
Research Article
𝛼-Coupled Fixed Points and Their Application in
Dynamic Programming

J. Harjani, J. Rocha, and K. Sadarangani
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We introduce the definition of 𝛼-coupled fixed point in the space of the bounded functions on a set S and we present a result
about the existence and uniqueness of such points. Moreover, as an application of our result, we study the problem of existence and
uniqueness of solutions for a class of systems of functional equations arising in dynamic programming.

1. Introduction

The Banach contraction mapping principle is one of the
pivotal results of analysis. It is widely considered as the
source of metric fixed point theory. Also, its significance lies
in its vast applicability in a great number of branches of
mathematics and other sciences.

Generalizations of the above principle have been a heavily
investigated branch of research. Particularly, one of these
generalizations uses the so-called comparison functions.
These functions are defined as functions 𝜑 : R

+
→ R

+

which are increasing and satisfy 𝜑𝑛(𝑡) → 0 when 𝑛 → ∞

for 𝑡 > 0, where 𝜑𝑛 denotes the 𝑛-iteration of 𝜑. Examples of
such functions are 𝜑(𝑡) = 𝜆𝑡 with 𝜆 ∈ (0, 1), 𝜑(𝑡) = arctan 𝑡,
𝜑(𝑡) = ln(1 + 𝑡), and 𝜑(𝑡) = 𝑡/(1 + 𝑡), among others.

The above-mentioned generalization of the Banach con-
traction mapping principle is the following result and it
appears in [1, 2].

Theorem 1. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :
𝑋 → 𝑋 be a mapping satisfying 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜙(𝑑(𝑥, 𝑦)), for
any 𝑥, 𝑦 ∈ 𝑋, where 𝜙 is a comparison function. Then 𝑇 has a
unique fixed point.

In this paper, we consider a nonempty set 𝑆 and by
𝐵(𝑆) we denote the set of all bounded real functions defined
on 𝑆. According to the ordinary addition of functions and
scalar multiplication and endowing with the norm ‖𝑢‖ =

sup
𝑥∈𝑆
|𝑢(𝑥)|, 𝐵(𝑆) is a Banach space.

Notice that the distance in 𝐵(𝑆) is defined as 𝑑(𝑢, V) =
sup
𝑥∈𝑆
{|𝑢(𝑥) − V(𝑥)|}, for 𝑢, V ∈ 𝐵(𝑆).

The aim of this paper is to present a result about the
existence and uniqueness of an 𝛼-coupled fixed point (see
Section 2) in 𝐵(𝑆) and, as an application of this result, we will
study the problem of existence and uniqueness of solutions
of the following system of functional equations arising in
dynamic programming:

𝑢 (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦, 𝑢 (𝑇 (𝑥, 𝑦)) , V (𝑇 (𝑥, 𝑦)))}

V (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦)

+ 𝐹 (𝑥, 𝑦, 𝑢 (𝛼 (𝑇 (𝑥, 𝑦))) , V (𝛼 (𝑇 (𝑥, 𝑦))))}
(1)

under certain assumptions.
For further information about the functional equations

appearing in dynamic programming, we refer the reader to
[3–6].

2. Generalized Coupled Fixed Point Theorem
in 𝐵(𝑆)

Our starting point in this section is the definition of 𝛼-
coupled fixed point in 𝐵(𝑆). For this purpose, suppose that
𝑆 is a nonempty set and 𝛼 : 𝑆 → 𝑆 a mapping.
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Definition 2. An element (𝑢, V) ∈ 𝐵(𝑆) × 𝐵(𝑆) is called an 𝛼-
coupled fixed point of a mapping 𝐺 : 𝐵(𝑆) × 𝐵(𝑆) → 𝐵(𝑆) if
𝐺(𝑢, V) = 𝑢 and 𝐺(𝑢 ∘ 𝛼, V ∘ 𝛼) = V.

The following theorem is the main result of the paper
and it gives us a sufficient condition for the existence and
uniqueness of an 𝛼-coupled fixed point.

Theorem 3. Suppose that 𝛼 : 𝑆 → 𝑆 and 𝐺 : 𝐵(𝑆) × 𝐵(𝑆) →
𝐵(𝑆) are two mappings. If 𝐺 satisfies

𝑑 (𝐺 (𝑥, 𝑦) , 𝐺 (𝑢, V)) ≤ 𝜙 (max (𝑑 (𝑥, 𝑢) , 𝑑 (𝑦, V))) , (2)

for any 𝑥, 𝑦, 𝑢, V ∈ 𝐵(𝑆), where 𝜙 is a comparison function,
then 𝐺 has a unique 𝛼-coupled fixed point.

Proof. Consider the Cartesian product 𝐵(𝑆) × 𝐵(𝑆) endowed
with the distance defined by

𝑑 ((𝑥, 𝑦) , (𝑢, V)) = max (𝑑 (𝑥, 𝑢) , 𝑑 (𝑦, V)) . (3)

It is easily seen that (𝐵(𝑆)× 𝐵(𝑆), 𝑑) is a completemetric space.
Now, we consider the mapping𝐺 : 𝐵(𝑆)×𝐵(𝑆) → 𝐵(𝑆)×

𝐵(𝑆) defined by

𝐺 (𝑥, 𝑦) = (𝐺 (𝑥, 𝑦) , 𝐺 (𝑥 ∘ 𝛼, 𝑦 ∘ 𝛼)) . (4)

Notice that if 𝑥 ∈ 𝐵(𝑆) then 𝑥 ∘ 𝛼 ∈ 𝐵(𝑆).
Next, we check that𝐺 satisfies assumptions ofTheorem 1.

In fact, according to (2), we have that for any 𝑥, 𝑦, 𝑢, V ∈ 𝐵(𝑆)

𝑑 (𝐺 (𝑥, 𝑦) , 𝐺 (𝑢, V))

= 𝑑 ((𝐺 (𝑥, 𝑦) , 𝐺 (𝑥 ∘ 𝛼, 𝑦 ∘ 𝛼)) ,

(𝐺 (𝑢, V) , 𝐺 (𝑢 ∘ 𝛼, V ∘ 𝛼)))

= max {𝑑 (𝐺 (𝑥, 𝑦) , 𝐺 (𝑢, V)) ,

𝑑 (𝐺 (𝑥 ∘ 𝛼, 𝑦 ∘ 𝛼) , 𝐺 (𝑢 ∘ 𝛼, V ∘ 𝛼))}

≤ max {𝜙 (max (𝑑 (𝑥, 𝑢) , 𝑑 (𝑦, V))) ,

𝜙 (max (𝑑 (𝑥 ∘ 𝛼, 𝑢 ∘ 𝛼) , 𝑑 (𝑦 ∘ 𝛼, V ∘ 𝛼)))} .
(5)

Now, taking into account the definition of the distance on
𝐵(𝑆), we have

𝑑 (𝑥 ∘ 𝛼, 𝑢 ∘ 𝛼) = sup
𝑠∈𝑆

{|(𝑥 ∘ 𝛼) (𝑠) − (𝑢 ∘ 𝛼) (𝑠)|}

= sup
𝑠∈𝑆

{|𝑥 (𝛼 (𝑠)) − 𝑢 (𝛼 (𝑠))|}

≤ sup
𝑠∈𝑆

{|𝑥 (𝑠) − 𝑢 (𝑠)|} = 𝑑 (𝑥, 𝑢)

(6)

and, by a similar argument, we have 𝑑(𝑦 ∘ 𝛼, V ∘ 𝛼) ≤ 𝑑(𝑦, V).
Therefore, from (5) and (6), we get 𝑑(𝐺(𝑥, 𝑦), 𝐺(𝑢, V)) ≤
𝜙(max(𝑑(𝑥, 𝑢), 𝑑(𝑦, V))) = 𝜙(𝑑((𝑥, 𝑦), (𝑢, V))).

Therefore, Theorem 1 gives us the existence of a unique
(𝑥
0
, 𝑦
0
) ∈ 𝐵(𝑆) × 𝐵(𝑆) such that 𝐺(𝑥

0
, 𝑦
0
) = (𝑥

0
, 𝑦
0
) or,

equivalently, 𝐺(𝑥
0
, 𝑦
0
) = 𝑥
0
and 𝐺(𝑥

0
∘ 𝛼, 𝑦
0
∘ 𝛼) = 𝑦

0
.

This completes the proof.

3. Application to Dynamic Programming

The following types of systems of functional equations

𝑢 (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦, 𝑢 (𝑇 (𝑥, 𝑦)) , V (𝑇 (𝑥, 𝑦)))}

V (𝑥) = sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦)

+ 𝐹 (𝑥, 𝑦, 𝑢 (𝛼 (𝑇 (𝑥, 𝑦))) , V (𝛼 (𝑇 (𝑥, 𝑦))))}
(7)

appear in the study of dynamic programming (see [7]), where
𝑥 ∈ 𝑆 and 𝑆 is a state space,𝐷 is a decision space, 𝑇 : 𝑆×𝐷 →

𝑆, 𝑔 : 𝑆 × 𝐷 → R, 𝐹 : 𝑆 × 𝐷 × R × R → R, and 𝛼 : 𝑆 → 𝑆

are given mappings.
The following theorem gives us a sufficient condition for

the existence and uniqueness of solutions to problem (7).

Theorem 4. Suppose the following assumptions:

(i) 𝑔 : 𝑆 × 𝐷 → R and 𝐹(−, −, 0, 0) : 𝑆 × 𝐷 → R are
bounded functions;

(ii) there exists a comparison function 𝜑 such that for any
𝑥 ∈ 𝑆, 𝑦 ∈ 𝐷 and 𝑡, 𝑠, 𝑡

1
, 𝑠
1
∈ R, |𝐹(𝑥, 𝑦, 𝑡, 𝑠) −

𝐹(𝑥, 𝑦, 𝑡
1
, 𝑠
1
)| ≤ 𝜑(max(|𝑡 − 𝑡

1
|, |𝑠 − 𝑠

1
|)).

Then, problem (7) has a unique solution (𝑢
0
, V
0
) ∈ 𝐵(𝑆)×𝐵(𝑆).

As a previous result for the proof of Theorem 4, we need
the next lemma.

Lemma 5. Suppose that 𝐻,𝐺 : 𝑆 → R are two bounded
functions. Then

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sup
𝑦∈𝑆

𝐻(𝑦) − sup
𝑦∈𝑆

𝐺 (𝑦)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ sup
𝑦∈𝑆

󵄨
󵄨
󵄨
󵄨
𝐻 (𝑦) − 𝐺 (𝑦)

󵄨
󵄨
󵄨
󵄨
. (8)

Proof. Obviously, this result is true when sup
𝑦∈𝑆
{𝐻(𝑦)} =

sup
𝑦∈𝑆
{𝐺(𝑦)}.

If we suppose that sup
𝑦∈𝑆
{𝐻(𝑦)} > sup

𝑦∈𝑆
{𝐺(𝑦)}

(same argument works if we suppose that sup
𝑦∈𝑆
{𝐻(𝑦)} <

sup
𝑦∈𝑆
{𝐺(𝑦)}) then for any 𝑦

0
∈ 𝑆

𝐻 (𝑦
0
) − sup
𝑦∈𝑆

{𝐺 (𝑦)} ≤ 𝐻 (𝑦
0
) − 𝐺 (𝑦

0
) ≤
󵄨
󵄨
󵄨
󵄨
𝐻 (𝑦
0
) − 𝐺 (𝑦

0
)
󵄨
󵄨
󵄨
󵄨

(9)

and, consequently,

sup
𝑦∈𝑆

{𝐻(𝑦) − sup
𝑦∈𝑆

{𝐺 (𝑦)}} ≤ sup
𝑦∈𝑆

{
󵄨
󵄨
󵄨
󵄨
𝐻 (𝑦) − 𝐺 (𝑦)

󵄨
󵄨
󵄨
󵄨
} . (10)

Since sup
𝑦∈𝑆
{𝐻(𝑦)−𝑎} = sup

𝑦∈𝑆
{𝐻(𝑦)}−𝑎, for any 𝑎 ∈ R,

it follows

sup
𝑦∈𝑆

{𝐻 (𝑦)} − sup
𝑦∈𝑆

{𝐺 (𝑦)} ≤ sup
𝑦∈𝑆

{
󵄨
󵄨
󵄨
󵄨
𝐻 (𝑦) − 𝐺 (𝑦)

󵄨
󵄨
󵄨
󵄨
} (11)

and this proves our claim.



Abstract and Applied Analysis 3

Proof of Theorem 4. Consider the operator 𝐺 defined on
𝐵(𝑆) × 𝐵(𝑆) as

𝐺 (𝑢, V) (𝑥)

= sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦, 𝑢 (𝑇 (𝑥, 𝑦)) , V (𝑇 (𝑥, 𝑦)))} (12)

for (𝑢, V) ∈ 𝐵(𝑆)×𝐵(𝑆) and 𝑥 ∈ 𝑆. By assumptions (i) and (ii),
we have
|𝐺 (𝑢, V) (𝑥)|

≤ sup
𝑦∈𝐷

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦, 𝑢 (𝑇 (𝑥, 𝑦)) , V (𝑇 (𝑥, 𝑦)))󵄨󵄨󵄨

󵄨

≤ sup
𝑦∈𝐷

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
+ sup
𝑦∈𝐷

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥, 𝑦, 𝑢 (𝑇 (𝑥, 𝑦)) , V (𝑇 (𝑥, 𝑦)))󵄨󵄨󵄨

󵄨

≤ sup
𝑦∈𝐷

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨
+ sup
𝑦∈𝐷

{
󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥, 𝑦, 𝑢 (𝑇 (𝑥, 𝑦)) , V (𝑇 (𝑥, 𝑦)))

− 𝐹 (𝑥, 𝑦, 0, 0)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥, 𝑦, 0, 0)

󵄨
󵄨
󵄨
󵄨
}

≤ sup
𝑦∈𝐷

󵄨
󵄨
󵄨
󵄨
𝑔 (𝑥, 𝑦)

󵄨
󵄨
󵄨
󵄨

+ sup
𝑦∈𝐷

{𝜑 (max (󵄨󵄨󵄨
󵄨
𝑢 (𝑇 (𝑥, 𝑦))

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
V (𝑇 (𝑥, 𝑦))󵄨󵄨󵄨

󵄨
))

+
󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥, 𝑦, 0, 0)

󵄨
󵄨
󵄨
󵄨
} .

(13)

According to assumption (i) and, since (𝑢, V) ∈ 𝐵(𝑆) ×
𝐵(𝑆), we obtain that 𝐺(𝑢, V) ∈ 𝐵(𝑆). Therefore, 𝐺 : 𝐵(𝑆) ×

𝐵(𝑆) → 𝐵(𝑆).
Now, we check that𝐺 satisfies condition (2) ofTheorem 3.

In fact, for any 𝑢, V, 𝑢
1
, V
1
∈ 𝐵(𝑆), we have

𝑑 (𝐺 (𝑢, V) , 𝐺 (𝑢
1
, V
1
)) = sup
𝑥∈𝑆

󵄨
󵄨
󵄨
󵄨
𝐺 (𝑢, V) (𝑥) − 𝐺 (𝑢

1
, V
1
) (𝑥)

󵄨
󵄨
󵄨
󵄨
.

(14)

Then, from assumption (ii) and Lemma 5 and using the
fact that 𝜑 is an increasing function, for any 𝑥 ∈ 𝑆, we have
󵄨
󵄨
󵄨
󵄨
𝐺 (𝑢, V) (𝑥) − 𝐺 (𝑢

1
, V
1
) (𝑥)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦) + 𝐹 (𝑥, 𝑦, 𝑢 (𝑇 (𝑥, 𝑦)) , V (𝑇 (𝑥, 𝑦)))}

− sup
𝑦∈𝐷

{𝑔 (𝑥, 𝑦)+𝐹 (𝑥, 𝑦, 𝑢
1
(𝑇 (𝑥, 𝑦)) , V

1
(𝑇 (𝑥, 𝑦)))}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ sup
𝑦∈𝐷

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥, 𝑦, 𝑢 (𝑇 (𝑥, 𝑦)) , V (𝑇 (𝑥, 𝑦)))

− 𝐹 (𝑥, 𝑦, 𝑢
1
(𝑇 (𝑥, 𝑦)) , V

1
(𝑇 (𝑥, 𝑦)))

󵄨
󵄨
󵄨
󵄨

≤ 𝜑 (max {󵄨󵄨󵄨
󵄨
𝑢 (𝑇 (𝑥, 𝑦)) − 𝑢

1
(𝑇 (𝑥, 𝑦))

󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
V (𝑇 (𝑥, 𝑦)) − V

1
(𝑇 (𝑥, 𝑦))

󵄨
󵄨
󵄨
󵄨
})

≤ 𝜑 (max (󵄩󵄩󵄩
󵄩
𝑢 − 𝑢
1

󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
V − V
1

󵄩
󵄩
󵄩
󵄩
))

= 𝜑 (max (𝑑 (𝑢, 𝑢
1
) , 𝑑 (V, V

1
))) .

(15)

Therefore, condition (2) of Theorem 3 is satisfied and,
consequently,𝐺 has a unique 𝛼-coupled fixed point (𝑢

0
, V
0
) ∈

𝐵(𝑆) × 𝐵(𝑆). This means that 𝐺(𝑢
0
, V
0
) = 𝑢
0
and 𝐺(𝑢

0
∘ 𝛼, V
0
∘

𝛼) = V
0
or, equivalently, for 𝑥 ∈ 𝑆,

𝑢
0
(𝑥) = sup

𝑦∈𝐷

{𝑔 (𝑥, 𝑦)

+ 𝐹 (𝑥, 𝑦, 𝑢
0
(𝑇 (𝑥, 𝑦)) , V

0
(𝑇 (𝑥, 𝑦)))} ,

V
0
(𝑥) = sup

𝑦∈𝐷

{𝑔 (𝑥, 𝑦)

+ 𝐹 (𝑥, 𝑦, 𝑢
0
(𝛼 (𝑇 (𝑥, 𝑦))), V

0
(𝛼 (𝑇 (𝑥, 𝑦))))} .

(16)

This completes the proof.

In order to illustrate our results, we present the following
example.

Consider the following system of functional equations,
where 𝑥 ∈ [0, 1]:

𝑢 (𝑥) = sup
𝑦∈R

{𝑒
−(𝑥+|𝑦|)

+ arctan(1
2

(𝑥 +
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢 (
󵄨
󵄨
󵄨
󵄨
sin (𝑥 + 𝑦)󵄨󵄨󵄨

󵄨
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
V (󵄨󵄨󵄨
󵄨
sin (𝑥 + 𝑦)󵄨󵄨󵄨

󵄨
)
󵄨
󵄨
󵄨
󵄨
) )} ,

V (𝑥) = sup
𝑦∈R

{𝑒
−(𝑥+|𝑦|)

+ arctan(1
2

(𝑥 +
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢 (

1

1 +
󵄨
󵄨
󵄨
󵄨
sin (𝑥 + 𝑦)󵄨󵄨󵄨

󵄨

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

V(
1

1 +
󵄨
󵄨
󵄨
󵄨
sin (𝑥 + 𝑦)󵄨󵄨󵄨

󵄨

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

))} .

(17)

This system appears in dynamic programming, where the
state space is 𝑆 = [0, 1] and the decision space is𝐷 = R.

Notice that the system (17) is a particular case of (7),
where 𝑆 = [0, 1], 𝐷 = R, 𝑔 : [0, 1] × R → R is defined
as 𝑔(𝑥, 𝑦) = 𝑒−(𝑥+|𝑦|), 𝛼 : [0, 1] → [0, 1] is given by 𝛼(𝑡) =
1/(1+ 𝑡), 𝑇 : [0, 1] ×R → [0, 1] is 𝑇(𝑥, 𝑦) = |sin(𝑥+𝑦)|, and
𝐹 : [0, 1] ×R ×R ×R → R is defined as

𝐹 (𝑥, 𝑦, 𝑡, 𝑠) = arctan(1
2

(𝑥 +
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ |𝑡| + |𝑠|)) . (18)

Notice that |𝑔(𝑥, 𝑦)| ≤ 1 and |𝐹(𝑥, 𝑦, 0, 0)| =

|arctan((1/2)(𝑥 + |𝑦|))| ≤ 𝜋/2.
Therefore, assumption (i) of Theorem 4 is satisfied.
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On the other hand, for 𝑥 ∈ [0, 1] and 𝑦, 𝑡, 𝑠, 𝑡
1
, 𝑠
1
∈ R, we

have
󵄨
󵄨
󵄨
󵄨
𝐹 (𝑥, 𝑦, 𝑡, 𝑠) − 𝐹 (𝑥, 𝑦, 𝑡

1
, 𝑠
1
)
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

arctan(1
2

(𝑥 +
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ |𝑡| + |𝑠|))

− arctan(1
2

(𝑥 +
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑡
1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑠
1

󵄨
󵄨
󵄨
󵄨
))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ arctan(
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

1

2

(|𝑡| −
󵄨
󵄨
󵄨
󵄨
𝑡
1

󵄨
󵄨
󵄨
󵄨
+ |𝑠| −

󵄨
󵄨
󵄨
󵄨
𝑠
1

󵄨
󵄨
󵄨
󵄨
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

)

≤ arctan(1
2

(
󵄨
󵄨
󵄨
󵄨
|𝑡| −

󵄨
󵄨
󵄨
󵄨
𝑡
1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
|𝑠| −

󵄨
󵄨
󵄨
󵄨
𝑠
1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
))

≤ arctan(1
2

(
󵄨
󵄨
󵄨
󵄨
𝑡 − 𝑡
1

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑠 − 𝑠
1

󵄨
󵄨
󵄨
󵄨
))

≤ arctan(1
2

(2max {󵄨󵄨󵄨
󵄨
𝑡 − 𝑡
1

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑠 − 𝑠
1

󵄨
󵄨
󵄨
󵄨
}))

= arctan (max {󵄨󵄨󵄨
󵄨
𝑡 − 𝑡
1

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝑠 − 𝑠
1

󵄨
󵄨
󵄨
󵄨
}) ,

(19)

where we have used the nondecreasing character of the
function 𝜑(𝑡) = arctan(𝑡) and the fact that |arctan 𝑡 −
arctan 𝑠| ≤ arctan(|𝑡 − 𝑠|), for any 𝑡, 𝑠 ∈ R

+
.

It is easily seen that 𝜑(𝑡) = arctan(𝑡), for 𝑡 ≥ 0, is
a comparison function and, therefore, assumption (ii) of
Theorem 4 is satisfied.

By Theorem 4, the system (17) has a unique solution
(𝑢
0
, V
0
) ∈ 𝐵([0, 1]) × 𝐵([0, 1]).
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