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The interest in using fractional mask operators based on fractional calculus operators has grown for image denoising. Denoising
is one of the most fundamental image restoration problems in computer vision and image processing. This paper proposes an
image denoising algorithm based on convex solution of fractional heat equation with regularized fractional power parameters.The
performances of the proposed algorithms were evaluated by computing the PSNR, using different types of images. Experiments
according to visual perception and the peak signal to noise ratio values show that the improvements in the denoising process are
competent with the standard Gaussian filter and Wiener filter.

1. Introduction

Fractional calculus is an area of mathematical analysis; it
generalized the ideas of integer order differentiation and 𝑛-
fold integration. The fractional derivatives have a history of
more than three centuries. However, the fractional calculus
was seen as a pure mathematical branch without real life
applications for a certain period of time until few decades
ago when it was found that the fractional calculus was not
only useful but also powerful [1–4]. During the last decade,
manymathematicians havemuch different contribution to all
fields of science. The advantages of fractional differentiations
become apparent in signal processing, modeling, and control
as well as in the description of properties of liquids, gases, and
rocks and in many other applications [1, 5–7].

The fractional calculus in the field of image processing
has received considerable attention in various image pro-
cessing applications such as texture enhancement and image
denoising [8–16]. Image denoising refers to the process of
restoring a digital image that has been contaminated by
any type of noise. It is an important preprocessing task for
segmentation, feature extraction, texture analysis, and other
image processing applications. Noise, arising from avariety of
sources, is inherent to all electronic image sensors and the
electronic components in the image environment. In additive

white Gaussian noise, all the image pixels deviate from their
original values following the bell-shaped curve distribution
(Gaussian curve).

Fractional integral is extensively used in many image
denoising algorithms. References [10, 12] have proposed a
fractional integral denoising algorithm and the implementa-
tion of fractional integral filter using fractional integralmasks
on eight directions, based on fractional calculus Riemann-
Liouville definition. The results in [14] showed that the
fractional integral mask in the Grünwald-Letnikov sense
achieved fine-tuning of image denoising. It has been proved
in [11] that the generalized Srivastava-Owa fractional integral
operator algorithm not only enhances the quality of filtered
image but also reserves the textures and edges present in the
image.

The class of fractional heat equation is studied widely
in the recent years. It included various types of special
equations such as heat conduction equation, fractal heat
transfer, fractional subdiffusion equation, and fractional heat
equation of porous medium [16–18].

The effectiveness of fractional heat equation makes it
an attractive work for many researchers [19–21]. All these
works used time fractional differential equation; however, no
previous works have been done using time-space fractional
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heat equation for image denoising. The partial heat dif-
ferential equations have played a significant role in image
enhancements. Heat equation is called isotropic diffusion
process, which is extremely used for smoothing entire images
uniformly like a Gaussian filter.

In this paper, we extend our previous work from [22]
and utilize the concept of the fractional heat diffusion (FHD)
for image denoising, which is the main contribution of
this work. The denoising performance based on convex
solution of fractional heat equation ismeasured by employing
experiments according to standard of visual perception and
by using peak signal to noise ratio (PSNR).

This paper is organized as follows. In Section 2, we
introduce the concept of convex solution of the fractional
heat diffusion. In Section 3, construction of fractional masks
is presented. The experimental results and comparison with
other works are shown in Sections 4 and 5, respectively.
Finally, conclusion is presented in Section 6.

2. Convex Solution of the Fractional
Heat Diffusion

In this section, we proceed to derive a mathematical model
that utilizes the convex solution of the fractional heat dif-
fusion for image denoising. In our previous work [22], we
studied the maximal solution of time-space fractional heat
equation in a complex domain:
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and 𝑢 : 𝐽 × 𝑈 → 𝑈. The source of the heat is in the unit disk
in neighborhood of the origin.

Lemma 1 (see [22]). Let 𝑢(𝑡, 𝑧) be convex function in the unit
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3. Construction of FHD Masks

Using the fractional operators defined in Section 2, we pro-
ceed to construct FHDmasks, which is themain contribution
of this work. Our aim is to utilize (2) to formulate our

fractional masks.The nonzero values of corresponding terms
in formula (2) are
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The coefficients of two-dimension FHD masks can be
obtained as an infinite series using (3) in eight directions:
0∘, 45∘, 90∘, 135∘, 180∘, 225∘, 270∘, and 315∘ (Figure 1). The
technical viewpoint of this work is based on splitting the
whole corrupted image to nonoverlapping blocks. The filter
scheme of FHD approach is based on direct processing for
discrete pixels, by moving the FHD mask window pixel by
pixel, whichwill remove the noise from the corrupted images,
which is the main aim of this study. The final new filtered
image based on FHD can be obtained by the summation of
all eight convolution results of the magnitudes for each filter.
The complexity of the denoising algorithms depends mainly
on the masks size, and to accomplish lower complexity, the
size of the masks should be small.

4. Experiments and Discussion

In this section, we demonstrate the denoising performance
of FHDmasks. Performance tests for the proposed algorithm
were implemented using MATLAB R2013a and Windows 7.
The testing images used are as follows:

(i) grayscale images “Boat,” “Lena,” and “Taj”;
(ii) color images “Pepper” and “House.”

The images are degraded with Gaussian noise with different
standard deviation 𝜎 values (15, 20, and 25). The values of
the fractional powers of the proposed masks are defined with
the range of 0 < 𝛼 ≤ 1 and 𝛾 < 1. The performance of
FHD algorithm, Gaussian filter, and Wiener filter has been
evaluated by using PSNR, which is defined via the mean
squared error (MSE) [11].

There are two fractional power parameters in our algo-
rithm 𝛼 and 𝛾. In Figure 2, we first display the behavior of
PSNR for the values of 𝛼, ranging from 0.1 to 1, at 𝛾 =
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Figure 1: Fractional heat masks on eight directions: 0∘, 45∘, 90∘, 135∘, 180∘, 225∘, 270∘, and 315∘.

0.9, using “Boat” corrupted by Gaussian noise with standard
deviation 𝜎 of 25. When the value of 𝛼 is small, this leads to
small value of PSNR of the denoised image, while for large
value of 𝛼, PSNR drops dramatically. Therefore, the trade-off
between 𝛼 and PSNR is required to remove noise. We should
choose the optimal value of 𝛼 = 0.5. Figure 3 shows the
behavior of the PSNR for values of 𝛾, varying from 0.1 to 1, at
𝛼 = 0.5.The trade-off between 𝛾 and PSNR is chosen, 𝛾 = 0.9.
When the value of 𝛾 is an integer number, this method results
in lower value of PSNR. These values remain constant at 5.6
for all values of 𝛼, as shown in Figure 4, while high value of
PSNR is achieved when 𝛾 is fractional number.

Figures 5 and 6 show the experimental results of all
images. From the human visual system effect, we can con-
clude that the proposed FHD denoising algorithm has good
denoising performance for all testing images.

The aim of this study is to ensure that our proposed algo-
rithm removes noise effectively from the corrupted images by
comparing our algorithm with two standard filters for image
denoising, which are the standard Gaussian filter andWiener
filter.

Table 1 shows the numerical evidence of the efficiency
of the proposed FHD algorithm with different values of
𝜎 for two sets of standard images (grayscale and color
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Figure 2: Choice of fractional 𝛼 at 𝛾 = 0.9, for “Boat” corrupted by
Gaussian noise with 𝜎 = 25.
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Figure 3: Choice of fractional 𝛾 at 𝛼 = 0.5, for “Boat” corrupted by
Gaussian noise with 𝜎 = 25.

images). The visual experiments illustrate that the proposed
FHD algorithm achieves the maximum PSNR value over
Gaussian smoothing filter and Wiener filter, although the
PSNR rate is slightly higher than Gaussian filter and Wiener
filter. The reason is due to the fact that the enhancing of
the fractional operators only affects the pixel values that
are changing sharply (high frequency of image), while no
significant changes occur in the low frequency of image.

5. Comparison with Other Methods

To further verify the performance of our proposed algorithm,
Table 2 shows the comparison of the experimental results of
the proposed algorithm with other denoising algorithms for
“Boat” image with the noise standard deviation 𝜎 values of 15,
20, and 25. All comparisons are made on the basis of PSNR.

To our knowledge, no previous studies have been done
using FHD for image denoising. Therefore, we compare our
study with those which employed other methods. For using
linear heat equation, Cuesta et al. in [23] have developed
a novel approach for image denoising, with time fractional
differential equation, while in our proposed algorithm we
used time-space fractional differential equation that utilizes
the convex solution of FHD for image denoising.

Hu et al. in [10] proposed a novel fractional integral
image denoising algorithm, based on fractional calculus
Riemann-Liouville definition for image denoising. However,
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Figure 4: Choice of integer 𝛼 at 𝛾 = 1, for “Boat” corrupted by
Gaussian noise with 𝜎 = 25.

Table 1: PSNR of denoised images with different Gaussian noise
values.

PSNR Noisy image Gaussian smoothing Wiener filter FHD
Image Grayscale “Lena”
𝜎 = 15 24.65 28.25 29.87 31.72
𝜎 = 20 22.15 25.92 29.62 30.03
𝜎 = 25 20.25 24.02 27.65 28.59
Image Grayscale “Taj”
𝜎 = 15 24.81 28.43 30.28 30.35
𝜎 = 20 22.35 26.01 28.78 29.04
𝜎 = 25 20.48 24.16 27.24 27.85
Image Grayscale “Boat”
𝜎 = 15 24.67 28.36 30.77 31.20
𝜎 = 20 22.20 25.93 28.40 29.70
𝜎 = 25 20.30 24.03 27.56 28.40
Image Color “Pepper”
𝜎 = 15 24.79 28.51 28.57 28.88
𝜎 = 20 22.36 26.08 27.72 27.99
𝜎 = 25 20.48 24.17 26.79 27.06
Image Color “House”
𝜎 = 15 24.68 28.34 30.63 31.18
𝜎 = 20 22.21 25.92 29.98 29.73
𝜎 = 25 20.32 24.02 28.24 28.36

[11] proposed an image denoising algorithm called general-
ized fractional integral filter based on generalized Srivastava-
Owa fractional integral operator.

Table 2 provides an overall view of the performance
of different methods, although these methods have used
different images with different noise standard deviation 𝜎
values. For testing images “Boat,” the values of PSNR for FHD
are slightly larger than of the three methods. The proposed
algorithms for the image denoising effectively remove noise.
The good PSNR of the proposed FHD algorithm acts as one
of the important parameters in judging its performance.



Abstract and Applied Analysis 5

(a) (b) (c) (d)

Figure 5: Denoising results, (a) original image, (b) corrupted image with Gaussian noise with 𝜎 value of 15, (c) Gaussian smoothing filter,
and (d) FHD filter.



6 Abstract and Applied Analysis

(a) (b) (c) (d)

Figure 6: Denoising results, (a) original image, (b) corrupted image with additive white Gaussian noise with 𝜎 value of 25, (c) Gaussian
smoothing filter, and (d) FHD filter.
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Table 2: Comparison of the experimental results for the standard image “Boat” with other methods.

Noise standard deviation 𝜎 [23]
PSNR (dB)

[10]
PSNR (dB)

[11]
PSNR (dB) FHD filter PSNR (dB)

15 14.88 29.20 29.93 31.20
20 13.50 27.91 28.01 29.70
25 12.52 26.97 27.35 28.40

6. Conclusion

A new image denoising filter based on convex solution of
fractional heat equation with regularized fractional power
parameters is introduced to remove Gaussian noise. Both
visual perception and PSNR are used to evaluate the denois-
ing performance of proposed FHD algorithm. Experiments
demonstrate that the improvements achieved in PSNR are
competent with the Gaussian smoothing filter and Wiener
filter. We analyzed the influence of parameters 𝛼 and 𝛾 for
images corrupted by Gaussian noise with standard deviation
𝜎 value of 25 on the performance of PSNR. An additional
interesting property of our proposed algorithms is the char-
acteristic of the denoising filter that can be adjusted easily
by changing the two values of 𝛼 and 𝛾 of the proposed
masks. Future works involve extending the proposedmethod
to be done for texture enhancement for digital images using
fractional heat equation.
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