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We review the results concerning types of solutions of boundary value problems for the second order nonlinear equation (𝑙
2
𝑥)(𝑡) =

𝑓(𝑡, 𝑥, 𝑥

), where (𝑙

2
𝑥)(𝑡) is the second order linear differential form. The existence results and the multiplicity results are stated in

terms of types of solutions.

1. Introduction

The aim of this paper is to gather the results concerning types
of solutions of the second order nonlinear boundary value
problem

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

) , (1)

𝑎
1
𝑥 (𝑎) + 𝑎

2
𝑥

(𝑎) = 𝐴, 𝑏

1
𝑥 (𝑏) + 𝑏

2
𝑥

(𝑏) = 𝐵 (2)

and particular cases. A great portion of results is formulated
to the Dirichlet boundary conditions:

𝑥 (𝑎) = 𝐴, 𝑥 (𝑏) = 𝐵. (3)

A number of the below listed results concern the more
general equation:

(𝑙
2
𝑥) (𝑡) = 𝑓 (𝑡, 𝑥, 𝑥


) , (4)

where (𝑙
2
𝑥)(𝑡) := 𝑥 + 𝑝(𝑡)𝑥 + 𝑞(𝑡)𝑥.

Vast literature is devoted to boundary value problems
(BVP in short) of type (1), (3). The interested reader may
consult the books [1–6]. The main issues are the existence,
multiplicity, and properties of solutions.

Some existence results will be given in the next section.
As to the uniqueness, we emphasize the result by Erbe [7]

where the conditions for uniqueness of a solution to BVP (1),
(3) are given in terms of nonoscillatory behavior of equations
of variations for any solution of (1).

Properties of solutions of BVPs are numerous. Why are
we interested exactly in types of solutions? What is the type
of a solution?

The answer to these inquiries will be given later.
The paper is organized as follows. In the second section

some existence results are provided and the notions of the
upper and lower functions are introduced. The third section
contains information on uniqueness of solutions. The results
formulated in terms of equation of variations are selected.
The fourth section contains brief account of the works by
Knobloch, Jackson, Schrader, and Erbe dealing with the
properties of solutions of BVP which can be expressed in
terms of equations of variations.Thefifth section dealsmainly
with solutions of BVP which cannot be approximated by
monotone sequences of solutions. The respective equations
of variations are oscillatory. The sixth section provides
information on the Neumann BVP. In the seventh section
connection between types of solutions and the multiplicity of
solutions is discussed. In the eighth section quasilinear BVP
are considered. Properties of the linear part of a quasilinear
BVP influence both the properties of solutions of BVP
and the number of solutions. The quasilinearization process
is considered. In the ninth section the results concerning
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application of the quasilinearization process to resonant
problems are reviewed. The last tenth section contains con-
clusions and final remarks.

2. Existence

The following result is very easy to understand when asking
for conditions which ensure the existence of a solution to the
problem (1), (3). By a solution it is meant a 𝐶

2-function 𝑥(𝑡)

which satisfies both (1) in the interval [𝑎, 𝑏] and boundary
conditions (3).

Theorem 1. The problem (1), (3) has a solution 𝑥(𝑡) if a fun-
ction 𝑓(𝑡, 𝑥, 𝑥

) is continuous and bounded (|𝑓| < 𝑀 for some
constant 𝑀).

This theorem is known also as the Picard theorem.
The following result needs some definitions.

Definition 2. A function 𝛼 ∈ 𝐶
2([𝑎, 𝑏], 𝑅) is called a lower

function for (1) if 𝛼(𝑡) ≥ 𝑓(𝑡, 𝛼(𝑡), 𝛼(𝑡)), ∀𝑡 ∈ [𝑎, 𝑏].
Similarly, a function 𝛽 ∈ 𝐶2([𝑎, 𝑏], 𝑅) is called an upper

function for (1) if 𝛽(𝑡) ≤ 𝑓(𝑡, 𝛽(𝑡), 𝛽(𝑡)), ∀𝑡 ∈ [𝑎, 𝑏].

To formulate the existence result we need also the
Nagumo condition; there exists a positive valued continuous
function 𝜑(𝑦) such that

(1) |𝑓(𝑡, 𝑥, 𝑥)| ≤ 𝜑(|𝑥|), ∀(𝑡, 𝑥, 𝑥) ∈ 𝜔(𝛼, 𝛽) × 𝑅, where
𝜔(𝛼, 𝛽) = {𝑎 ≤ 𝑡 ≤ 𝑏, 𝛼(𝑡) ≤ 𝑥 ≤ 𝛽(𝑡)};

(2) ∫
𝑁

𝜆
(𝑠 𝑑𝑠/𝜑(𝑠)) > max

[𝑎,𝑏]
𝛽(𝑡) −min

[𝑎,𝑏]
𝛼(𝑡).

The latter condition is fulfilled if the integral ∫+∞
0

(𝑠 𝑑𝑠/

𝜑(𝑠)) = +∞. In particular, this is true if 𝜑(𝑦) = 𝑐
1
+ 𝑐
2
𝑦2.

The next theorem provides generalization of Picard theo-
rem. If𝑓 is bounded in (1) then the lower and upper functions
can be constructed in the form of quadratic parabolas.

Theorem3. Let there exist lower and upper functions 𝛼(𝑡) and
𝛽(𝑡) such that

(1) 𝛼(𝑎) ≤ 𝐴 ≤ 𝛽(𝑎), 𝛼(𝑏) ≤ 𝐵 ≤ 𝛽(𝑏);
(2) 𝛼(𝑡) ≤ 𝛽(𝑡), ∀𝑡 ∈ [𝑎, 𝑏];
(3) the Nagumo condition holds with respect to a given pair

(𝛼, 𝛽).

Then there exists a solution 𝑥(𝑡) of the problem (1), (3)with
the graph (𝑡, 𝑥(𝑡)) belonging to 𝜔(𝛼, 𝛽).

The proof is by considering the modified function 𝐹

which coincides with 𝑓 for (𝑡, 𝑥) ∈ 𝜔(𝛼, 𝛽) and for |𝑥
| <

𝑁, where 𝑁 is a constant appearing in the above Nag-
umo condition. The proof is not trivial, but it is not also
too complicated and can be found in most of the above
mentioned books on BVPs.

Remark 4. It is to be mentioned that there are multiple gene-
ralizations of definition of lower and upper functions. We
recommend consulting the book [8] and papers [9, 10].

Remark 5. There are also multiple generalizations of the
Nagumo condition. We would like to mention the so-called
one-sided Nagumo type conditions. The main idea is that,
depending on the type of boundary conditions, the restric-
tions on 𝑓 in the form 𝑓 < 𝜑 or 𝑓 > −𝜑 should be imposed
only on parts of the set 𝜔(𝛼, 𝛽). We recommend looking at
[11] and some results in [3]. For relatively complete report
on one-sided Nagumo type conditions one may consult the
paper [12].

For the more general problem (1),

𝑎
1
𝑥 (𝑎) − 𝑎

2
𝑥

(𝑎) = 𝐴,

𝑏
1
𝑥 (𝑏) + 𝑏

2
𝑥

(𝑏) = 𝐵,

(5)

where 𝐴, 𝐵 ∈ R, 𝑎
1
, 𝑏
1
∈ R, 𝑎

2
, 𝑏
2
∈ R+ := (0, +∞), 𝑎2

1
+ 𝑎2
2
>

0 and 𝑏2
1
+ 𝑏2
2
> 0; the following is true.

Theorem 6. Let the condition (1) in Theorem 3 be replaced
with

(1)

𝑎
1
𝛼 (𝑎) − 𝑎

2
𝛼

(𝑎) ≤ 𝐴, 𝑎

1
𝛽 (𝑎) − 𝑎

2
𝛽

(𝑎) ≥ 𝐴,

𝑏
1
𝛼 (𝑏) + 𝑏

2
𝛼

(𝑏) ≤ 𝐵, 𝑏

1
𝛽 (𝑏) + 𝑏

2
𝛽

(𝑏) ≥ 𝐵.

(6)

Then there exists a solution 𝑥(𝑡) of the problem (1), (5)with
the graph (𝑡, 𝑥(𝑡)) belonging to 𝜔(𝛼, 𝛽).

3. Uniqueness

Of multiple uniqueness results concerning the problem (1),
(3), we mention the following theorem by Erbe [7].

First recall that, for any solution 𝑥(𝑡) of (1), a linear
equation of variations

𝑦


= 𝑓
𝑥
(𝑡, 𝑥 (𝑡) , 𝑥


(𝑡)) 𝑦 + 𝑓

𝑥
 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡)) 𝑦
 (7)

can be considered. It is used to say that the equation of
variations is disconjugate in the interval [𝑎, 𝑏] if no nontrivial
solution 𝑦(𝑡) of (7) has two zeros in [𝑎, 𝑏], or, equivalently, a
solution of the initial value problem (7) 𝑦(𝑎) = 0, 𝑦

(𝑎) = 1

does not vanish in (𝑎, 𝑏].

Theorem 7 (Erbe). Suppose the Nagumo condition is fulfilled.
The problem (1), (3) has at most one solution if for any solution
𝑥(𝑡) of (1) the respective equation of variations (7) is discon-
jugate in [𝑎, 𝑏].

Therefore, if there aremultiple solutions of the BVP, some
of equations of variations are not disconjugate in the interval.

4. Knobloch-Jackson-Schrader-Erbe
Results on B-Solutions

It was Knobloch [13] who observed first that (1) in presence of
regularly ordered (𝛼 ≤ 𝛽) the upper 𝛽 and lower 𝛼 functions
have a specific solution 𝜉(𝑡) which possesses the property (𝐵)
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and are located in a region 𝜔(𝛼, 𝛽). He wrote “We say that a
solution 𝜉” of (1) on a compact interval 𝐼 of the real line “has
property (𝐵) if there exists a sequence of solutions 𝜉

𝑛
such that

(i) 𝜉
𝑛

→ 𝜉, 𝜉
𝑛

→ 𝜉 uniformly on 𝐼;
(ii) 𝜉 − 𝜉

𝑛
̸= 0 and has the same sign for all 𝑛 ≥ 1 and all

𝑡 ∈ 𝐼;
(iii) |𝜉

𝑛
− 𝜉| ≤ 𝑐 |𝜉

𝑛
− 𝜉| for all 𝑛 ≥ 1 and all 𝑡 ∈ 𝐼, where 𝑐

is a constant independent of 𝑛 and 𝑡.

Later Knobloch [14] formulated property (𝐵
∗): a solution

𝑥 of (1) is said to have property (𝐵∗) on [𝑎, 𝑏] in case there
exists a sequence of solutions 𝑥

𝑛
of (1), all having property

(𝐵) on [𝑎, 𝑏], such that 𝑥
𝑛

→ 𝑥 and 𝑥
𝑛

→ 𝑥 uniformly on
[𝑎, 𝑏].

It was proved in [14, Lemma 2.1] that if 𝜉(𝑡) is a solution
of (1) having property (𝐵

∗)with respect to [0, 𝑇] and if 𝑓, 𝑓
𝑥
,

and 𝑓
𝑥
 are continuous functions on some neighborhood of

the curve (𝑡, 𝜉(𝑡), 𝜉(𝑡)), (0 < 𝑡 < 𝑇), then the equation of
variations (7) is disconjugate on (0, 𝑇).

In the work [14] the boundary value problem

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥) , 𝑥 (0) = 𝜎 (𝑥 (0)) ,

𝑥 (𝑇) = 𝜏 (𝑥 (𝑇)) ,
(8)

where 𝜎, 𝜏 are continuously differentiable functions, defined
on the intervals [𝛼(0), 𝛽(0)], [𝛼(𝑇), 𝛽(𝑇)], respectively and
subject to the conditions

𝛼 (0) ≥ 𝜎 (𝛼 (0)) , 𝛽 (0) ≤ 𝜎 (𝛽 (0)) ,

𝛼 (𝑇) ≤ 𝜎 (𝛼 (𝑇)) , 𝛽 (𝑇) ≥ 𝜎 (𝛽 (𝑇)) ,
(9)

was considered. It was proved in [14] that, provided the exis-
tence of a regular pair (𝛼 ≤ 𝛽) of lower and upper functions
𝛼 and 𝛽, satisfying (9), and under a mild Nagumo type
condition, a solution 𝑥(𝑡) of the BVP (8) exists such that 𝑥
possesses the property (𝐵

∗) and 𝛼 ≤ 𝑥 ≤ 𝛽.
After the first paper by Knobloch [13] Jackson and

Schrader [15] considered the Dirichlet problem (1), (3). They
introduced the property (𝐵

), which slightly differs from the
property (𝐵∗):

(i) 𝜉
𝑛

→ 𝜉, 𝜉
𝑛

→ 𝜉 uniformly on 𝐼;
(ii) 𝜉 − 𝜉

𝑛
̸= 0 and has the same sign for all 𝑛 ≥ 1 and

𝑎 ≤ 𝑡 < 𝑏, or for all 𝑛 ≥ 1 and 𝑎 < 𝑡 ≤ 𝑏;
(iii) for each 0 < 𝛿 < (1/2)(𝑏 − 𝑎) there is a constant 𝑐

depending on 𝛿 but not on 𝑛 and 𝑡 such that |𝜉
𝑛
−𝜉| ≤

𝑐 |𝜉
𝑛
− 𝜉| for all 𝑛 ≥ 1 and 𝑎 + 𝛿 ≤ 𝑡 ≤ 𝑏 − 𝛿.

It was proved in [15] that for 𝑓 ∈ 𝐶1 in presence of a
lower and upper functions 𝛼 and 𝛽 such that 𝛼 < 𝛽 for
(𝑎, 𝑏) a solution 𝑥(𝑡) exists for any 𝐴 ∈ [𝛼(𝑎), 𝛽(𝑎)], 𝐵 ∈

[𝛼(𝑏), 𝛽(𝑏)] such that the respective equation of variations (7)
is disconjugate on (𝑎, 𝑏).

Remark 8 (see [16, page 459]). It was mentioned by Erbe that
under certain continuity conditions on the partial derivatives
𝑓
𝑥
, and𝑓

𝑥
 the existence of a solution𝑥(𝑡) of (1) with property

(𝐵) implies that the corresponding equation of variations (7)
along 𝑥(𝑡) is disconjugate on (𝑎, 𝑏); that is, the only solution
of (7) with more than one zero on 𝐼 is the identically zero
solution. Using the limiting process, we can say that the same
is true for solutions 𝑥(𝑡) which possess the property (𝐵

∗).

Also interesting for us is the following theorem, which
Erbe has proved in [16].

Theorem 9 (see [16, Theorem 3.6, page 465]). Let 𝛼(𝑡) be a
lower solution and 𝛽(𝑡) an upper solution of (1) with 𝛼(𝑡) ≤

𝛽(𝑡) on [𝑎, 𝑏] and 𝛼(𝑎) < 𝛽(𝑎), 𝛼(𝑏) < 𝛽(𝑏). Assume that the
Nagumo condition holds and let 𝑔(𝑥, 𝑥

) ∈ 𝐺(the class of
all continuous functions 𝑔(𝑥, 𝑥) defined on [𝛼(𝑎), 𝛽(𝑎)] × 𝑅

which are nondecreasing in 𝑥 and satisfy 𝑔(𝛼(𝑎), 𝛼(𝑎)) ≥

0, 𝑔(𝛽(𝑎), 𝛽(𝑎)) ≤ 0) and ℎ(𝑥, 𝑥) ∈ 𝐻(the class of all
continuous functions ℎ(𝑥, 𝑥) defined on [𝛼(𝑏), 𝛽(𝑏)] × 𝑅

which are nondecreasing in 𝑥 and satisfy ℎ(𝛼(𝑏), 𝛼(𝑏)) ≤

0, ℎ(𝛽(𝑏), 𝛽(𝑏)) ≥ 0). Then there is a solution 𝑥
0
(𝑡) of the

BVP
𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

) ,

𝑔 (𝑥 (𝑎) , 𝑥

(𝑎)) = 0 = ℎ (𝑥 (𝑏) , 𝑥


(𝑏))

(10)

which satisfies 𝛼(𝑡) < 𝑥
0
(𝑡) < 𝛽(𝑡) on [𝑎, 𝑏].

Remark 10. If we select the function 𝑔(𝑥(𝑎), 𝑥(𝑎)) = −𝑎
1

𝑥(𝑎)+𝑎
2
𝑥

(𝑎)+𝐴 andℎ(𝑥(𝑏), 𝑥


(𝑏)) = 𝑏

1
𝑥(𝑏)+𝑏

2
𝑥

(𝑏)−𝐵, then

the inequalities (6) hold and the BVP (1), (5) has a solution on
[𝑎, 𝑏].

Theorem 11 (see [16, Theorem 4.5, page 469]). Assume all
hypotheses ofTheorem 9 and, in addition, assume that the Lip-
schitz condition (there exist two nonnegative constants 𝐾 and
𝐿 such that whenever (𝑡, 𝑦, 𝑦) and (𝑡, 𝑥, 𝑥) are in the domain
of definition of 𝑓, the inequality |𝑓(𝑡, 𝑦, 𝑦) − 𝑓(𝑡, 𝑥, 𝑥)| ≤

𝐾|𝑦 − 𝑥| + 𝐿|𝑦 − 𝑥| holds) with respect to 𝑥 and 𝑥 holds.
Then there is a solution 𝑥

0
(𝑡) of the BVP

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

) ,

𝑔 (𝑥 (𝑎) , 𝑥

(𝑎)) = 0 = ℎ (𝑥 (𝑏) , 𝑥


(𝑏))

(11)

which has property (𝐵∗) and satisfies 𝛼(𝑡) ≤ 𝑥
0
(𝑡) ≤ 𝛽(𝑡) on

[𝑎, 𝑏].

5. Solutions of Nonzero Type

It follows from the above results by Knobloch-Jackson-Schra-
der-Erbe that in presence of lower and upper functions 𝛼

and 𝛽 most two-point boundary value problems for (1) have
solutions 𝜉(𝑡) with the property that the respective linear
equation of variations

𝑦


= 𝑓
𝑥
(𝑡, 𝜉 (𝑡) , 𝜉


(𝑡)) 𝑦 + 𝑓

𝑥
 (𝑡, 𝜉 (𝑡) , 𝜉


(𝑡)) 𝑦
 (12)

is disconjugate in (𝑎, 𝑏). Generally properties of 𝑦(𝑡) can be
made more precise for the Neumann problem, mixed type
boundary conditions

𝑥 (𝑎) = 𝐴, 𝑥

(𝑏) = 𝐵

1
(13)



4 Abstract and Applied Analysis

or

𝑥

(𝑎) = 𝐴

1
, 𝑥 (𝑏) = 𝐵 (14)

or Sturm - Liouville type boundary conditions (5).
We restrict ourselves to the Dirichlet boundary condi-

tions (3).
In presence of 𝛼 and 𝛽 such that 𝛼 < 𝛽 for (𝑎, 𝑏) and

provided a Nagumo type condition holds, a solution 𝑥(𝑡) of
the problem (1), (3) exists which is such that the equation
of variations is disconjugate in (𝑎, 𝑏). Therefore classical
theorems on existence of a solution of the BVP (1), (3) can be
treated as results on existence of a specific solution possessing
properties which in different sources are denoted (𝐵), (𝐵∗), or
(𝐵).

Simple examples show however that there are multiple
solutions which do not possess the above properties. Indeed,
consider the problem

𝑥


= −𝑘
2
𝑥 + 𝑥
3
, 𝑥 (0) = 0, 𝑥 (1) = 0, (15)

where 𝑘 is a parameter. Evidently there is the trivial solution
𝜉(𝑡) ≡ 0. The respective equation of variations is 𝑦 = −𝑘

2
𝑦.

If 𝑘 > 2𝜋, then 𝑦(𝑡) has zeros in (0, 1). There are the
lower and upper functions 𝛼 = −𝑘2 − 1 and 𝛽 = 𝑘2 + 1.
Therefore there exist also solutions which possess the prop-
erty of disconjugacy in (0, 1) of the respective equations of
variations. In fact there are multiple solutions of BVP (15).

We consider boundary value problem

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

)

𝑥 (𝑎) = 𝐴, 𝑥 (𝑏) = 𝐵.

(16)

In what follows we shall assume that

(𝐴
1
) 𝑓(𝑡, 𝑥, 𝑥),𝑓

𝑥
(𝑡, 𝑥, 𝑥), and𝑓

𝑥
(𝑡, 𝑥, 𝑥) ∈ 𝐶([𝑎, 𝑏]×R×

R → R);
(𝐴
2
) there exist the lower andupper functions𝛼(𝑡) and𝛽(𝑡)

for equation 𝑥 = 𝑓(𝑡, 𝑥, 𝑥) such that 𝛼(𝑡) ≤ 𝛽(𝑡) on
[𝑎, 𝑏];

(𝐴
3
) 𝛼(𝑎) ≤ 𝐴 ≤ 𝛽(𝑎) and 𝛼(𝑏) ≤ 𝐵 ≤ 𝛽(𝑏);

(𝐴
4
) the Nagumo condition is satisfied in 𝜔(𝛼, 𝛽).

Theorem 12 (see [5, Theorem 7.34, page 327]). Suppose that
conditions (𝐴

1
)–(𝐴
4
) are satisfied. Then the boundary value

problem (16) has a solution 𝑥(𝑡) satisfying

𝛼 (𝑡) ≤ 𝑥 (𝑡) ≤ 𝛽 (𝑡) 𝑜𝑛 [𝑎, 𝑏] . (17)

Theorem 13. Suppose that conditions (𝐴
1
)–(𝐴
4
) are satisfied.

Let 𝛼 < 𝛽. If 𝐴 and 𝐵 are constants such that

𝛼 (𝑎) < 𝐴 < 𝛽 (𝑎) , 𝛼 (𝑏) < 𝐵 < 𝛽 (𝑏) , (18)

then there exist sequences {𝑥
𝑛
} and {𝑥

𝑛
}, such that

𝛽 (𝑡) > 𝑥
1
(𝑡) > 𝑥

2
(𝑡) > ⋅ ⋅ ⋅ > 𝑥

𝑛
(𝑡) > ⋅ ⋅ ⋅ 𝑥

∗
(𝑡)

𝛼 (𝑡) < 𝑥
1
(𝑡) < 𝑥

2
(𝑡) < ⋅ ⋅ ⋅ < 𝑥

𝑛
(𝑡) < ⋅ ⋅ ⋅ 𝑥

∗
(𝑡) ,

(19)

where 𝑥∗(𝑡) and 𝑥∗(𝑡) are solutions of problem (16) such that
𝑥
∗
(𝑡) ≤ 𝑥∗(𝑡) for 𝑡 ∈ [𝑎, 𝑏].

Proof. We construct the sequence {𝑥
𝑛
(𝑡)}. Choose 𝐴

𝑖
∈ (𝐴,

𝛽(𝑎)) such that𝐴
𝑖
monotonically converge to𝐴. Choose 𝐵

𝑖
∈

(𝐵, 𝛽(𝑏)) such that 𝐵
𝑖
monotonically converge to 𝐵. Consider

the problem

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

) , 𝑥 (𝑎) = 𝐴

1
, 𝑥 (𝑏) = 𝐵

1
. (20)

The inequalities

𝛼 (𝑎) < 𝐴 < 𝐴
1
< 𝛽 (𝑎) , 𝛼 (𝑏) < 𝐵 < 𝐵

1
< 𝛽 (𝑏) (21)

hold. Then a solution 𝑥
1
(𝑡) exists, such that 𝛼(𝑡) < 𝑥

1
(𝑡) <

𝛽(𝑡). Set 𝛽
1
(𝑡) = 𝑥

1
(𝑡). Consider the problem

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

) , 𝑥 (𝑎) = 𝐴

2
, 𝑥 (𝑏) = 𝐵

2
. (22)

This is solvable because 𝛼(𝑡), 𝛽
1
(𝑡) = 𝑥

1
(𝑡) exist and

𝛼 (𝑎) < 𝐴
2
< 𝐴
1
= 𝛽
1
(𝑎) , 𝛼 (𝑏) < 𝐵

2
< 𝐵
1
= 𝛽
1
(𝑏) .

(23)

Then 𝑥
2
(𝑡) exists such that 𝛼(𝑡) < 𝑥

2
(𝑡) < 𝑥

1
(𝑡). Proceeding

this way, we construct {𝑥
𝑛
(𝑡)}. Consider

𝛼 (𝑡) < ⋅ ⋅ ⋅ < 𝑥
𝑛
(𝑡) < ⋅ ⋅ ⋅ < 𝑥

2
(𝑡) < 𝑥

1
(𝑡) < 𝛽 (𝑡) . (24)

Applying the Arzela - Ascoli criterium (([5, Theorem 8.26,
page 347]) let 𝐸 be a compact subset of R𝑚 and let {𝑓

𝑘
} be

a sequence of 𝑛-dimensional vector functions that is uni-
formly bounded and equicontinuous on 𝐸. Then there is a
subsequence {𝑓

𝑘
𝑗

} that converges uniformly on 𝐸) we can
show (Theorem 2 in ([17])) that {𝑥

𝑛
} contains a subsequence

which converges to 𝑥∗.
The same type arguments show that {𝑥

𝑛
} also exists and

subsequence of {𝑥
𝑛
} converges to 𝑥

∗
. Notice that 𝑥

𝑛
< 𝑥∗ by

construction and, therefore, 𝑥
∗
≤ 𝑥∗.

Remark 14. Solutions 𝑥
∗
(𝑡) and 𝑥∗(𝑡) may coincide; that is,

𝑥
∗
(𝑡) ≡ 𝑥∗(𝑡). For instance, there are the upper and lower

functions 𝛽(𝑡) = 1 and 𝛼(𝑡) = −1 for the problem 𝑥 = 𝑥,

𝑥(0) = 𝑥(1) = 0, which has only the trivial solution.Therefore
𝑥
∗
(𝑡) = 𝑥∗(𝑡) ≡ 0.

Consider a linear equation of variations constructed for a
particular solution 𝜉(𝑡) of the BVP (16). We will say that 𝜉(𝑡)
possesses the property (∗) if equation of variations (12) with
the initial conditions

𝑦 (𝑎) = 0, 𝑦

(𝑎) = 1 (25)

has a solution 𝑦(𝑡) such that 𝑦(𝑡) ̸= 0, ∀𝑡 ∈ (𝑎, 𝑏). By Sturm
separation theorem this is equivalent to the assertion that no
nontrivial solution 𝑦(𝑡) of (12) has more than one zero in
(𝑎, 𝑏). Recalling the terminology in the papers [13, 15, 16], we
may say that the equation of variations (12) is disconjugate in
(𝑎, 𝑏).

By construction, solutions 𝑥
∗
and 𝑥∗ possess the property

(∗). Therefore the respective solutions 𝑦(𝑡) of the equations
of variations, satisfying the conditions (25), do not vanish in
(𝑎, 𝑏).
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As example (15) shows, there are solutions, which do not
possess the property (∗). The respective 𝑦(𝑡) (the solutions of
(12), (25)) are oscillatory functions, which may have multiple
zeros.

We are led thus to the following classification of solutions
of the problem (16).

Definition 15. Let 𝜉(𝑡) be a solution of the problem (16). One
says that 𝜉(𝑡) is a zero type solution, if the equation of varia-
tions with respect to 𝜉(𝑡)

𝑦


= 𝑓
𝑥
(𝑡, 𝜉 (𝑡) , 𝜉


(𝑡)) 𝑦 + 𝑓

𝑥
 (𝑡, 𝜉 (𝑡) , 𝜉


(𝑡)) 𝑦
 (26)

is such that a solution 𝑦(𝑡) with the initial conditions 𝑦(𝑎) =

0, 𝑦(𝑎) = 1 does not have zeros in (𝑎, 𝑏) and 𝑦(𝑏) ̸= 0.
Denote this type(𝜉) = 0.

If the above is valid and 𝑦(𝑏) = 0, one writes type(𝜉) =

(0, 1).
We extend definition of the type of a solution.

Definition 16. Let 𝜉(𝑡) be a solution ofDirichlet problem.One
says that the type of 𝜉(𝑡) is 𝑖 (𝑖 ̸= 0), if equation of variations
with respect to 𝜉(𝑡) is such that a solution 𝑦(𝑡)with the initial
conditions 𝑦(𝑎) = 0, 𝑦

(𝑎) = 1 has exactly 𝑖 zeros in the
interval (𝑎, 𝑏) and 𝑦(𝑏) ̸= 0. Denote this type(𝜉) = 𝑖. If more-
over 𝑦(𝑏) = 0, denote type(𝜉) = (𝑖, 𝑖 + 1).

Remark 17. Therefore, a solution of type (𝑖 − 1, 𝑖) is a solution
𝜉(𝑡) such that the respective 𝑦(𝑡) has exactly (𝑖 − 1) zeros in
(𝑎, 𝑏) and 𝑦(𝑏) = 0 also.

Remark 18. If 𝜉(𝑡) is an 𝑖-type solution of the problem (16)
according to Definition 16, then for small enough 𝛾 > 0 the
difference

𝑢 (𝑡, 𝛾) = 𝑥 (𝑡, 𝛾) − 𝜉 (𝑡) , 𝑥 (𝑎, 𝛾) = 𝜉 (𝑎) (27)

has exactly 𝑖 zeros in the interval (𝑎; 𝑏) and 𝑢(𝑏, 𝛾) ̸= 0.
Solutions 𝑥(𝑡, 𝛾) of the initial value problem 𝑥

 = 𝑓(𝑡, 𝑥, 𝑥),
𝑥(𝑎) = 𝐴, 𝑥(𝑎) = 𝛾 will be called neighboring solutions to
solution 𝜉(𝑡).

In Theorem 13 approximating sequences are monotone.
This is the reason why the limiting solutions 𝑥∗ and 𝑥

∗

possess the property (∗). There may be also nonmonotone
sequences also converging to some solutions of the BVP
(16). Imagine that auxiliary boundary value problems 𝑥(𝑎) =

𝐴
𝑛
, 𝑥(𝑏) = 𝐵

𝑛
are defined for 𝐴

𝑛
> 𝐴, but 𝐵

𝑛
< 𝐵. We

will call this type of sequences diagonal and sequences
defined by the choice 𝐴

𝑛
> 𝐴, 𝐵

𝑛
> 𝐵 or 𝐴

𝑛
< 𝐴, 𝐵

𝑛
< 𝐵

straight sequences. The diagonal sequences also can be
shown to satisfy the Arzela-Ascoli criterium. Therefore they
also contain converging subsequences. If there is a unique
solution in the problem (16) then both straight and diagonal
sequences should converge to it. The diagonal sequence
however cannot be monotone, by construction.

The following two results shed light on convergence of
straight and diagonal sequences.

Theorem 19 (see [17, Theorem 3]). Let the conditions of
Theorem 13 hold. If there exists a sequence {𝑥

𝑛
}, consisting of

solutions of the same type 𝑖 (𝑖 ̸= 0) of the above auxiliary prob-
lems and 𝛼(𝑡) < 𝑥

𝑛
(𝑡) < 𝛽(𝑡) in [𝑎, 𝑏], then there exists a

subsequence converging to a similar type solution 𝑥(𝑡) of the
problem (16). Thus either type (𝑥) = (𝑖 − 1, 𝑖), or type (𝑥) = 𝑖,
or type (𝑥) = (𝑖, 𝑖 + 1).

Theorem20. Let 𝜉(𝑡) be a solution of problem (16) and 𝑡𝑦𝑝𝑒(𝜉)

= 𝑖. Then there exists a sequence {𝑥
𝑛
} such that 𝑡𝑦𝑝𝑒(𝑥

𝑛
) = 𝑖,

where 𝑥
𝑛
are solutions of auxiliary problems

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

) , 𝑥 (𝑎) = 𝐴

𝑛
, 𝑥 (𝑏) = 𝐵

𝑛
,

𝑤ℎ𝑒𝑟𝑒𝐴
𝑛
→ 𝐴, 𝐵

𝑛
→ 𝐵.

(28)

Proof. Let a solution 𝜉(𝑡)of the problem (16) have type(𝜉(𝑡)) =

𝑖. This means that a solution 𝑦(𝑡) of problem (12), (25) has
exactly 𝑖 zeros in (𝑎, 𝑏) and 𝑦(𝑏) ̸= 0.

We wish to construct a sequence 𝑥
𝑛
(𝑡; 𝜀
𝑛
) of solutions of

auxiliary problems

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

) , 𝑥 (𝑎) = 𝐴

𝑛
,

𝑥 (𝑏) = 𝐵
𝑛
, 𝐴
𝑛
→ 𝐴, 𝐵

𝑛
→ 𝐵,

(29)

which are of the same type 𝑖 and which converge to 𝜉(𝑡).
Consider solutions 𝑥

𝑛
(𝑡; 𝜀
𝑛
) of the problems

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

) , 𝑥 (𝑎) = 𝜉 (𝑎) = 𝐴,

𝑥

(𝑎) = 𝜉


(𝑎) + 𝜀

𝑛
.

(30)

If 𝜀
𝑛

→ 0, then 𝑥
𝑛
(𝑏; 𝜀
𝑛
) → 𝜉(𝑡). Moreover, the functions

𝑦
𝑛
(𝑡; 𝜀
𝑛
) which are solutions of the Cauchy problems

𝑦


= 𝑓
𝑥
(𝑡, 𝑥
𝑛
, 𝑥


𝑛
(𝑡)) 𝑦 + 𝑓

𝑥
 (𝑡, 𝑥
𝑛
(𝑡) , 𝑥


𝑛
(𝑡)) 𝑦

,

𝑦 (𝑎) = 0, 𝑦

(𝑎) = 1

(31)

are similar to 𝑦(𝑡) and hence have exactly 𝑖 zeros in (𝑎, 𝑏),
𝑦
𝑛
(𝑏, 𝜀
𝑛
) ̸= 0. Then 𝑥

𝑛
(𝑡; 𝜀
𝑛
) have type 𝑖. Take finally, 𝐴

𝑛
= 𝐴,

𝐵
𝑛
= 𝑥
𝑛
(𝑏; 𝜀
𝑛
), and the required sequence is constructed.

Let us summarize the results of this section.
In presence of a regular pair 𝛼 and 𝛽 of lower and upper

solutions and under the Nagumo condition a solution of the
Dirichlet boundary value problem (16) exists. Always there
is a solution of type(0) or type(0, 1). These solutions can
be approximated by a monotone sequence of solutions of
auxiliary boundary value problems.

Solutions of nonzero type cannot be approximated by
monotone sequences. They can be approximated by suitable
straight or diagonal sequences. It follows that straight and
diagonal sequences of solutions can be constructed.

The auxiliary boundary value problems (which contain
elements of straight or diagonal sequences) can have multiple
solutions. These solutions can be arranged in sequences of
similar type solutions.These sequences contain subsequences
converging (accordingly to Arzela - Ascoli criterium) to
solutions of different type of a given boundary value problem.

An 𝑖-type solution of the problem (16) can be approxi-
mated by similar type solutions of auxiliary boundary value
problems.
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6. Neumann Problem

The Neumann problem

𝑥


= 𝑓 (𝑡, 𝑥, 𝑥

) , 𝑥


(𝑎) = 𝐴

1
, 𝑥

(𝑏) = 𝐵

1
(32)

can be considered as a sample of problems with Sturm -
Liouville boundary conditions.This type of problems is more
difficult to treat through types of solutions since it is not
so easy to define the types. For the Neumann boundary
conditions this difficulty appears as nonstability of zeros of
the difference 𝑥

(𝑡; 𝛾) − 𝜉(𝑡) under the change of 𝛾, 𝑥(𝑡; 𝛾)
being a solution of the initial value problem 𝑥 = 𝑓(𝑡, 𝑥, 𝑥),
𝑥(𝑎) = 𝛾,𝑥 (𝑎) = 𝐴

1
and 𝜉(𝑡) being a solution of the problem

(32). For instance, considering solutions 𝑥(𝑡; 𝛾) of the initial
problem 𝑥

 = 𝑓(𝑡, 𝑥, 𝑥), 𝑥(𝑎) = 𝐴, 𝑥(𝑎) = 𝛾, one can
employ the fact that zeros of 𝑥(𝑡; 𝛾)−𝜉(𝑡), where 𝜉 is a solution
of the BVP, are stablewith respect to small changes of 𝛾.This is
not the case for zeros of 𝑥(𝑡; 𝛾)−𝜉(𝑡). One can overcome this
difficulty by special introduction of types of solutions. This
was done in [18].

7. Types of Solutions and Multiplicity

It appears that the existence of a solution of nonzero type
indicates that there are additional solutions.

Consider the Dirichlet problem (16).

Theorem 21. Suppose that all solutions of equation 𝑥 = 𝑓(𝑡,

𝑥, 𝑥) are extendable to the interval [𝑎, 𝑏]. If there are two
solutions 𝑢 and V of the problem (16), type(𝑢) = 𝑚, type(V) = 𝑛,
|𝑚 − 𝑛| ≥ 2, then there exist at least |𝑚 − 𝑛| − 1more solutions
of the problem (16).

Proof. We prove the result for the specific case 𝑛 = 0 and
𝑚 = 2. Our goal is to show that there exists at least one more
solution of the problem.The proof for the general case can be
conducted similarly.

Suppose that

𝑥


𝑛
(𝑎) > 𝑥



𝑚
(𝑎) . (33)

Denote

𝑥


𝑛
(𝑎) = 𝑝, 𝑥



𝑚
(𝑎) = 𝑞 (𝑝 > 𝑞) . (34)

Consider solutions 𝑥(𝑡; 𝛾) of the Cauchy problems

𝑥 (𝑎) = 𝐴, 𝑥

(𝑎) = 𝛾 ∈ [𝑞, 𝑝] . (35)

Obviously 𝑥
𝑛
(𝑡) = 𝑥(𝑡, 𝑝), 𝑥

𝑚
(𝑡) = 𝑥(𝑡, 𝑞).

Introduce function

𝑢
𝑛
(𝑡, 𝛾) = 𝑥

𝑛
(𝑡) − 𝑥 (𝑡, 𝛾) . (36)

If 𝛾 < 𝑝 and 𝛾 is close enough to 𝑝, then 𝑢
𝑛
(𝑡; 𝛾) has not zeros

in (𝑎, 𝑏). Several cases are possible.
Case 1. 𝑢

𝑛
(𝑡, 𝛾) ̸= 0 in (𝑎, 𝑏) for all 𝛾 ∈ (𝑞, 𝑝).

Then 𝑢
𝑛
(𝑡; 𝑞) ̸= 0 in (𝑎, 𝑏). This means that 𝑥

𝑛
and 𝑥

𝑚
do

not intersect in (𝑎, 𝑏), but

𝑥
𝑛
(𝑏) = 𝑥

𝑚
(𝑏) . (37)

Then consider function

𝑢
𝑚
(𝑡, 𝛾) = 𝑥 (𝑡, 𝛾) − 𝑥

𝑚
(𝑡) . (38)

Function 𝑢
𝑚
(𝑡; 𝛾) has two zeros 𝑡

1
(𝛾) and 𝑡

2
(𝛾) in (𝑎, 𝑏) and

𝑢
𝑚
(𝑏; 𝛾) ̸= 0 (39)

for 𝛾 > 𝑞 and close enough to 𝑞. One has that

𝑢
𝑚
(𝑡, 𝑝) = 𝑥 (𝑡, 𝑝) − 𝑥

𝑚
(𝑡) = 𝑥

𝑛
(𝑡) − 𝑥

𝑚
(𝑡) = 𝑢

𝑛
(𝑡, 𝑞)

(40)

and 𝑢
𝑚
(𝑡, 𝑝) has not zeros in (𝑎, 𝑏). It follows that

𝑡
2
(𝛾) = 𝑏, 𝑡

1
(𝛾) = 𝑏 (41)

for some 𝛾
2
< 𝛾
1
≤ 𝑝.

A solution 𝑥(𝑡, 𝛾
2
) ̸≡ 𝑥

𝑚
(𝑡) (and 𝑥(𝑡, 𝛾

2
) ̸≡ 𝑥

𝑛
(𝑡)) solves

the BVP (16).
Case 2. Function 𝑢

𝑛
(𝑡, 𝛾) has not zeros in (𝑎, 𝑏] for 𝛾 < 𝑝 and

𝛾 close enough to 𝑝, and

𝑢
𝑛
(𝑡, 𝑞) = 𝑥

𝑛
(𝑡) − 𝑥

𝑚
(𝑡) (42)

has a zero at 𝑡 = 𝑏. Let 𝛾
1
∈ [𝑞, 𝑝) be such that 𝑢

𝑛
(𝑡, 𝛾) has a

zero at 𝑡 = 𝑏 for the first time.
If 𝛾
1
= 𝑞, then Case 2 reduces to Case 1.

If 𝛾
1
∈ (𝑞, 𝑝), then 𝑥(𝑡, 𝛾

1
) is a solution of BVP (16) and

𝑥(𝑡, 𝛾
1
) is different from 𝑥

𝑛
and 𝑥

𝑚
. Hence the proof.

Theorem 22. Suppose that there exist lower and upper func-
tions 𝛼 and 𝛽 in the problem (16) and the Nagumo condition
holds. Suppose also that there exists a solution 𝜉(𝑡) of the type
𝑘 (𝑘 > 1), and 𝜉(𝑡) is located between 𝛼(𝑡) and 𝛽(𝑡). Then there
exist at least 2𝑘 other solutions.

Proof. Since 𝜉(𝑡) is located between 𝛼(𝑡) and 𝛽(𝑡) it does
not coincide neither with 𝛽 nor with 𝛼. Consider the region
𝜔(𝜉, 𝛽) between 𝜉 and 𝛽. One may consider 𝜉 as a lower
function for this region since all of the conditions for lower
functions are fulfilled. Then there exists a solution 𝑥

0
(𝑡) of

zero type in this region. Consider now solutions 𝜉 and 𝑥
0

in the region 𝜔(𝛼, 𝛽). By Theorem 21, there exist more 𝑘 − 1

solutions of the problem. Totally there are 𝑘 solutions (with
𝑥
0
) not counted as a solution 𝜉.
The same analysis, made for the region𝜔(𝛼, 𝜉), shows that

there are at least 𝑘 solutions in this region.
Then the total number of solutions of the BVP in the

region 𝜔(𝛼, 𝛽) is at least 2𝑘, a solution 𝜉 not counted.

8. Quasilinearization and Multiple
Solutions of BVP

Consider the problem

(𝑙
2
𝑥) (𝑡) = 𝑓 (𝑡, 𝑥, 𝑥


) , (43)

𝑥 (𝑎) = 0, 𝑥 (𝑏) = 0, (44)
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where (𝑙
2
𝑥)(𝑡) = 𝑥+𝑝(𝑡)𝑥+𝑞(𝑡)𝑥 is the second order linear

differential expression with continuous coefficients. It is well
known ([19] and similar results in [1, 2, 4]) that the above
problem is solvable if 𝑓 is bounded (|𝑓(𝑡, 𝑥, 𝑥

)| < 𝑀 for all
(𝑡, 𝑥, 𝑥)) and the homogeneous problem

(𝑙
2
𝑥) (𝑡) = 0, 𝑥 (𝑎) = 0, 𝑥 (𝑏) = 0 (45)

has only the trivial solution.
Introduce the following notions ([20, 21]).

Definition 23. One will say that the linear part (𝑙
2
𝑥)(𝑡) is 𝑖-

nonresonant with respect to the boundary conditions (44), if
a solution 𝑥(𝑡) of the Cauchy problem

(𝑙
2
𝑥) (𝑡) = 0, 𝑥 (𝑎) = 0, 𝑥


(𝑎) = 1 (46)

has exactly 𝑖 zeros in the interval (𝑎, 𝑏) and 𝑥(𝑏) ̸= 0.

Definition 24. Onewill say that 𝜉(𝑡) is an 𝑖-type solution of the
problem (43), (44), if for small enough 𝑟 > 0 the difference
𝑢(𝑡; 𝑟) = 𝑥(𝑡; 𝑟)− 𝜉(𝑡) has exactly 𝑖 zeros in (𝑎, 𝑏) and 𝑢(𝑏; 𝑟) ̸=

0, where 𝑥(𝑡; 𝑟) is a solution of (43), which satisfies the initial
conditions

𝑥 (𝑎; 𝑟) = 𝜉 (𝑎) , 𝑥

(𝑎; 𝑟) = 𝜉


(𝑎) ± 𝑟. (47)

Remark 25. In terms of the previous section the type of 𝜉(𝑡)
is either 𝑖 or (𝑖, 𝑖 + 1).

The following result is crucial.

Theorem 26. Quasilinear problem (43), (44) with an 𝑖-non-
resonant linear part (𝑙

2
𝑥)(𝑡) has an 𝑖-type solution.

Theproof can be found in [20, 21]. It is based on a series of
lemmas. First a set of all solutions 𝑆 of the problem (43), (44)
is considered. It is not empty, by Conti’s theorem [19], and it is
𝐶1-compact, by using theGreen’s function representation of a
solution. Moreover, any possible solution 𝑥(𝑡) of the problem
satisfies the estimate

|𝑥 (𝑡)| ≤ Γ ⋅ 𝑀 (𝑏 − 𝑎) ,


𝑥

(𝑡)


≤ Γ
1
⋅ 𝑀 (𝑏 − 𝑎) ∀𝑡 ∈ [𝑎, 𝑏] ,

(48)

where 𝑀 is a bound for 𝑓, Γ and Γ
1
are estimates of the

respective Green’s function and its derivative in 𝑡. There are
elements in 𝑆 with maximal 𝑥(𝑎) and minimal 𝑥(𝑎) (they
coincide in case of a unique solution of the problem). These
solutions possess the needed property of being of type 𝑖. This
can be concluded by consideration of solutions of the Cauchy
problem (43), 𝑥(𝑎) = 0, 𝑥(𝑎) = 𝛾 and letting 𝛾 to go to
±∞.The normalized functions 𝑥(𝑡; 𝛾)/𝛾 go (as 𝛾 goes to ±∞)
to solutions of the Cauchy problem (𝑙

2
𝑧)(𝑡) = 0, 𝑧(𝑎) = 0,

𝑧

(𝑎) = ±1, which have exactly 𝑖-zeros in (𝑎, 𝑏). Thus in case

the maximal and minimal solutions are not of 𝑖-type, they
cannot possess, respectively, the maximality and minimality
properties.

Theorem 26 can be used to detect multiple solutions of
boundary value problems. Indeed, suppose that the problem

𝑥


= 𝑓 (𝑡, 𝑥) , 𝑥 (𝑎) = 0, 𝑥 (𝑏) = 0 (49)

is considered. Rewrite the equation in equivalent form

𝑥

+ 𝑘
2
𝑥 = 𝑓 (𝑡, 𝑥) + 𝑘

2
𝑥 (50)

and truncate the right side by a constant 𝑁 > 0. Denote the
truncated (thus bounded) continuous right side 𝐹

𝑁
(𝑡, 𝑥). Let

𝑀 be the estimate for |𝐹
𝑁
(𝑡, 𝑥)|. Let Γ be the estimate for the

Green’s function 𝐺(𝑡, 𝑥) of the problem 𝑥 + 𝑘2𝑥 = 0, 𝑥(𝑎) =

0, 𝑥(𝑏) = 0. Evidently, |𝑥(𝑡)| ≤ Γ ⋅ 𝑀(𝑏 − 𝑎), where 𝑥 is a
solution of the modified problem

𝑥

+ 𝑘
2
𝑥 = 𝐹
𝑁

(𝑥) , 𝑥 (𝑎) = 0, 𝑥 (𝑏) = 0. (51)

Then, if the key inequality

Γ ⋅ 𝑀 (𝑏 − 𝑎) ≤ 𝑁 (52)

holds, a solution 𝑥(𝑡) of the problem (51) solves also the
problem (50). It is important that the type of 𝑥(𝑡) is the same
as the type of a linear part 𝑥 + 𝑘2𝑥.

Repeating this quasilinearization processmultiplying with
linear parts of different types, we obtain multiple solutions of
the problem (50). All of these solutions are different since they
are of different types.

The applicability of the quasilinearization process was
demonstrated in the papers [20–24].

9. Resonant Problems

The above mentioned Conti’s theorem [19] is not applicable
for boundary value problems (43), (44) if the respective
homogeneous problem (45) has a nontrivial solution. This
is the so-called resonant case. There are numerous papers
devoted to resonant boundary value problems. Some of them
can be found in the bibliography of papers [25–27].

The classical result says that the simple self-adjoint
resonant problem

𝑥

+ 𝑝𝑥

+ 𝑞𝑥 = 𝐹 (𝑡) , 𝑥 (𝑎) = 0, 𝑥 (𝑏) = 0 (53)

is solvable if 𝐹 is “orthogonal” to eigenfunction of a linear
part. In a more general setting

𝑥

+ 𝑝𝑥

+ 𝑞𝑥 = 𝐹 (𝑡, 𝑥, 𝑥


)

𝑥 (𝑎) = 0, 𝑥 (𝑏) = 0.

(54)

One should “measure” how “far” is 𝐹 of being “orthogonal” to
an eigenfunction of a linear part.

It seems that quasilinearization process described in the
previous section is applicable to resonant BVPs also. The
main idea is to modify a linear part and, respectively, the
right side of an equation so that the “new” linear part is no
more resonant with respect to the boundary conditions.Then
the “new” right side is truncated by a constant 𝑁 and if the
inequality (52) holds then the problem has a solution.

This idea was realized first in the work by Yermachenko
[25]. The Dirichlet boundary conditions were considered.
Later the results of the same spirit were obtained in the works
[26, 27]. In the work [26] the mixed boundary conditions
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𝑥(0) = 0, 𝑥(𝑇) = 0 were considered. The types of a linear
part and of solutions were defined.

Below a sample of the results of this kind is given.
Consider the resonant boundary value problem

𝑥

+ 𝑝𝑥

+ 𝑞𝑥 = 𝐹 (𝑡, 𝑥, 𝑥


) (55)

𝑥 (0) = 0, 𝑥

(𝑇) = 0. (56)

Theorem 27. Supposing for the modified BVP

𝑥

+ 𝑝𝑥

+ 𝑞𝑥 + 𝜀

2
𝑥 = 𝜑 (𝑡, 𝑥, 𝑥


) ,

𝑥 (0) = 0, 𝑥

(𝑇) = 0,

(57)

where
(1) 𝜑(𝑡, 𝑥, 𝑥


) = 𝜀

2
𝛿(−𝑁, 𝑥,𝑁) + 𝐹(𝑡, 𝛿(−𝑁, 𝑥,𝑁),

𝛿(−𝑁
1
, 𝑥, 𝑁

1
)), 𝛿 is the truncation function, 𝑁 > 0,

𝑁
1
> 0 and

(2) linear part is nomore resonant with respect to the given
boundary conditions (56),

the inequalities
Γ ⋅ 𝑀 ⋅ 𝑇 ≤ 𝑁, (58)
Γ
1
⋅ 𝑀 ⋅ 𝑇 ≤ 𝑁

1 (59)

hold, where Γ, Γ
1
are the estimates of the Green’s function and

its derivative associated with the linear part in (57) and 𝑀 =

sup
𝐼×𝑅
2 |𝜑(𝑡, 𝑥, 𝑥

)|.
Then the problem (55), (56) has a solution such that |𝑥(𝑡)| ≤

𝑁 ∀𝑡 ∈ [𝑎, 𝑏] and |𝑥
(𝑡)| ≤ 𝑁

1
∀𝑡 ∈ [𝑎, 𝑏].

Proof. Consider the modified problem (57). It is solvable,
since the linear part is notmore resonant and the nonlinearity
in the right side is bounded. A solution 𝑥(𝑡) of (57) can be
written in the integral form using the Green’s function.

The inequalities (58), (59) fulfill. This means that

|𝑥 (𝑡)| ≤ 𝑁,

𝑥

(𝑡)


≤ 𝑁
1
, ∀𝑡 ∈ [𝑎, 𝑏] . (60)

For these values of 𝑥 and 𝑥 the original equation (55) and
the modified equation (57) are equivalent.

It follows that 𝑥(𝑡) is also a solution of the original
problem (55), (56).

Remark 28. If the right side in (55) does not depend on 𝑥,
then 𝑁

1
can be set to +∞ and therefore only the inequality

(58) should be verified.

10. Conclusions

General results like Conti’s theorem provide information on
the existence of a solution of BVP. Applying these results to
specific problems like the Dirichlet problem for the second
order ordinary differential equations one should obtain some
estimates of expected solutions and verify a set of conditions.

The classical example is the method of upper and lower
functions. If the regularly ordered (𝛼 ≤ 𝛽) upper and
lower functions exist and satisfy some restrictions depending
on boundary conditions then the existence of a solution is
established. For equations depending on the derivative of
solution additional conditions of the Nagumo type may be

needed. It was observed that in presence of regular upper and
lower functions a solution of the BVP exists which possesses
the specific property; namely, the respective equation of
variations is disconjugate (nonoscillatory) in a given interval.
These solutions can be approximated bymonotone sequences
of solutions of auxiliary problems.

It seems to be useful to classify solutions of BVP
by oscillatory behaviour of their equations of variations.
The above described solutions are referred to as zero type
solutions. Solutions are classified, roughly speaking, with
respect to the number of zeros of the respective equation
of variations in a given interval. Solutions of nonzero type
cannot be approximated by monotone sequences. They can
be approximated however by nonmonotone sequences of
solutions of auxiliary problems.

In case of the existence of regular upper and lower
functions the existence of a solution of nonzero type implies
the existence of additional solutions of BVP. If there are no
zero type solutions of BVP, the method of upper and lower
functions is not applicable to the problem (there are no upper
and lower functions which are not solutions of BVP).

Even in case of nonexistence of upper and lower functions
a priori information on the type of possible solutions is
useful and may yield practical estimations of the number of
solutions.

A priori knowledge of the type of a solution of BVP allows
applying suitable quasilinearization process and confirming
the existence of a solution.

Resonant problems which have a solution can be handled
also. If the quasilinearization process is applicable then the
solvability of a solution is proved and the type of a solution
can be detected.

Finally, knowledge of the type of a solutionmakes it easier
to construct the approximating sequences.
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