1 and return to Step 2.

Step 6. End of program.

Once the parameters of the closed-loop model are esti-
mated, Monte Carlo (MC) method may be used to compute
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Table 1: The obtained model coefficients and minimum variance by linear estimation method.

Terms 𝑏 = 3, 𝑙 = 5 𝑏 = 5, 𝑙 = 3

Real values Estimated values Variances Real values Estimated values Variances
1 1 1 0 1 1 0
𝜓

0,1
1.60 1.4977 0.0118 1.60 1.3811 0.0172

𝜓
0,2

1.76 1.4321 0.0396 1.76 1.2671 0.0466
𝜓

0,3
× × × 1.54 1.0338 0.0801

𝜓
0,4

× × × 1.05 0.6427 0.0825
𝜎

2

0
0.05 0.1208 0.0040 0.05 0.1712 0.0230

𝜓
1,0

× × × × × ×

𝜓
1,1

× × × × × ×

𝜓
1,2

× × × × × ×

𝜓
1,3

× × × 1 1.0005 0.0234
𝜓

1,4
× × × 0.3 0.2849 0.0588

𝜎
2

1
0.1 0.0997 2.1861𝑒 − 004 0.1 0.0989 2.0217𝑒 − 004

𝜎
2

mv 0.3329 0.7038 0.0919 0.6156 1.1688 0.2958

the variance decomposition. Firstly, two random vectors,
𝑥̇

(𝑘)
= [𝑥̇

(𝑘)

1
, 𝑥̇

(𝑘)

2
]
𝑁𝑡×1

and 𝑥̈(𝑘)
= [𝑥̈

(𝑘)

1
, 𝑥̈

(𝑘)

2
]
𝑁𝑡×1

, are
generated, which are two sets of 𝑁mc simulation of multi-
dimensional inputs that have the requisite distribution. 𝑁

𝑡

denotes memory length of the model. Then, the mean and
variance of𝑦

𝑡+𝑏
given the initial condition 𝐼

0
can be calculated

by

𝑦̂
𝑡+𝑏
| 𝐼

0
≅
1

𝑁

𝑁mc

∑

𝑘=1

𝑓
2
(𝑥̇

(𝑘)
) | 𝐼

0
;

𝑉̂
𝑥
| 𝐼

0
≅
1

𝑁

𝑁mc

∑

𝑘=1

(𝑓
2
(𝑥̇

(𝑘)
) | 𝐼

0
)
2

− (𝑦̂
𝑡+𝑏
| 𝐼

0
)
2

.

(51)

The partial variances can be estimated as

𝑉̂
1
| 𝐼

0
≅
1

𝑁

𝑁mc

∑

𝑘=1

𝑓
2
(𝑥̇

(𝑘)

1
, 𝑥̇

(𝑘)

2
) 𝑓

2
(𝑥̇

(𝑘)

1
, 𝑥̈

(𝑘)

2
) − (𝑦̂

𝑡+𝑏
| 𝐼

0
)
2

,

𝑉̂
2
| 𝐼

0
≅
1

𝑁

𝑁mc

∑

𝑘=1

𝑓
2
(𝑥̇

(𝑘)

1
, 𝑥̇

(𝑘)

2
) 𝑓

2
(𝑥̈

(𝑘)

1
, 𝑥̇

(𝑘)

2
) − (𝑦̂

𝑡+𝑏
| 𝐼

0
)
2

,

𝑉̂
12
| 𝐼

0
≅ 𝑉̂

𝑥
| 𝐼

0
− 𝑉̂

1
| 𝐼

0
− 𝑉̂

2
| 𝐼

0
.

(52)

To calculate the 𝑉̂
1
| 𝐼

0
with the different initial conditions,

the average of these values can be used as the estimates
of 𝐸

𝐼0
[𝑉

1
| 𝐼

0
], and the performance index of nonlinear

feedforward and feedback control system can be obtained.

5. Simulation Study

This section presents a simulation experiment to show the
effectiveness of the proposed strategy.Themodel of nonlinear
feedforward and feedback control system that we have chosen
is expressed as

𝑦
𝑡
= 𝑓 (𝑢

∗

𝑡−𝑏
) + 𝐷

0,𝑡
+ 𝑞

−3
(1 − 0.6𝑞

−1
)𝐷

1,𝑡
, (53)

where 𝑓(𝑢∗
𝑡−𝑏
) is process model represented by a nonlinear

polynomial:

𝑓 (𝑢
∗

𝑡−𝑏
) = 0.2𝑢

𝑡−3
+ 0.3𝑢

𝑡−4
+ 𝑢

𝑡−5
+ 0.8𝑢

2

𝑡−3

+ 0.8𝑢
𝑡−3
𝑢
𝑡−4
− 0.7𝑢

2

𝑡−4
− 0.5𝑢

2

𝑡−5
− 0.5𝑢

𝑡−3
𝑢
𝑡−5
.

(54)

Themeasured andunmeasured disturbances are, respectively,
given by

𝐷
0,𝑡
=

1

1 − 1.6𝑞−1 + 0.8𝑞−2
𝛼

0.𝑡
, 𝐷

1,𝑡
=

1

1 − 0.9𝑞−1
𝛼

1,𝑡
,

(55)

where {𝛼
0,𝑡
} and {𝛼

1,𝑡
} are sequences of independent and

identically distributed normal variables with mean zero, and
the variances are, respectively, 0.05 and 0.1.

Assume that the process is presently being controlled
about a fixed set point by a simple proportional feedforward
controller in addition to an integral feedback controller. The
manipulated variable is given by

𝑢
𝑡
= −0.1𝐷

1,𝑡
−
0.3 − 0.2𝑞

−1

1 − 𝑞−1
𝑦

𝑡
. (56)

Two closed-loop signal curves of different time-delay condi-
tions 𝑏 = 3, 𝑙 = 5 and 𝑏 = 5, 𝑙 = 3 are shown in Figure 2.
Then, the traditional linear regression method is applied
to estimate the MVPLB for nonlinear forward feedback
control system. The estimated values of model parameters
and MVPLB are shown in Table 1, where the model orders
are 𝐽

0
= 7, 𝐽

1
= 7, and 𝐽

𝐷
= 1 by applying AIC criterion and

the values are calculated by 100 times’ statistics. It can be seen
that the estimated value of model parameters and MVPLB
by traditional linear regression method has larger deviation,
which is always larger than the real value. This implies the
excessive estimation.

It is necessary to identify themodel of closed-loop system
to estimate the minimum variance performance index of the
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Figure 2: 1000 samples for the closed-loop nonlinear feedforward and feedback system subjected tomeasured and unmeasured disturbances.
(a) 𝑏 = 3, 𝑙 = 5; (b) 𝑏 = 5, 𝑙 = 3.
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Figure 3: Output signals of identified model comparing with actual model. (a) 𝑏 = 3, 𝑙 = 5; (b) 𝑏 = 5, 𝑙 = 3.

nonlinear system. First, we collect the disturbance signals
which can be measured and then apply the linear regression
method to fit the curve to obtain the parameter of the white
noise. Furthermore, we use iterative orthogonal least square
method to identify the closed-loop model. The comparison
for the output signal of identified model and actual model
under two different time delays is shown in Figure 3. We
can see the identified model can well approximate to the real
nonlinear model.

It is noted that the output variance of nonlinear system
is also related to the initial value. Thus, to see whether the
resulting controller performance based on variance decom-
position method includes the influence of the initial value
or not, the output variation of closed-loop system during the
period 𝑡 = 1, 2, . . . , 40 is shown in Figure 4. It can be seen that
when 𝑡 > 20, the distribution of the system output tends to be
stable; thus we get the conclusion that the output has nothing
to do with the initial value.
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Figure 4: Box plots for closed-loop system output on memory length 𝑡 = 1, . . . , 40. (a) 𝑏 = 3, 𝑙 = 5; (b) 𝑏 = 5, 𝑙 = 3.
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Figure 5: Box plots of the estimates of the minimum variance lower bound for the nonlinear feedforward and feedback control system. (a)
𝑏 = 3, 𝑙 = 5; (b) 𝑏 = 5, 𝑙 = 3.

Selecting an appropriate memory length of 40 and apply-
ing 100 times’ Monte Carlo experiments, the box plots of
MVPLB estimates with time delay 𝑏 = 3, 𝑙 = 5, and 𝑏 = 5,
𝑙 = 3 by applying variance decomposition method proposed
by this paper and traditional linear estimation method can
be seen in Figure 5. In Figure 5(a), the first column gives
theoretical performance index for nonlinear systemwith time

delay 𝑏 = 3, 𝑙 = 5, and the second column and third one,
respectively, show the estimates of performance index by tra-
ditional linear method and that by the method in this paper.
In Figure 5(b), the first column gives theoretical performance
index for nonlinear system with time delay 𝑏 = 5, 𝑙 = 3,
and the fourth column and seventh column, respectively,
show the estimates of performance index by traditional linear
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method and that by themethod in this paper.The second and
third column, respectively, show the contributions of perfor-
mance index of the unmeasured and measured disturbance
signal applying traditional linear method. The fifth and sixth
column show the contributions of performance index of the
unmeasured and measured disturbance signal applying the
method proposed by this paper, respectively. From the plot,
we can see that the estimates of performance index using our
new method are more close to the theoretical value than that
using traditional linear method and get the conclusion that
it is effective to estimate the MVPLB of nonlinear forward
and feedback system by applying the CPA method based on
variance decomposition method.

Remarks. (i) The MVPLB of this nonlinear feedback and for-
ward control system can be decomposed into the best possible
bounds for each of the controllers. According to the variance
contributions of the unmeasured and measured disturbance,
we can confirm the degree of controller performance by the
feedback controller and the feedforward controller.

(ii) When the feedforward delay exceeds the feedback
delay, there is no error in predicting of the future disturbance
by using given information at current time. In such case,
the overall MVPLB is only the contribution of unmeasured
disturbance. This is the reason why only three columns are
included in Figure 5.

(iii) This new nonlinear CPA method requires only
observable signals and crude estimates of the process delay
and another delay that it takes for a change in measured
feedforward variable to begin to affect the output.

(iv) The proposed method needs to estimate the closed-
loop nonlinear model, and the identification of the closed-
loop model will directly affect the estimates of the MVPLB.

6. Conclusions

The problem of control performance assessment for non-
linear feedforward and feedback system is investigated in
this paper. We provide a method based on the variance
decomposition to estimate the MVPLB for two classes of
nonlinear feedforward and feedback control system. When
the time delay of the process and measured disturbance are
known, the performance index based on minimum variance
benchmark can be estimated by the data from the closed-
loop system; the simulation shows the effectiveness of the
proposed approach. More specifically, the assumption of one
measured disturbance is also suitable for the multimeasured
disturbance cases; thus the method in this paper can be
extended from SISO to MISO.
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