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This paper is devoted to investigating stability in mean of partial variables for coupled stochastic reaction-diffusion systems on
networks (CSRDSNs). By transforming the integral of the trajectory with respect to spatial variables as the solution of the stochastic
ordinary differential equations (SODE) and using Itô formula, we establish some novel stability principles for uniform stability in
mean, asymptotic stability inmean, uniformly asymptotic stability inmean, and exponential stability inmean of partial variables for
CSRDSNs. These stability principles have a close relation with the topology property of the network. We also provide a systematic
method for constructing global Lyapunov function for these CSRDSNs by using graph theory.The newmethod can help to analyze
the dynamics of complex networks. An example is presented to illustrate the effectiveness and efficiency of the obtained results.

1. Introduction

Coupled systems on networks (CSNs), composed of a large
number of highly interconnected dynamical nodes [1], have
received more and more attention due to its popularity in
modelling many large-scale dynamical systems from science
and engineering, such as communication networks, social
networks, power grids, cellular networks, World Wide Web,
metabolic systems, food webs, and disease transmission
networks; see for instance [2–6] and the references therein.
Stability is one important constituent part of performance
investigation for dynamical systems, and it is very necessary
to construct a relation between the stability criteria of a
CSN and some topology properties of the network [7–11].
Li and Shuai [11] have considered global stability for the
general CSNs based on graph theory, without discussing the
stochastic effects. Due to the fact that most motions are
actually the results of deterministic processes mingling with
random processes [12, 13], Kao et al. [14] have investigated
stability of coupled stochastic systems with time-delay on
networks without reaction diffusion effects. In fact, for many
realistic CSNs, the node state is seriously dependent on the

time and space [15–20]. Hence, in order to describe more
accurately the dynamics changes of CSNs, Kao and Wang
put up with stochastic coupled reaction-diffusion systems
on networks (SCEDSNs) based on graph theory and probed
global stability analysis for SCEDSNs [21].

On the other hand, in real world, it is difficult or even
impossible to measure or estimate all the states of the
systems due to the factors of expensive cost or technique
[22–26]. Partial stability technique (stability of part of the
variables) is most useful when a fully stabilized system
losses some control engines or some phase variables are not
actively controlled. Such situations are most applicable for
automatic systems which need to work remotely without a
proper access to maintenance, such as satellite or robots.
Therefore, stability and stabilization of motion with respect
to part of the variables is of great significance [27–38]. Kao
et al. [27] have studied stability in mean of partial variables
for stochastic reaction-diffusion systems with Markovian
switching. Xi et al. [31] have investigated output consensus
analysis and design for high-order linear swarm systems
by partial stability method. Partial stabilization technology
has been applied into the guidance problem by Shafiei and
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Binazadeh [32]. Ignatyev [34] has probed partial asymptotic
stability in probability of stochastic differential equations.
Chen et al. [36] have discussed impulsive synchronization
of chaotic Lur’e systems via partial states. Stability in mean
of partial variables for stochastic reaction-diffusion systems
has been considered in [38]. To the best of the authors’
knowledge, stability analysis for stability in mean of partial
variables for coupled stochastic reaction-diffusion systems on
networks (CSRDSNs) has not been properly addressed,which
still remains important and challenging.

Motivated by the above discussions, in this paper, we pro-
pose the CSRDSNs model. In Section 2, some preliminaries
are presented. In Section 3, some new stability principles for
uniform stability in mean, asymptotic stability in mean, uni-
formly asymptotic stability inmean, and exponential stability
in mean of partial variables for CSRDSNs are established.
These stability principles have a close relation to the topology
property of the network. A systematic method is provided
to construct the global Lyapunov function of CSRDSNs by
combining graph theory and the Lyapunov second method.
The findings show that, if each vertex system has a globally
stable equilibrium and possesses a global Lyapunov function
𝑉𝑘, then the global Lyapunov function for the CSRDSNs can
be systematically produced by individual 𝑉𝑘. An example
is provided in Section 4. Section 5 is conclusion. Notations:
for convenience, we sometimes write v, vk, and vj as v(𝑡, x),
vk(𝑡, x), and vj(𝑡, x), respectively.

2. Preliminaries

A general stochastic reaction-diffusion system reads

dv (𝑡, x) = [𝜌𝑖 (𝑡) Δv (𝑡, x) + 𝑓 (𝑡, x, v (𝑡, x))] d𝑡

+ 𝑔 (𝑡, x, v (𝑡, x)) d𝑊(𝑡) ,

(𝑡, x) ∈ R+ × 𝐺,

(1)

with boundary condition

𝜕v (𝑡, x)
𝜕N

= 0, (𝑡, x) ∈ R+ × 𝜕𝐺, (2)

where k = col(y, z) ∈ R𝑛, y ∈ R𝑚, z ∈ R𝑝(𝑚 + 𝑝 = 𝑛),
Δv = ∑

𝑛

𝑖=1
(𝜕
2v/𝜕𝑥2

𝑖
); denote | ∫

𝐺
v(⋅, x)dx| by |v(⋅, x)|𝐺, 𝐺 =

{x, |x| < 𝑙 < +∞} ⊂ 𝑅
𝑟, and both𝑓 ∈ [R+×𝐺×Γ,R𝑛] and 𝑔 ∈

[R+ ×𝐺 × Γ,R𝑛×𝑚] are Borel measurable functions; here, Γ =

{v, |y(⋅, 𝑥)|𝐺 ≤ 𝐻 = const, |z(⋅, x)|𝐺 < +∞} ⊂ R𝑛, | ⋅ | stands
for vector norm, 𝑊(𝑡) = (𝑊1, . . . ,𝑊𝑚)

⊺ is an 𝑚-dimension
Brownmotion with natural flow {F𝑡}𝑡≥0 defined on complete
probability space (Ω,F, (F𝑡)𝑡∈𝐼,P), N is the normal vector
to 𝜕𝐺, 𝑓(𝑡, x, 0) ≡ 0, and 𝑔(𝑡, x, 0) ≡ 0.

Throughout this paper, we suppose function 𝑔(𝑡, x,
v(𝑡, x)) satisfies integral linear growth condition and 𝑓, 𝑔

meet Lipschitz condition; that is, there exists constant 𝐿 > 0

such that
󵄨󵄨󵄨󵄨𝑔 (𝑡, x, v (𝑡, x))󵄨󵄨󵄨󵄨𝐺 ≤ 𝐿 (1 + |v|𝐺) ,

󵄨󵄨󵄨󵄨𝑔 (𝑡, x, v1 (𝑡, x)) − 𝑔 (𝑡, x, v2 (𝑡, x))󵄨󵄨󵄨󵄨𝐺 ≤ 𝐿
󵄨󵄨󵄨󵄨k1 − v2

󵄨󵄨󵄨󵄨𝐺
,

󵄨󵄨󵄨󵄨𝑓 (𝑡, x, v1 (𝑡, x)) − 𝑓 (𝑡, x, v2 (𝑡, x))󵄨󵄨󵄨󵄨𝐺 ≤ 𝐿
󵄨󵄨󵄨󵄨v1 − v2

󵄨󵄨󵄨󵄨𝐺
,

(3)

where |v(⋅, x))|𝐺 ≜ | ∫
𝐺
v(⋅, x)dx|.The existence of the solution

for system (1) can be proved by the common stepwise
interactive method and the relevant conclusion can also refer
to [39, 40].

Before the start of our discussion, we will first introduce
some definitions as to stability inmean of partial variables for
stochastic reaction-diffusion systems.

Definition 1. The trivial solution of system (1) is said to be
stable in mean as to partial variables y if, for ∀𝜀 > 0, ∀𝑡0 > 0,
there is 𝛿(𝑡0, 𝜀) such that E{|y(𝑡, x, 𝑡0, v0)|𝐺} < 𝜀 holds for
∀v0 ∈ 𝑆𝛿 = {v | |v(⋅, x)|𝐺 < 𝛿}.

The trivial solution of system (1) is said to be uniformly
stable in mean as to partial variables y if, for ∀𝜀 > 0, ∀𝑡0 > 0,
there is 𝛿(𝜀) such that E{|y(𝑡, x, 𝑡0, v0)|𝐺} < 𝜀 holds for ∀v0 ∈
𝑆𝛿 = {v | |v(⋅, x)|𝐺 < 𝛿}.

The trivial solution of system (1) is said to be asymp-
totically stable in mean as to partial variables y if, for
∀𝜀 > 0, ∀𝑡0 > 0, there is 𝛿(𝑡0, 𝜀) such that for ∀v0 ∈

𝑆𝛿 = {v | |v(⋅, x)|𝐺 < 𝛿} E{|y(𝑡, x, 𝑡0, v0)|𝐺} < 𝜀 and
lim𝑡→∞E{|y(𝑡, x, 𝑡0, v0)|𝐺} = 0.

The trivial solution of system (1) is said to be uniformly
asymptotically stable in mean as to partial variables y if,
for ∀𝜀 > 0, ∀𝑡0 > 0, there is 𝛿(𝜀) such that for ∀v0 ∈

𝑆𝛿 = {v | |v(⋅, x)|𝐺 < 𝛿} E{|y(𝑡, x, 𝑡0, v0)|𝐺} < 𝜀 and
lim𝑡→∞E{|y(𝑡, x, 𝑡0, v0)|𝐺} = 0.

Definition 2. If 𝜇(⋅) ∈ 𝐶[[0, 𝑟],R] is a strictly increasing
function and 𝜇(0) = 0, function 𝜇 is said to be class K
function. Denote 𝜇 ∈ K concisely. If 𝜇(⋅) ∈ 𝐶[R+,R+] and
𝜇 ∈ K, lim𝑟→+∞𝜇(𝑟) = +∞, then 𝜇 ∈ K𝑅.

A continuous function 𝑉(𝑡, 𝜉) is said to be positive-
definite if𝑉(𝑡, 0) = 0 and, for some 𝜇 ∈ KR,𝑉(𝑡, 𝜉) ≥ 𝜇(|𝜉|).
Write 𝐶

1,2
(R+ × R𝑛;R+) for the family of all nonnegative

functions 𝑉(𝑡, 𝜉) on R+ × R𝑛 that are continuously twice
differentiable in 𝜉 and once in 𝑡. If𝑉(𝑡, 𝜉) ∈ 𝐶

1,2
(R+×R

𝑛
;R+),

then define an operator L𝑉(𝑡, 𝜉) from R+ × R𝑛 to R with
respect to (1) by

L𝑉 (𝑡, 𝜉) = 𝑉𝑡 (𝑡, 𝜉) + 𝑉
𝑇

𝜉
(𝑡, 𝜉) 𝑓 (𝑡, x, 𝜉)

+
1

2
Trace [𝑔𝑇 (𝑡, x, 𝜉) 𝑉𝜉𝜉 (𝑥, 𝑡) 𝑔 (𝑡, x, 𝜉)] ,

(4)

where

𝑉𝑡 (𝑡, 𝜉) =
𝜕𝑉 (𝑡, 𝜉)

𝜕𝑡
,

𝑉
𝑇

𝜉
(𝑡, 𝜉) = (

𝜕𝑉 (𝑡, 𝜉)

𝜕𝜉1

, . . . ,
𝜕𝑉 (𝑡, 𝜉)

𝜕𝜉𝑛

) ,

𝑉𝜉𝜉 (𝑥, 𝑡) = (
𝜕
2
𝑉 (𝑡, 𝜉)

𝜕𝜉𝑖𝜕𝜉𝑗

)

𝑛 × 𝑛

.

(5)
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Applying the Itô formula to ∫
𝐺
V(𝑡, v(𝑡, x))dx along sys-

tem (1) gives for ∀𝑡 ≥ 𝑡0

(d∫
𝐺

𝑉 (𝑡, v (𝑡, x)) dx)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1)

= ∫
𝐺

[(L𝑉 (𝑡, v (𝑡, x)) + 𝑉
𝑇

v (𝑡, v) 𝜌Δv (𝑡, x)) d𝑡

+ 𝑉
𝑇

v (𝑡, v) 𝑔 (𝑡, x, v (𝑡, x)) d𝑊(𝑡)] dx.

(6)

The existence of function 𝑉(𝑡, v) ∈ 𝐶
1,2 and another

condition in the classical Lyapunov theorem on the stability
of (1) are needed [30]. For convenience, similarly, we give the
following definitions.

Definition 3. 𝑉 ∈ 𝐶
1,2

(R+ × R𝑛;R+) is called a Lyapunov-
A function for (1), if L∫

𝐺
𝑉(𝑡, v)dx ≤ 0, and is

called a Lyapunov-B function for (1), if L∫
𝐺
𝑉(𝑡, v)dx ≤

−𝑏 ∫
𝐺
𝑉(𝑡, v)dx, in which 𝑏 > 0.

The following basic concepts and theorems on graph
theory can be found in [11, 41]. A directed graph G = (V, 𝐸)

contains a set V = {1, 2, . . . , 𝑛} of vertices and a set 𝐸 of
arcs (𝑖, 𝑗) leading from initial vertex 𝑖 to terminal vertex 𝑗.
A subgraph H of G is said to be spanning if H and G have
the same vertex set. A digraph G is weighted if each arc
(𝑗, 𝑖) is assigned to a positive weight 𝑎𝑖𝑗. Here 𝑎𝑖𝑗 > 0 if and
only if there exists an arc from vertex 𝑗 to vertex 𝑖 in G.
The weight 𝑊(G) of G is the product of the weights on all
its arcs. A directed path P in G is a subgraph with distinct
vertices {𝑖1, 𝑖2, . . . , 𝑖𝑚} such that its set of arcs is {(𝑖𝑘, 𝑖𝑘+1) :

𝑘 = 1, 2, . . . , 𝑚 − 1}. If 𝑖𝑚 = 𝑖1, we call P a directed cycle. A
connected subgraphT is a tree if it contains no cycles. A tree
T is rooted at vertex 𝑖, called the root, if 𝑖 is not a terminal
vertex of any arcs, and each of the remaining vertices is a
terminal vertex of exactly one arc. A digraph G is strongly
connected if, for any pair of distinct vertices, there exists a
directed path fromone to the other. Given aweighted digraph
G with 𝑛 vertices, define the weight matrix 𝐴 = (𝑎𝑖𝑗)𝑛 × 𝑛

whose entry 𝑎𝑖𝑗 equals the weight of arc (𝑗, 𝑖) if it exists and
0 otherwise. Denote the directed graph with weight matrix𝐴

by (G, 𝐴). A weighted digraph (G, 𝐴) is said to be balanced if
𝑊(C) = 𝑊(−C) for all directed cycles C. Here, −C denotes
the reverse ofC and is constructed by reversing the direction
of all arcs in C. For a unicyclic graph Q with cycle CQ, let Q̃
be the unicyclic graph obtained by replacing CQ with −CQ.
Suppose that (G, 𝐴) is balanced; then 𝑊(Q) = 𝑊(Q̃). The
Laplacian matrix of (G, 𝐴) is defined as

J =

(
(
(
(
(

(

∑

𝑖 ̸= 1

𝑎1𝑖 −𝑎12 ⋅ ⋅ ⋅ −𝑎1𝑛

−𝑎21 ∑

𝑖 ̸= 2

𝑎2𝑖 ⋅ ⋅ ⋅ −𝑎2𝑛

...
... d

...
−𝑎𝑛1 −𝑎𝑛2 ⋅ ⋅ ⋅ ∑

𝑖 ̸= 𝑛

𝑎𝑖𝑘

)
)
)
)
)

)

. (7)

Let 𝑐𝑖 denote the cofactor of the 𝑖th diagonal element ofJ.

Lemma 4 ([34] Kirchhoffs Matrix Tree Theorem). Assume
𝑛 ≥ 2. Then

𝑐𝑖 = ∑

T∈T𝑖

𝑊(T) , 𝑖 = 1, 2, . . . , 𝑁, (8)

where T𝑖 is the set of all spanning trees T of (G, 𝐴) that are
rooted at vertex 𝑖. In particular, if (G, 𝐴) is strongly connected,
then 𝑐𝑖 > 0 for 𝑐𝑖 = 1, 2, . . . , 𝑛.

Lemma 5 (see [11]). Assume 𝑛 ≥ 2. Let 𝑐𝑘 be given in (1). Then
the following identity holds:
𝑛

∑

𝑖,𝑗=1

𝑐𝑖𝑎𝑖𝑗𝐹𝑘𝑗 (𝑥𝑖, 𝑥𝑗) = ∑

Q∈Q

𝑊(Q) ∑

(𝑖,𝑗)∈𝐸(𝐶Q)

𝐹𝑖𝑗 (𝑥𝑖, 𝑥𝑗) . (9)

Here𝐹𝑖𝑗(𝑥𝑖, 𝑥𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, are arbitrary functions,Q is the set
of all spanning unicyclic graphs of (G, 𝐴), 𝑊(Q) is the weight
of Q, and 𝐶Q denotes the directed cycle of Q.

3. Main Results

To begin with our main results, we will give an SCEDSN
represented by digraphGwith𝑁 vertices,𝑁 ≥ 2. In 𝑖th vertex
it is assigned a stochastic reaction-diffusion system

dv𝑖 (𝑡, x) = [𝜌𝑖 (𝑡) Δv𝑖 (𝑡, x) + 𝑓𝑖 (𝑡, x, v𝑖 (𝑡, x))] d𝑡

+ 𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) d𝑊(𝑡) ,

(𝑡, x) ∈ R+ × 𝐺,

(10)

where v𝑖(𝑡, x) = col(yi, zi) ∈ R𝑛𝑖 , yi ∈ R𝑚𝑖 , zi ∈ R𝑝𝑖 (𝑚𝑖 +𝑝𝑖 =

𝑛𝑖),𝑓𝑖 : R+ × 𝐺 × R𝑛𝑖 → R𝑛𝑖 , and 𝑔𝑖 : R+ × 𝐺 × R𝑛𝑖×𝑚𝑖 →

R𝑛𝑖×𝑚. If these systems are coupled, let

𝐻𝑖𝑗 : R
𝑛𝑖 × R

𝑛𝑗 × R 󳨀→ R
𝑛𝑖 ,

𝑁𝑖𝑗 : R
𝑛𝑖 × R

𝑛𝑗 × R 󳨀→ R
𝑛𝑖×𝑚,

𝑖, 𝑗 = 1, 2, . . . , 𝑁

(11)

represent the influence of vertex 𝑗 on vertex 𝑖, and 𝐻𝑖𝑗 =

𝑁𝑖𝑗 = 0 if there exists no arc from 𝑗 to 𝑖 in G. Then, by
replacing 𝑓𝑖 and𝑔𝑖 with 𝑓𝑖 + ∑

𝑁

𝑗=1
𝐻𝑖𝑗 and 𝑔𝑖 + ∑

𝑁

𝑗=1
𝑁𝑖𝑗, we

get the following stochastic coupled system on graphG:

dv𝑖 (𝑡, x)

= [

[

𝜌𝑖Δv𝑖 (𝑡, x) + 𝑓𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝐻𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

d𝑡

+ [

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

d𝑊(𝑡) ,

(𝑡, x) ∈ R+ × 𝐺,

(12)

𝜕v𝑖 (𝑡, x)
𝜕N

= 0, (𝑡, x) ∈ R+ × 𝜕𝐺. (13)
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Without loss of generality, we suppose that functions 𝑓𝑖,
𝑔𝑖, 𝐻𝑖𝑗, and 𝑁𝑖𝑗 are such that initial-value problems to (10)
and (12) have a unique solution and trivial solution v(𝑡, x) =

(v1, . . . , v𝑛) = 0. Functions𝑓𝑖, 𝑓𝑖+∑
𝑁

𝑗=1
𝐻𝑖𝑗, 𝑔𝑖 and𝑔𝑖+∑

𝑁

𝑗=1
𝑁𝑖𝑗

meet Lipschitz condition with Lipschitz constant 𝐿 > 0.
Functions 𝑔𝑖 and 𝑔𝑖 + ∑

𝑁

𝑗=1
𝑁𝑖𝑗 satisfy integral linear growth

condition. Consider y = ∑
𝑁

𝑖=1
yi. For 𝑉𝑖(𝑡, v𝑖) ∈ 𝐶

1,2
(R+ ×

R𝑛𝑖 ;R+), define a differential operator L𝑉𝑖(𝑡, v𝑖) associated
with the 𝑖th equation of (12) by

L𝑉𝑖 (𝑡, v𝑖) ≜
𝜕𝑉𝑖 (𝑡, v𝑖)

𝜕𝑡
+ (

𝜕𝑉𝑖 (𝑡, v𝑖)
𝜕v𝑖

)

𝑇

× [

[

𝑓𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝐻𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

+
1

2
Trace

{{

{{

{

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

𝑇

× (𝑉𝑖 (𝑡, v𝑖))
󸀠󸀠

v𝑖v𝑗

×[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

}}

}}

}

.

(14)

3.1. Stability in Mean. In this section, we will discuss stability
inmean as to partial variables y of system (12) and draw some
relevant conclusions.

Theorem 6. Let v𝑖(𝑡) = ∫
𝐺
vi(𝑡, x) dx. Suppose that the

following conditions hold.

(A1) There exist positive-definite functions 𝑉𝑖(𝑡, 𝜉) ∈

𝐶
1,2

(R+ × R𝑛𝑖 ;R+), functions𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), and con-
stants 𝑎𝑖𝑗 ≥ 0 satisfying the following.

(I) 𝑉𝑖(𝑡, v𝑖(𝑡)) ∈ 𝐶
1,2

[R+ × 𝑆ℎ,R], (𝑆ℎ = {𝜁 | |𝜁(⋅)| <

ℎ}) meeting 𝑉𝑖(𝑡, 0) = 0.
(II) 𝜇1(|y(𝑡, x)|𝐺) ≤ 𝑉(𝑡, v(𝑡)), where 𝑉(𝑡, v) ≜

∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) and 𝑐𝑖 is defined as (8); 𝜇1 ∈ K

is a convex function.
(III) L𝑉𝑖(𝑡, v𝑖) ≤ ∑

𝑛

𝑗=1
𝑎𝑖𝑗𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), 𝑡 ≥ 0, 𝑖 =

1, 2, . . . , 𝑁.

(A2) Along each directed cycle C of the weighted digraph
(G, 𝐴) in which 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 there is

∑

(𝑖,𝑗)∈𝐸(C)

𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡) ≤ 0, 𝑡 ≥ 0. (15)

Then function 𝑉(𝑡, v) ≜ ∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) is a Lyapunov-A

function for (12). Furthermore, the trivial solution of (12) is
stable in mean as to partial variables y.

Proof. It is not difficult to find that

d(∫
𝐺

vi (𝑡, x) dx)

= ∫
𝐺

[

[

𝜌𝑖 (𝑡) Δv𝑖 (𝑡, x) + 𝑓𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝐻𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑡

+ ∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑊(𝑡) .

(16)

Applying Green formula, we deduce ∫
𝐺
Δvi(𝑡, x)dx =

∫
𝜕𝐺

(𝜕vi/𝜕N)d𝑠 = 0. Hence, (16) can be rewritten as

d(∫
𝐺

vi (𝑡, x) dx)

= ∫
𝐺

[

[

𝑓𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝐻𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑡

+ ∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑊(𝑡) .

(17)

Since 𝑉𝑖(𝑡0, v𝑖) is continuous and 𝑉𝑖(𝑡0, 0) = 0, we have
𝑉(𝑡, v) ≜ ∑

𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) that is continuous and 𝑉(𝑡, 0) = 0.

Hence, there exists 𝛿(𝑡0, 𝜀) such that 𝑉(𝑡0, v0) < 𝜇1(𝜀) when
|v0| < 𝛿. Choosing ∀v𝑖0 : |v𝑖0| < 𝛿/𝑁 and applying Itô
differential formula to 𝑉𝑖(𝑡, v𝑖) along the trajectory of system
(17) yields

d𝑉𝑖 (𝑡, v𝑖)
󵄨󵄨󵄨󵄨(17)

=
𝜕𝑉𝑖 (𝑡, v𝑖)

𝜕𝑡
d𝑡 +

𝜕𝑉 (𝑡, v𝑖)
𝜕v𝑖

𝑑v𝑖

+
1

2
Trace[

[

∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

⊺

dx
𝜕
2
𝑉 (𝑡, v𝑖)
𝜕v𝑖𝜕v𝑖

× ∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))
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+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dx]
]

d𝑡

= L𝑉 (𝑡, v𝑖) d𝑡 +
𝜕𝑉 (𝑡, v𝑖)

𝜕v𝑖

× ∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑊(𝑡) ,

(18)

where

L𝑉𝑖 (𝑡, v𝑖) ≜
𝜕𝑉𝑖 (𝑡, v𝑖)

𝜕𝑡
+ (

𝜕𝑉𝑖 (𝑡, v𝑖)
𝜕v𝑖

)

𝑇

× [

[

𝑓𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝐻𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

+
1

2
Trace

{{

{{

{

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

𝑇

× (𝑉𝑖 (𝑡, v𝑖))
󸀠󸀠

v𝑖v𝑗

×[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

}}

}}

}

(19)

for ∀𝑡 ≥ 0. Hence,

𝑉𝑖 (𝑡, v𝑖 (𝑡, 𝑡0, vi0))

= 𝑉𝑖 (𝑡0, vi0) + ∫

𝑡

𝑡0

L𝑉𝑖 (𝑠, v𝑖 (𝑠, 𝑡0, vi0)) d𝑠

+ ∫

𝑡

𝑡0

𝜕𝑉𝑖 (𝑠, v𝑖)
𝜕v𝑖

× ∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑤 (𝑠) .

(20)

As 𝜕𝑉𝑖(𝑡, v𝑖)/𝜕v𝑖 is continuous on 𝑅+ × 𝑆ℎ and 𝑔𝑖(𝑡, x,
v𝑖(𝑡, x)) + ∑

𝑁

𝑗=1
𝑁𝑖𝑗(v𝑖, v𝑗, 𝑡) satisfies integral linear growth

condition, there must exist constant 𝐿1 > 0 such that
|𝜕𝑉𝑖(𝑡, v𝑖)/𝜕v𝑖| ≤ 𝐿1, so

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑉𝑖 (𝑠, v𝑖)
𝜕v𝑖

∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐿1𝐾(1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐺

v (𝑡, x, 𝑡0, v𝑖0) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

≤ 𝐿1𝐾 (1 + ℎ) .

(21)

ByTheorem 2.8 of [42, 43], we obtain

E[

[

∫

𝑡

𝑡0

𝜕𝑉𝑖 (𝑠, v𝑖)
𝜕v𝑖

∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑤 (𝑠) ]

]

= 0.

(22)

On the other hand, by (A1)(III), it is derived that

L𝑉 (𝑡, v) =

𝑁

∑

𝑖=1

𝑐𝑖L𝑉𝑖 (𝑡, v𝑖) ≤ ∑

𝑖,𝑗=1

𝑐𝑖𝑎𝑖𝑗𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡) . (23)

Making use of Lemma 5 with weighted digraph (G, 𝐴), it
yields

∑

𝑖,𝑗=1

𝑐𝑖𝑎𝑖𝑗𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡) = ∑

Q∈Q

𝑊(Q) ∑

(𝑖,𝑗)∈𝐸(𝐶Q)

𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡) .

(24)

In view of condition (A2) and a fact 𝑊(Q) > 0, we get

L𝑉 (𝑡, v) ≤ ∑

Q∈Q

𝑊(Q) ∑

(𝑖,𝑗)∈𝐸(𝐶Q)

𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡) ≤ 0. (25)

Thus 𝑉(𝑡, v) is a Lyapunov-A function for (12). Taking the
mathematical expectation at the two sides of (20) and using
(22), (23), and (25) we have

E {𝑉 (𝑡, x, v (𝑡, 𝑡0, v0))} ≤ 𝑉 (𝑡0, v0) , 𝑡 ≥ 0. (26)

Combine Jensen inequality and condition (A1)(II),

𝜇1 (E (
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
)) ≤ E (𝜇1 (

󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)
󵄨󵄨󵄨󵄨𝐺

))

≤ E {𝑉 (𝑡, v (𝑡, 𝑡0, v0))}

≤ 𝑉 (𝑡0, v0) ≤ 𝜇1 (𝜀) .

(27)

Therefore E{|y(𝑡, x, 𝑡0, v0)|𝐺} < 𝜀. The proof is complete.

Note that if (G, 𝐴) is balanced, then

∑

𝑖,𝑗=1

𝑐𝑖𝑎𝑖𝑗𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡)

=
1

2
∑

Q∈Q

𝑊(Q) ∑

(𝑖,𝑗)∈𝐸(𝐶Q)

[𝐹𝑖𝑗 (v𝑗, v𝑖, 𝑡) + 𝐹𝑗𝑖 (v𝑖, v𝑗, 𝑡)] .

(28)
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In this case, condition (A2) is replaced by the following:

∑

(𝑖,𝑗)∈𝐸(𝐶Q)

[𝐹𝑖𝑗 (v𝑗, v𝑖, 𝑡) + 𝐹𝑗𝑖 (v𝑖, v𝑗, 𝑡)] ≤ 0. (29)

Consequently, we get the following corollary.

Corollary 7. Suppose that (G, 𝐴) is balanced. Then the
conclusion of Theorem 6 holds if (15) is replaced by (29).

Remark 8. Partial stability technique (stability of part of the
variables) is most useful when a fully stabilized system losses
some control engines or some phase variables are not actively
controlled. However, the CSRDSNs are too complicated to
derive the analytical solution. Therefore, it is of importance
to work on the qualitative analysis of the system and how to
construct an appropriate Lyapunov function is a key step.The
proof shows that, if each vertex system of (12) has a globally
stable trivial solution and possesses a Lyapunov function 𝑉𝑖,
then the Lyapunov function for (12) can be systematically
constructed by using individual 𝑉𝑖. Our results are new and
extend some findings in [38], because our stability principle
has a close relation to the topology property of the network.

Theorem 9. Assume that condition (A1) of Theorem 6 is
substituted by the following.
(A3) There exist positive-definite functions 𝑉𝑖(𝑡, 𝜉) ∈

𝐶
1,2

(R+ × R𝑛𝑖 ;R+), functions 𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), and con-
stants 𝑎𝑖𝑗 ≥ 0 satisfying the following.

(I) 𝑉𝑖(𝑡, v𝑖(𝑡)) ∈ 𝐶
1,2

[R+ × 𝑆ℎ,R], (𝑆ℎ = {𝜁 |

|𝜁(⋅)| < ℎ}). (Here, function 𝑉𝑖(𝑡, v𝑖(𝑡)) gets rid
of the restriction of 𝑉𝑖(𝑡, 0) = 0).

(II) 𝜇2(|y(𝑡, x)|𝐺) ≤ 𝑉(𝑡, v(𝑡)) ≤ 𝜇3(|v(𝑡, x)|𝐺), where
𝑉(𝑡, v) ≜ ∑

𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖), 𝑐𝑖 is defined as (8),

𝜇2, 𝜇3 ∈ K, and 𝜇2 is a convex function.
(III) L𝑉𝑖(𝑡, v𝑖) ≤ ∑

𝑛

𝑗=1
𝑎𝑖𝑗𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), 𝑡 ≥ 0, 𝑖 =

1, 2, . . . , 𝑁.

Other conditions remain the same. Then function 𝑉(𝑡, v) ≜

∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) is a Lyapunov-A function for (12). Furthermore,

the trivial solution of (12) is uniformly stable in mean as to
partial variables y.

Proof. Since 𝑉𝑖(𝑡, v𝑖) is continuous, we have 𝑉(𝑡, v) ≜

∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) that is continuous. Similar to the proof of

Theorem 6, we can obtain that 𝑉(𝑡, v) is a Lyapunov-A
function for (12) and

E {𝑉 (𝑡, v (𝑡, 𝑡0, v0))} ≤ 𝑉 (𝑡0, v0) , 𝑡 ≥ 0. (30)

Let 𝛿(𝜀) = 𝜇
−1

3
𝜇2(𝜀). It follows from Jensen inequality and

condition (A3)(II) that, for v0 ∈ 𝑆𝛿 = {v | |v(⋅, x)|𝐺 < 𝛿(𝜀)},
we have

𝜇2 (E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
})

≤ E {𝑉 (𝑡, v (𝑡, 𝑡0, v0))} ≤ 𝑉 (𝑡0, v0)

≤ 𝜇3 (
󵄨󵄨󵄨󵄨v0 (⋅, x)

󵄨󵄨󵄨󵄨𝐺
) < 𝜇2 (𝜀) .

(31)

Therefore, we derive 𝐸{|y(𝑡, x, 𝑡0, v0)|𝐺} < 𝜀 as required.

Corollary 10. Suppose that (G, 𝐴) is balanced. Then the
conclusion of Theorem 9 holds if (15) is replaced by (29).

3.2. Asymptotical Stability in Mean. In this section, some
sufficient principles are established for asymptotic stability in
mean and uniformly asymptotic stability inmean as to partial
variables.

Theorem 11. Let v𝑖(𝑡) = ∫
𝐺
vi(𝑡, x)dx. Suppose that the

following conditions hold.

(B1) There exist positive-definite functions 𝑉𝑖(𝑡, 𝜉) ∈

𝐶
1,2

(R+ × R𝑛𝑖 ;R+), functions 𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), and con-
stants 𝑎𝑖𝑗 ≥ 0 satisfying the following.

(I) 𝑉𝑖(𝑡, v𝑖(𝑡)) ∈ 𝐶
1,2

[R+ × 𝑆ℎ,R], (𝑆ℎ = {𝜁 | |𝜁(⋅)| <

ℎ}) meeting 𝑉𝑖(𝑡, 0) = 0.
(II) 𝜇4(|y(𝑡, x)|𝐺) ≤ 𝑉(𝑡, v(𝑡)), where 𝑉(𝑡, v) ≜

∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) and 𝑐𝑖 is defined as (8); 𝜇4 ∈ K

is a convex function.
(III) L𝑉𝑖(𝑡, v𝑖) ≤ −𝑏𝑖𝑉𝑖(𝑡, v𝑖) + ∑

𝑛

𝑗=1
𝑎𝑖𝑗𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡),

constants 𝑏𝑖 ≥ 0, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

(B2) Condition (A2) holds, if (G, 𝐴) is balanced and (29)
holds.

Then, function 𝑉(𝑡, v) ≜ ∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) is a Lyapunov-B

function for (12). Consequently, the trivial solution of (12) is
asymptotically stable in mean as to partial variables y.

Proof. We can show in the same way as in the proof of
Theorem 6 that

L𝑉 (𝑡, v) =

𝑁

∑

𝑖=1

𝑐𝑖L𝑉𝑖 (𝑡, v𝑖) ≤ −𝑏𝑉 (𝑡, v) , (32)

where 𝑏 = min{𝑏1, 𝑏2, . . . , 𝑏𝑁}. Hence, we conclude that
function 𝑉(𝑡, v) is a Lyapunov-B function for (12). From
Theorem 6, it is easy to derive that the trivial solution of
system (12) is stable in mean as to partial variables y. So the
following task is to prove

lim
𝑡→∞

E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
} = 0 (33)

only. Similar to the proof of Theorem 6, it is not difficult to
derive

E𝑉𝑖 (𝑡, v𝑖 (𝑡, 𝑡0, v𝑖0))

= 𝑉𝑖 (𝑡0, v𝑖0) + ∫

𝑡

𝑡0

EL𝑉𝑖 (𝑠, v𝑖 (𝑠, 𝑡0, v𝑖0)) d𝑠.
(34)

Then, we obtain that𝑉(𝑡, v) is a Lyapunov-A function for (12)
and

E {𝑉 (𝑡, v (𝑡, 𝑡0, v0))} ≤ 𝑉 (𝑡0, v0) , 𝑡 ≥ 0. (35)

Here we need to reduce to absurdity. Suppose

lim
𝑡→∞

E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
} ̸= 0. (36)
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Instead

lim
𝑡→∞

E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
} ≜ 𝜆̂∞ > 0. (37)

Combining condition (B1)(II) of Theorem 11, we obtain

𝜇4 (E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
})

≤ E {𝑉 (𝑡, v (𝑡, 𝑡0, v0))}

≤ 𝑉 (𝑡0, v0) − ∫

𝑡

𝑡0

𝜇4 (E {
󵄨󵄨󵄨󵄨y (𝑠, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
}) d𝑠.

(38)

Therefore,

0 < lim
𝑡→∞

𝛼 (E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
})

≤ 𝑉 (𝑡0, v0) − ∫

𝑡

𝑡0

lim
𝑡→∞

𝜇4 (E {
󵄨󵄨󵄨󵄨y (𝑠, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
}) d𝑠

= 𝑉 (𝑡0, v0) − 𝜇4 (𝜆̂∞) (𝑡 − 𝑡0) .

(39)

However, it is obvious that (39) can not be satisfied as 𝑡 ≫

𝑡0. Thus, hypothesis lim𝑡→∞E{|y(𝑡, x, 𝑡0, v0)|𝐺} ̸= 0 does not
come into existence. It should be

lim
𝑡→∞

E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
} = 0, (40)

as required; that is, the trivial solution of system (12) is
asymptotically stable in mean as to partial variables y. This
completes the proof.

Theorem 12. Let v𝑖(𝑡) = ∫
𝐺
vi(𝑡, x)dx. Suppose that the

following conditions hold.

(B3) There exist positive-definite functions 𝑉𝑖(𝑡, 𝜉) ∈

𝐶
1,2

(R+ × R𝑛𝑖 ;R+), functions 𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), and con-
stants 𝑎𝑖𝑗 ≥ 0 satisfying the following.

(I) 𝑉𝑖(𝑡, v𝑖(𝑡)) ∈ 𝐶
1,2

[R+ × 𝑆ℎ,R], (𝑆ℎ = {𝜁 | |𝜁(⋅)| <

ℎ}) meeting 𝑉𝑖(𝑡, 0) = 0.
(II) 𝜇4(|y(𝑡, x)|𝐺) ≤ 𝑉(𝑡, v(𝑡)), where 𝑉(𝑡, v) ≜

∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) and 𝑐𝑖 is defined as (8); 𝜇4 ∈ K

is a convex function.
(III) L𝑉𝑖(𝑡, v𝑖) ≤ −𝜇5(|y(𝑡, x)|𝐺) +

∑
𝑛

𝑗=1
𝑎𝑖𝑗𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), 𝜇5 ∈ K is a convex

function, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

(B2) Condition (A2) holds, if (G, 𝐴) is balanced and (29)
holds.

Then, function 𝑉(𝑡, v) ≜ ∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) is a Lyapunov-A

function for (12). Consequently, the trivial solution of (12) is
asymptotically stable in mean as to partial variables y.

Remark 13. Similar to the proof of Theorems 6 and 11, we
can easily proof Theorem 12. Please note that, in Theorem 11,
we can construct a Lyapunov-B function for (12), but in
Theorem 12 only a Lyapunov-A function for (12). Further,
note the fact that −𝜇5(|v(𝑡, x)|𝐺) ≤ −𝜇5(|y(𝑡, x)|𝐺). We can
draw the following theorem immediately.

Corollary 14. Suppose that inTheorem 12, condition (B3)(III)
is replaced by

(III)󸀠 L𝑉𝑖 (𝑡, v𝑖) ≤ −𝜇5 (|v (𝑡, x)|𝐺) +

𝑛

∑

𝑗=1

𝑎𝑖𝑗𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡) ,

𝜇5 ∈ K is a convex function, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

(41)

Other conditions remain the same. Then the conclusion
ofTheorem 12 holds.

The foregoing are all concerned with asymptotic stability
as to partial variables. The following is focused on uniformly
asymptotic stability as to partial variables.

Theorem 15. Assume that condition (B3) of Theorem 12 is
substituted by the following.
(B4) There exist positive-definite functions 𝑉𝑖(𝑡, 𝜉) ∈

𝐶
1,2

(R+ × R𝑛𝑖 ;R+), functions 𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), and con-
stants 𝑎𝑖𝑗 ≥ 0 satisfying the following.

(I) 𝑉𝑖(𝑡, v𝑖(𝑡)) ∈ 𝐶
1,2

[R+ × 𝑆ℎ,R], (𝑆ℎ = {𝜁 |

|𝜁(⋅)| < ℎ}). (Here, function 𝑉𝑖(𝑡, v𝑖(𝑡)) gets rid
of the restriction of 𝑉𝑖(𝑡, 0) = 0).

(II) 𝜇6(|y(𝑡, x)|𝐺) ≤ 𝑉(𝑡, v(𝑡)) ≤ 𝜇7(|v(𝑡, x)|𝐺), where
𝑉(𝑡, v) ≜ ∑

𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖), 𝑐𝑖 is defined as (8), 𝜇7 ∈

K, and 𝜇6 ∈ K is a convex function.
(III) L𝑉𝑖(𝑡, v𝑖) ≤ −𝜇8(|y(𝑡, x)|𝐺) +

∑
𝑛

𝑗=1
𝑎𝑖𝑗𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), 𝜇8 ∈ K is a convex

function, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

Other conditions remain the same. Then function 𝑉(𝑡, v) ≜

∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) is a Lyapunov-A function for (12). Furthermore,

the trivial solution of (12) is uniformly asymptotically stable in
mean as to partial variables y.

Proof. Because the conditions of Theorem 15 cover those of
Theorem 9, it is obvious that the trivial solution of system (1)
is uniformly stable as to partial variables y. Now, we only need
to prove

lim
𝑡→∞

E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
} = 0. (42)

Similar to the proof ofTheorem 11, here we need to reduce to
absurdity. Suppose

lim
𝑡→∞

E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
} ̸= 0. (43)

Instead

lim
𝑡→∞

E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
} ≜ 𝜆̂∞ > 0. (44)

Combining condition (B1)(II) of Theorem 15, we obtain

𝜇6 (E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
})

≤ E {𝑉 (𝑡, v (𝑡, 𝑡0, v0))}

≤ 𝑉 (𝑡0, v0) − ∫

𝑡

𝑡0

𝜇6 (E {
󵄨󵄨󵄨󵄨y (𝑠, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
}) d𝑠.

(45)
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Therefore,

0 < lim
𝑡→∞

𝛼 (E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
})

≤ 𝑉 (𝑡0, v0) − ∫

𝑡

𝑡0

lim
𝑡→∞

𝜇6 (E {
󵄨󵄨󵄨󵄨y (𝑠, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
}) d𝑠

= 𝑉 (𝑡0, v0) − 𝜇6 (𝜆̂∞) (𝑡 − 𝑡0) .

(46)

However, it is obvious that (46) cannot be satisfied as 𝑡 ≫

𝑡0. Thus, hypothesis lim𝑡→∞E{|y(𝑡, x, 𝑡0, v0)|𝐺} ̸= 0 does not
come into existence. It should be

lim
𝑡→∞

E {
󵄨󵄨󵄨󵄨y (𝑡, x, 𝑡0, v0)

󵄨󵄨󵄨󵄨𝐺
} = 0, (47)

as required; that is, the trivial solution of system (12) is uni-
formly asymptotically stable in mean as to partial variables y.
This completes the proof.

Note the fact that−𝜇8(|v(𝑡, x)|𝐺) ≤ −𝜇8(|y(𝑡, x)|𝐺).We can
still derive another conclusion as follows.

Corollary 16. Suppose that, inTheorem 15, condition (B4)(III)
is replaced by

(III)󸀠 L𝑉𝑖 (𝑡, v𝑖) ≤ −𝜇8 (|v (𝑡, x)|𝐺) +

𝑛

∑

𝑗=1

𝑎𝑖𝑗𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡) ,

𝜇8 ∈ K is a convex function, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

(48)

Other conditions remain the same. Then the conclusion of
Theorem 15 holds.

Theorem 17. Assume that condition (B2) of Theorem 11 is
substituted by the following.

(B5) There exist positive-definite functions 𝑉𝑖(𝑡, 𝜉) ∈

𝐶
1,2

(R+ × R𝑛𝑖 ;R+), functions 𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), and con-
stants 𝑎𝑖𝑗 ≥ 0 satisfying the following.

(I) 𝑉𝑖(𝑡, v𝑖(𝑡)) ∈ 𝐶
1,2

[R+ × 𝑆ℎ,R], (𝑆ℎ = {𝜁 |

|𝜁(⋅)| < ℎ}). (Here, function 𝑉𝑖(𝑡, v𝑖(𝑡)) gets rid
of the restriction of 𝑉𝑖(𝑡, 0) = 0).

(II) 𝜇9(|y(𝑡, x)|𝐺) ≤ 𝑉(𝑡, v(𝑡)) ≤ 𝜇10(|v(𝑡, x)|𝐺),
where 𝑉(𝑡, v) ≜ ∑

𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖), 𝑐𝑖 is defined as

(8), 𝜇10 ∈ K, and 𝜇9 ∈ K is a convex function.
(III) L𝑉𝑖(𝑡, v𝑖) ≤ −𝑏𝑖𝑉𝑖(𝑡, v𝑖) + ∑

𝑛

𝑗=1
𝑎𝑖𝑗𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡),

constants 𝑏𝑖 ≥ 0, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

Other conditions remain the same. Then function 𝑉(𝑡, v) ≜

∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) is a Lyapunov-B function for (12). Furthermore,

the trivial solution of (12) is uniformly asymptotically stable in
mean as to partial variables y.

3.3. Exponential Stability in Mean. In this section, we will
discuss exponential stability in mean of the trivial solution
of system (12) as to partial variables.

Theorem 18. Let v𝑖(𝑡) = ∫
𝐺
v𝑖(𝑡, x)dx. Suppose that the

following conditions hold.

(C1) There exist positive-definite functions 𝑉𝑖(𝑡, 𝜉) ∈

𝐶
1,2

(R+ × R𝑛𝑖 ;R+), functions 𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), and con-
stants 𝑎𝑖𝑗 ≥ 0 satisfying the following.

(I) 𝑉𝑖(𝑡, v𝑖(𝑡)) ∈ 𝐶
1,2

[R+ × 𝑆ℎ,R], (𝑆ℎ = {𝜁 |

|𝜁(⋅)| < ℎ}). (Here, function 𝑉𝑖(𝑡, v𝑖(𝑡)) gets rid
of the restriction of𝑉𝑖(𝑡, 0) = 0).

(II) 𝑐1|y(𝑡, x)|𝐺) ≤ 𝑉(𝑡, v(𝑡)) ≤ 𝑐2|v(𝑡, x)|𝐺, where
𝑉(𝑡, v) ≜ ∑

𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖), 𝑐𝑖 is defined as (8), and

𝑐1 and 𝑐2 are positive constants.

(III) L𝑉𝑖(𝑡, v𝑖) ≤ −𝑏̂𝑖𝑉𝑖(𝑡, v𝑖) + ∑
𝑛

𝑗=1
𝑎𝑖𝑗𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡),

constants 𝑏̂𝑖 > 0, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

(C2) Condition (A2) holds, if (G, 𝐴) is balanced and (29)
holds.

Then, function 𝑉(𝑡, v) ≜ ∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) is a Lyapunov-B

function for (12), and

𝐸 {
󵄨󵄨󵄨󵄨y (𝑡, x)󵄨󵄨󵄨󵄨𝐺} ≤

𝑐2

𝑐1

󵄨󵄨󵄨󵄨V0
󵄨󵄨󵄨󵄨𝐺

𝑒
−𝑏̂(𝑡−𝑡0), 𝑡 ≥ 𝑡0, (49)

where 𝑏̂ = min{𝑏̂1, . . . , 𝑏̂𝑁}; that is, the trivial solution of system
(12) is exponentially stable in mean as to partial variables y.

Proof. We can show in the same way as in the proof of
Theorem 6 that

L𝑉 (𝑡, v) =

𝑁

∑

𝑖=1

𝑐𝑖L𝑉𝑖 (𝑡, v𝑖) ≤ −𝑏̂𝑉 (𝑡, v) , (50)

where 𝑏̂ = min{𝑏̂1, 𝑏̂2, . . . , 𝑏̂𝑁}. Hence, we conclude that
function𝑉(𝑡, v) is a Lyapunov-B function for (12). Integrating
system (12) as to spatial variables x gives

d(∫
𝐺

vi (𝑡, x) dx)

= ∫
𝐺

[

[

𝜌𝑖 (𝑡) Δv𝑖 (𝑡, x) + 𝑓𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝐻𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑡

+ ∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑊(𝑡) .

(51)
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Combining Green formula and boundary condition we
deduce ∫

𝐺
Δvi(𝑡, x)dx = ∫

𝜕𝐺
(𝜕vi/𝜕N)d𝑠 = 0. Hence, (51) can

be rewritten as

d(∫
𝐺

vi (𝑡, x) dx)

= ∫
𝐺

[

[

𝑓𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝐻𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑡

+ ∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑊(𝑡) .

(52)

Since 𝑉𝑖(𝑡0, v𝑖) is continuous and 𝑉𝑖(𝑡0, 0) = 0, we have
𝑉(𝑡, v) ≜ ∑

𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) that is continuous and 𝑉(𝑡, 0) = 0.

Hence, there exists 𝛿(𝑡0, 𝜀) such that 𝑉(𝑡0, v0) < 𝜇1(𝜀) when
|v0| < 𝛿. Choosing ∀v𝑖0 : |v𝑖0| < 𝛿/𝑁 and applying It𝑜
differential formula to 𝑉𝑖(𝑡, v𝑖) along the trajectory of system
(17) yields

d𝑉𝑖 (𝑡, v𝑖)
󵄨󵄨󵄨󵄨(17)

=
𝜕𝑉𝑖 (𝑡, v𝑖)

𝜕𝑡
d𝑡 +

𝜕𝑉 (𝑡, v𝑖)
𝜕V𝑖

dv𝑖

+
1

2
Trace[

[

∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

⊺

dx
𝜕
2
𝑉 (𝑡, v𝑖)
𝜕v𝑖𝜕v𝑖

×∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dx]
]

d𝑡

= L𝑉 (𝑡, v𝑖) d𝑡 +
𝜕𝑉 (𝑡, v𝑖)

𝜕v𝑖

× ∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑊(𝑡) ,

(53)

where

L𝑉𝑖 (𝑡, v𝑖) ≜
𝜕𝑉𝑖 (𝑡, v𝑖)

𝜕𝑡
+ (

𝜕𝑉𝑖 (𝑡, v𝑖)
𝜕v𝑖

)

𝑇

× [

[

𝑓𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝐻𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

+
1

2
Trace

{{

{{

{

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

𝑇

× (𝑉𝑖 (𝑡, v𝑖))
󸀠󸀠

v𝑖v𝑗

×[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

}}

}}

}

,

(54)

for ∀𝑡 ≥ 0. Hence,

𝑉𝑖 (𝑡, v𝑖 (𝑡, 𝑡0, vi0))

= 𝑉𝑖 (𝑡0, vi0) + ∫

𝑡

𝑡0

L𝑉𝑖 (𝑠, v𝑖 (𝑠, 𝑡0, vi0)) d𝑠

+ ∫

𝑡

𝑡0

𝜕𝑉𝑖 (𝑠, v𝑖)
𝜕v𝑖

∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑤 (𝑠) .

(55)

Build a Lyapunov function with the form

𝑉𝑖 = 𝑒
𝑏̂(𝑡−𝑡0)𝑉𝑖 (𝑡, v𝑖) . (56)

Applying Itô formula again, we obtain

𝑑𝑉𝑖 = 𝑏̂𝑒
𝑏̂(𝑡−𝑡0)𝑉𝑖 (𝑡, v𝑖) d𝑡 + 𝑒

𝑏̂(𝑡−𝑡0)𝑑𝑉𝑖

= 𝑒
𝑏̂(𝑡−𝑡0) [𝑏̂𝑉𝑖 (𝑡, v𝑖) + L𝑉𝑖 (𝑡, v𝑖)] d𝑡 + 𝑒

𝑏̂(𝑡−𝑡0)

× ∫

𝑡

𝑡0

𝜕𝑉𝑖 (𝑠, v𝑖)
𝜕v𝑖

∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑤 (𝑡) .

(57)

For any 𝑛 ≥ |v0|𝐺, define a stop-time

𝜏𝑛 = inf {𝑡 ≥ 𝑡0 : |v (𝑡, x)|𝐺 ≥ 𝑛} . (58)
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It follows from integrating (57) as to 𝑡 from 𝑡0 to 𝑡 ∧ 𝜏𝑛

𝑒
𝑏̂(𝑡∧𝜏𝑛−𝑡0)𝑉𝑖 (𝑡 ∧ 𝜏𝑛, v𝑖 (𝑡 ∧ 𝜏𝑛))

= 𝑉𝑖 (𝑡0, V0) + ∫

𝑡∧𝜏𝑛

𝑡0

𝑒
𝑏̂(𝑠−𝑡0) [𝑏̂𝑉𝑖 (𝑠, v𝑖) + L𝑉𝑖 (𝑠, v𝑖)] d𝑠

+ ∫

𝑡∧𝜏𝑛

𝑡0

𝑒
𝑏̂(𝑠−𝑡0)

𝜕𝑉𝑖 (𝑠, v𝑖)
𝜕v𝑖

× ∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑤 (𝑠) .

(59)

As 𝜕𝑉𝑖(𝑡, v𝑖)/ 𝜕v𝑖 is continuous on 𝑅+ × 𝑆ℎ and
𝑔𝑖(𝑡, x, v𝑖(𝑡, x)) + ∑

𝑁

𝑗=1
𝑁𝑖𝑗(v𝑖, v𝑗, 𝑡) satisfies integral linear

growth condition, there must exist constant 𝐿1 > 0 such that
|𝜕𝑉𝑖(𝑡, v𝑖)/𝜕v𝑖| ≤ 𝐿1, so

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑉𝑖 (𝑠, v𝑖)
𝜕v𝑖

∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x)) +

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐿1𝐾(1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐺

v (𝑡, x, 𝑡0, v𝑖0) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

≤ 𝐿1𝐾 (1 + ℎ) .

(60)

ByTheorem 2.8 of [35], we obtain

E[

[

∫

𝑡

𝑡0

𝜕𝑉𝑖 (𝑠, v𝑖)
𝜕v𝑖

∫
𝐺

[

[

𝑔𝑖 (𝑡, x, v𝑖 (𝑡, x))

+

𝑁

∑

𝑗=1

𝑁𝑖𝑗 (v𝑖, v𝑗, 𝑡)]
]

dxd𝑤 (𝑠) ]

]

= 0.

(61)

Thus, it can be derived from takingmathematical expectation
at both sides of (59) that

E {𝑒
𝑏̂(𝑡∧𝜏𝑛−𝑡0)𝑉𝑖 (𝑡 ∧ 𝜏𝑛, v𝑖 (𝑡 ∧ 𝜏𝑛))}

= 𝑉𝑖 (𝑡0, V0)

+ E{∫

𝑡∧𝜏𝑛

𝑡0

𝑒
𝑏̂(𝑠−𝑡0) [𝑏̂𝑉𝑖 (𝑠, v𝑖) + L𝑉𝑖 (𝑠, v𝑖)] d𝑠} .

(62)

On the other hand, by (B5)(III), it is derived that

L𝑉 (𝑡, v) =

𝑁

∑

𝑖=1

𝑐𝑖L𝑉𝑖 (𝑡, v𝑖)

≤ −

𝑁

∑

𝑖=1

𝑐𝑖𝑏̂𝑖𝑉𝑖 (𝑡, v𝑖) + ∑

𝑖,𝑗=1

𝑐𝑖𝑎𝑖𝑗𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡) .

(63)

Making use of Lemma 5 with weighted digraph (G, 𝐴), it
yields

∑

𝑖,𝑗=1

𝑐𝑖𝑎𝑖𝑗𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡)

= ∑

Q∈Q

𝑊(Q) ∑

(𝑖,𝑗)∈𝐸(𝐶Q)

𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡) .
(64)

In view of Condition (A2) and the fact that𝑊(Q) > 0, we get

L𝑉 (𝑡, v) ≤ −

𝑁

∑

𝑖=1

𝑐𝑖𝑏̂𝑖𝑉𝑖 (𝑡, v𝑖)

+ ∑

Q∈Q

𝑊(Q) ∑

(𝑖,𝑗)∈𝐸(𝐶Q)

𝐹𝑖𝑗 (v𝑖, v𝑗, 𝑡)

≤ −

𝑁

∑

𝑖=1

𝑐𝑖𝑏̂𝑖𝑉𝑖 (𝑡, v𝑖) < −𝑏̂𝑉 (𝑡, v) .

(65)

Thus 𝑉(𝑡, v) is a Lyapunov-B function for (12). Taking the
mathematical expectation at the two sides of (59) and using
(61), (63), and (65) and combining conditions (C1), (I), and
(II), we have

𝑐1𝑒
𝑏̂(𝑡∧𝜏𝑛−𝑡0)E {

󵄨󵄨󵄨󵄨y (𝑡 ∧ 𝜏𝑛, x)
󵄨󵄨󵄨󵄨𝐺

}

≤ E {𝑒
𝑏̂(𝑡∧𝜏𝑛−𝑡0)𝑉 (𝑡 ∧ 𝜏𝑛, v)} ≤ 𝑉 (𝑡0, v0) .

(66)

Obviously 𝜏𝑛 → ∞ when 𝑛 → ∞, we have

𝑐1𝑒
𝑏̂(𝑡−𝑡0)E {

󵄨󵄨󵄨󵄨y (𝑡, x)󵄨󵄨󵄨󵄨𝐺} ≤ 𝑐2 (
󵄨󵄨󵄨󵄨v0

󵄨󵄨󵄨󵄨𝐺
) . (67)

Therefore, we get

E {
󵄨󵄨󵄨󵄨y (𝑡, x)󵄨󵄨󵄨󵄨𝐺} ≤

𝑐2

𝑐1

󵄨󵄨󵄨󵄨V0
󵄨󵄨󵄨󵄨𝐺

𝑒
−𝑏̂(𝑡−𝑡0), 𝑡 ≥ 0, (68)

as required.
According toTheorem 18, it is easy to reach the following

theorem.

Theorem 19. Let v𝑖(𝑡) = ∫
𝐺
v𝑖(𝑡, x)dx. Suppose that the

following conditions hold.

(C1) There exist positive-definite functions 𝑉𝑖(𝑡, 𝜉) ∈

𝐶
1,2

(R+ × R𝑛𝑖 ;R+), functions 𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡), and con-
stants 𝑎𝑖𝑗 ≥ 0 satisfying the following.

(I) 𝑉𝑖(𝑡, v𝑖(𝑡)) ∈ 𝐶
1,2

[R+ × 𝑆ℎ,R], (𝑆ℎ = {𝜁 |

|𝜁(⋅)| < ℎ}). (Here, function 𝑉𝑖(𝑡, v𝑖(𝑡)) gets rid
of the restriction of𝑉𝑖(𝑡, 0) = 0).

(II) 𝑐1|y(𝑡, x)|𝐺 ≤ 𝑉(𝑡, v(𝑡) ≤ 𝑐2|v(𝑡, x)|𝐺, where
𝑉(𝑡, v) ≜ ∑

𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖), 𝑐𝑖 is defined as (8), and

𝑐1 and 𝑐2 < 1 are positive constants.
(III) L𝑉𝑖(𝑡, v𝑖) ≤ −𝑏̂𝑖𝑉𝑖(𝑡, v𝑖) + ∑

𝑛

𝑗=1
𝑎𝑖𝑗𝐹𝑖𝑗(v𝑖, v𝑗, 𝑡),

constants 𝑏̂𝑖 > 0, 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

(C2) Condition (A2) holds, if (G, 𝐴) is balanced and (29)
holds.
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Then, function 𝑉(𝑡, v) ≜ ∑
𝑁

𝑖=1
𝑐𝑖𝑉𝑖(𝑡, v𝑖) is a Lyapunov-A

function for (12), and

𝐸 {
󵄨󵄨󵄨󵄨y (𝑡, x)󵄨󵄨󵄨󵄨𝐺} ≤

𝑐2

𝑐1

󵄨󵄨󵄨󵄨V0
󵄨󵄨󵄨󵄨𝐺

𝑒
−𝑏̂(𝑡−𝑡0), 𝑡 ≥ 𝑡0, (69)

where 𝑏̂ = min{𝑏̂1, . . . , 𝑏̂𝑁}; that is, the trivial solution of system
(12) is exponentially stable in mean as to partial variables y.

Remark 20. In this section, we derive some novel findings on
stability principles for uniform stability in mean, asymptotic
stability in mean, uniformly asymptotic stability in mean,
and exponential stability in mean of partial variables for
CSRDSNs. The results in previous literature [38] are special
cases of our findings, because our results have a close relation
to the topology property of the network. When we employ
Lyapunov function method to tackle the stability problems
for coupled stochastic large-scale systems, the most difficult
thing is to construct a Lyapunov function. We also provide
a systematic method for constructing a global Lyapunov
function for these CSRDSNs by using graph theory. The
new method is helpful to analyze the dynamics of complex
networks.

4. Example

Consider the 2-dimensional Itô SRDSMS (1) satisfying the
bounded condition (2), and we assume (G, 𝐴) is strongly
connected and balanced. Consider
dv1 (𝑡, x)

= [

[

Δv1 (𝑡, x) + v2 (𝑡, x) −
2

∑

𝑗=1

𝑎1𝑗 (v1 (𝑡, x) − v𝑗 (𝑡, x))]
]

d𝑡,

dv2 (𝑡, x)

= [

[

Δv2 (𝑡, x) − v1 (𝑡, x) − 𝛼 (𝑡) v2 (𝑡, x)

+

2

∑

𝑗=1

𝑎2𝑗 (v2 (𝑡, x) − v𝑗 (𝑡, x))]
]

d𝑡

− √𝛼 (𝑡)v2 (𝑡, x) d𝑊(𝑡) .

(70)

Construct function 𝑉 = (∫
𝐺
v1(𝑡, x)dx)

2

+ (∫
𝐺
v2(𝑡, x)dx)

2,
and we have

L𝑉 = (2∫
𝐺

v1dx 2∫
𝐺

v2dx)(

∫
𝐺

v2dx

−∫
𝐺

v1dx − 𝛼 (𝑡) ∫
𝐺

v2dx
)

+ 𝛼 (𝑡) (∫
𝐺

v2 (𝑡, x) dx)
2

+

2

∑

𝑗=1

𝑎𝑘𝑗𝐹𝑘𝑗 (v𝑘, v𝑗, 𝑡)

= −𝛼 (𝑡) (∫
𝐺

v2 (𝑡, x) dx)
2

< 0.

(71)

According to Theorem 6, we know the trial solution of
system (70) is stable in mean as to partial variable v2.

5. Conclusions

In this paper, stability in mean of partial variables for
coupled stochastic reaction-diffusion systems on networks
(CSRDSNs) is considered. By transforming the integral
of the trajectory with respect to spatial variables as the
solution of the stochastic ordinary differential equations
(SODE) and using Itô formula, some novel stability principles
are established for uniform stability in mean, asymptotic
stability in mean, uniformly asymptotic stability in mean,
and exponential stability in mean of partial variables for
CSRDSNs. These stability principles have a close relation
with the topology property of the network. A systematic
method for constructing global Lyapunov function for these
CSRDSNs is also provided by using graph theory. Our
methods can be extended to deal with coupled stochastic
neutral differential equations on networks. Future work is to
give a systematic approach to build a Lyapunov functional for
coupled Markovian switching reaction-diffusion systems on
networks.
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