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We study the existence and approximation of a solution for a system of hierarchical variational inclusion problems inHilbert spaces.
In this study, we use Maingé’s approach for finding the solutions of the system of hierarchical variational inclusion problems. Our
result in this paper improves and generalizes some known corresponding results in the literature.

1. Introduction

Let 𝐻 be a real Hilbert space with inner product and norm
being ⟨⋅, ⋅⟩ and ‖ ⋅ ‖, respectively, and let 𝐶 be a nonempty
closed convex subset of 𝐻. A mapping 𝑇 : 𝐻 → 𝐻 is called
nonexpansive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻. (1)

We use 𝐹(𝑇) to denote the set of fixed points of 𝑇; that is,
𝐹(𝑇) = {𝑥 ∈ 𝐻 : 𝑇𝑥 = 𝑥}. It is well known that 𝐹(𝑇) is a
closed convex set, if 𝑇 is nonexpansive mappings.

A variational inclusion problem [1–3] is the problem of
finding a point 𝑢 ∈ 𝐻 such that

𝜃 ∈ 𝐴 (𝑢) + 𝑀 (𝑢) , (2)

where𝐴 : 𝐻 → 𝐻 is a single-valued nonlinear mapping and
𝑀 : 𝐻 → 2

𝐻 is a multivalued mapping. We useΩ to denote
the set of solutions of the variational inclusion (2).

On the other hand, a hierarchical fixed point problem [4–
11] is the problem of finding a point 𝑥∗ ∈ 𝐹(𝑇) such that

⟨𝐴𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) . (3)

If the set 𝐹(𝑇) is replaced by the solution set of the variational
inequality, then the hierarchical fixed point problems are
called hierarchical variational inequality problems or hierar-
chical optimization problems.Many problems inmathematics,
for example, the signal recovery [12], the power control
problem [13], and the beamforming problem [14], can be
considered in the framework of this kind of the hierarchical
variational inequality problems.

Recently, Chang et al. [15] introduced bilevel hierarchical
variational inclusion problems; that is, find (𝑥

∗
, 𝑦
∗
) ∈ Ω

1
×

Ω
2
such that, for given positive real numbers 𝜌 and 𝜂, the

following inequalities hold:

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝜂𝐹 (𝑥
∗
) + 𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ Ω

2
,

(4)

where𝐹,𝐴
1
, 𝐴
2
: 𝐻 → 𝐻 aremappings,𝑀

1
,𝑀
2
: 𝐻 → 2

𝐻

are multivalued mappings, and Ω
𝑖
is the set of solutions to

variational inclusion problem (2) with 𝐴 = 𝐴
𝑖
, 𝑀 = 𝑀

𝑖
for

𝑖 = 1, 2. They solved the convex programming problems and
quadratic minimization problems by using Maingés scheme.
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In this paper, we consider the following system of hierar-
chical variational inclusion problem: find (𝑥

∗
, 𝑦
∗
, 𝑧
∗
) ∈ Ω

1
×

Ω
2
× Ω
3
, such that, for given positive real numbers 𝜌, 𝜂, and

𝜉, the following inequalities hold:

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝜂𝐹 (𝑧
∗
) + 𝑦
∗
− 𝑧
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ Ω

2
,

⟨𝜉𝐹 (𝑥
∗
) + 𝑧
∗
− 𝑥
∗
, 𝑧 − 𝑧

∗
⟩ ≥ 0, ∀𝑧 ∈ Ω

3
.

(5)

Some special cases of the system of hierarchical variational
inclusion problem (5) are as follows.

(I) If𝑀
𝑖
=0,𝐴

𝑖
=𝐼−𝑇

𝑖
, where 𝑇

𝑖
: 𝐻 → 𝐻 is a nonlinear

mapping for each 𝑖 = 1, 2, 3, in (5), then Ω
𝑖

=

𝐹(𝑇
𝑖
) and the system of hierarchical variational inclu-

sion problem (5) reduces to the following system of
hierarchical optimization problem: find (𝑥

∗
, 𝑦
∗
, 𝑧
∗
) ∈

𝐹(𝑇
1
) × 𝐹(𝑇

2
) × 𝐹(𝑇

3
), such that

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇

1
) ,

⟨𝜂𝐹 (𝑧
∗
) + 𝑦
∗
− 𝑧
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐹 (𝑇

2
) ,

⟨𝜉𝐹 (𝑥
∗
) + 𝑧
∗
− 𝑥
∗
, 𝑧 − 𝑧

∗
⟩ ≥ 0, ∀𝑧 ∈ 𝐹 (𝑇

3
) ,

(6)

which was studied by Li [16].
(II) If 𝑇

𝑖
= 𝑃
𝐾𝑖

for each 𝑖 = 1, 2, 3, where 𝑃
𝐾𝑖

is the
metric projection from 𝐻 onto a nonempty closed
convex subset 𝐾

𝑖
in (6), then it is clear that the

Ω
𝑖

= 𝐹(𝑇
𝑖
) = 𝐾

𝑖
and the system of hierarchical

optimization problem (6) reduces to the following
system of optimization problem: find (𝑥

∗
, 𝑦
∗
, 𝑧
∗
) ∈

𝐾
1
× 𝐾
2
× 𝐾
3
such that

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐾

1
,

⟨𝜂𝐹 (𝑧
∗
) + 𝑦
∗
− 𝑧
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐾

2
,

⟨𝜉𝐹 (𝑥
∗
) + 𝑧
∗
− 𝑥
∗
, 𝑧 − 𝑧

∗
⟩ ≥ 0, ∀𝑧 ∈ 𝐾

3
.

(7)

(III) If 𝐾
1

= 𝐾
2

= 𝐾
3
, then the system of optimization

problem (7) reduces to the following system of varia-
tional inequality problem: find (𝑥

∗
, 𝑦
∗
, 𝑧
∗
) ∈ 𝐾
1
×𝐾
1
×

𝐾
1
such that

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐾

1
,

⟨𝜂𝐹 (𝑧
∗
) + 𝑦
∗
− 𝑧
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐾

1
,

⟨𝜉𝐹 (𝑥
∗
) + 𝑧
∗
− 𝑥
∗
, 𝑧 − 𝑧

∗
⟩ ≥ 0, ∀𝑧 ∈ 𝐾

1
.

(8)

(IV) If 𝜉 = 0, 𝜌, 𝜂 > 0,Ω
1
= Ω
3
, and 𝑥

∗
= 𝑧
∗ in (5) then the

system of hierarchical variational inclusion problem
(5) reduces to the following bilevel hierarchical varia-
tional inclusion problem: find (𝑥

∗
, 𝑦
∗
) ∈ Ω
1
×Ω
2
such

that

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝜂𝐹 (𝑥
∗
) + 𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ Ω

2
,

(9)

which was studied by Chang et al. [15].

(V) In (9), if 𝑀
𝑖
= 0, 𝐴

𝑖
= 𝐼 − 𝑇

𝑖
, for each 𝑖 = 1, 2, then

bilevel hierarchical variational inclusion problem (9)
reduces to the following bilevel hierarchical optimiza-
tion problem: find (𝑥

∗
, 𝑦
∗
) ∈ 𝐹(𝑇

1
) × 𝐹(𝑇

2
) such that

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇

1
) ,

⟨𝜂𝐹 (𝑥
∗
) + 𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐹 (𝑇

2
) ,

(10)

which was studied by Maingé [17] and Kraikaew and
Saejung [18].

(VI) In (10), if 𝑇
𝑖

= 𝑃
𝐾𝑖

for each 𝑖 = 1, 2, then bilevel
hierarchical optimization problem (10) reduces to the
following problem [19–21]: find (𝑥

∗
, 𝑦
∗
) ∈ 𝐾

1
× 𝐾
2

such that

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐾

1
,

⟨𝜂𝐹 (𝑥
∗
) + 𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐾

2
.

(11)

(VII) In (11), if 𝐾
1
= 𝐾
2
then the problem (11) reduces to

the following problem: find (𝑥
∗
, 𝑦
∗
) ∈ 𝐾

1
× 𝐾
1
such

that

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐾

1
,

⟨𝜂𝐹 (𝑥
∗
) + 𝑦
∗
− 𝑥
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ 𝐾

1
.

(12)

(VIII) In (5), if 𝜉 = 𝜂 = 0, 𝜌 > 0, Ω
1

= Ω
2

= Ω
3
,

and 𝑥
∗

= 𝑦
∗

= 𝑧
∗ then the system of hierarchical

variational inclusion problem (5) reduces to the fol-
lowing hierarchical variational inclusion problem: find
𝑥
∗
∈ Ω
1
such that

⟨𝐹 (𝑦
∗
) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
. (13)

(IX) In (13), if 𝑀
1
= 0, 𝐴

𝑖
= 𝐼 − 𝑇

1
then the hierarchical

variational inclusion problem (13) reduces to the
following hierarchical fixed point problem: find 𝑥

∗
∈

𝐹(𝑇
1
) such that

⟨𝐹 (𝑦
∗
) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇

1
) . (14)

(X) In (15), if 𝑇
1

= 𝑃
𝐾1

then the hierarchical fixed
point problem (15) reduces to the following classic
variational inequality problem: find 𝑥

∗
∈ 𝐾
1
such that

⟨𝐹 (𝑦
∗
) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐾

1
. (15)

Motivated and inspired by Chang et al. [15], we introduce
the system of a hierarchical variational inclusion problem
(5) and investigate a more general variant of the scheme
proposed by Chang et al. [15] to solve the system of a
hierarchical variational inclusion problem. Our analysis and
method allow us to prove the existence and approximation of
solutions to the system of a hierarchical variational inclusion
problem (5). The results presented in this paper extend and
improve the results of Chang et al. [15],Maingé [17], Kraikaew
and Saejung [18], and some authors.
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2. Preliminaries

This section collects some definitions and lemmas which can
be used in the proofs for the main results in the next section.
Some of them are known; others are not hard to derive. We
use → for strong convergence and⇀ for weak convergence.

Definition 1. Let 𝐴, 𝑇, 𝐹 : 𝐻 → 𝐻 be a mapping and let
𝑀 : 𝐻 → 2

𝐻 be a multivalued mapping.

(1) A mapping 𝑇 is called nonexpansive if
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻. (16)

(2) A mapping 𝑇 is called quasinonexpansive if 𝐹(𝑇) ̸= 0

and
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑝

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑝

󵄩󵄩󵄩󵄩 , ∀𝑥 ∈ 𝐻, 𝑝 ∈ 𝐹 (𝑇) . (17)

It should be noted that 𝑇 is quasinonexpansive if and
only if for all 𝑥 ∈ 𝐻, 𝑝 ∈ 𝐹(𝑇)

⟨𝑥 − 𝑇𝑥, 𝑥 − 𝑝⟩ ≥
1

2
‖𝑥 − 𝑇𝑥‖

2
. (18)

(3) A mapping 𝑇 is called strongly quasinonexpansive if 𝑇
is quasinonexpansive and 𝑥

𝑛
− 𝑇𝑥
𝑛

→ 0, whenever
{𝑥
𝑛
} is a bounded sequence in𝐻 and ‖𝑥

𝑛
−𝑝‖−‖𝑇𝑥

𝑛
−

𝑝‖ → 0 for some 𝑝 ∈ 𝐹(𝑇).
(4) Amapping𝐹 is called𝜇-Lipschitzian if there exists𝛼 >

0 such that
󵄩󵄩󵄩󵄩𝐹𝑥 − 𝐹𝑦

󵄩󵄩󵄩󵄩 ≤ 𝜇
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻. (19)

(5) A mapping 𝐹 is called 𝑟-strongly monotone if there
exists 𝑟 > 0 such that

⟨𝐹𝑥 − 𝐹𝑦, 𝑥 − 𝑦⟩ ≥ 𝑟
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻. (20)

It is easy to prove that if 𝐹 : 𝐻 → 𝐻 is a 𝜇-
Lipschitzian and 𝑟-strongly monotone mapping and
if 𝜌 ∈ (0, 2𝑟/𝜇

2
), then the mapping 𝐼 − 𝜌𝐹 is a

contraction.
(6) A mapping 𝐴 is called 𝛼-inverse-strongly monotone if

there exists 𝜇 > 0 such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑥 − 𝑦⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2
, ∀𝑥, 𝑦 ∈ 𝐻. (21)

(7) Amultivaluedmapping𝑀 is calledmonotone if for all
𝑥, 𝑦 ∈ 𝐻, 𝑢 ∈ 𝑀𝑥 and V ∈ 𝑀𝑦 imply that

⟨𝑢 − V, 𝑥 − 𝑦⟩ ≥ 0. (22)

(8) A multivalued mapping 𝑀 is called maximal mono-
tone if it is monotone and for any (𝑥, 𝑢) ∈ 𝐻 × 𝐻,

⟨𝑢 − V, 𝑥 − 𝑦⟩ ≥ 0 (23)

for every (𝑦, V) ∈ Graph(𝑀) (the graph of mapping
𝑀) implies that 𝑢 ∈ 𝑀𝑥.

Lemma2 (see [22]). Let𝐴 : 𝐻 → 𝐻 be an𝛼-inverse-strongly
monotone mapping. Then

(1) 𝐴 is an 1/𝛼-Lipschitz continuous and monotone map-
ping;

(2) for any constant 𝜆 > 0, one has
󵄩󵄩󵄩󵄩(𝐼 − 𝜆𝐴)𝑥 − (𝐼 − 𝜆𝐴)𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
+ 𝜆 (𝜆 − 2𝛼)

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩

2
;

(24)

(3) if 𝜆 ∈ (0, 2𝛼], then 𝐼 − 𝜆𝐴 is a nonexpansive mapping,
where 𝐼 is the identity mapping on𝐻.

Lemma 3. Let 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶 be any points. Then one has
the following.

(1) That 𝑧 = 𝑃
𝐶
[𝑥] if and only if there holds the relation:

⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0, ∀𝑦 ∈ 𝐶. (25)

(2) That 𝑧 = 𝑃
𝐶
[𝑥] if and only if there holds the relation:

‖𝑥 − 𝑧‖
2
≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑦 − 𝑧

󵄩󵄩󵄩󵄩

2
, ∀𝑦 ∈ 𝐶. (26)

(3) There holds the relation:

⟨𝑃
𝐶 [𝑥] − 𝑃

𝐶
[𝑦] , 𝑥 − 𝑦⟩ ≥

󵄩󵄩󵄩󵄩𝑃𝐶 [𝑥] − 𝑃
𝐶
[𝑦]

󵄩󵄩󵄩󵄩

2
,

∀𝑥, 𝑦 ∈ 𝐻.

(27)

Consequently, 𝑃
𝐶
is nonexpansive and monotone.

Definition 4. Let 𝑀 : 𝐻 → 2
𝐻 be a multivalued maximal

monotone mapping. Then the mapping 𝐽
𝑀,𝜆

: 𝐻 → 𝐻

defined by

𝐽
𝑀,𝜆 (𝑢) = (𝐼 + 𝜆𝑀)

−1
(𝑢) , 𝑢 ∈ 𝐻 (28)

is called the resolvent operator associated with 𝑀, where 𝜆 is
any positive number and 𝐼 is the identity mapping.

Proposition 5 (see [22]). Let𝑀 : 𝐻 → 2
𝐻 be a multivalued

maximal monotone mapping, and let 𝐴 : 𝐻 → 𝐻 be
an 𝛼-inverse-strongly monotone mapping. Then the following
conclusions hold.

(1) The resolvent operator 𝐽
𝑀,𝜆

associated with𝑀 is single-
valued and nonexpansive for all 𝜆 > 0.

(2) The resolvent operator 𝐽
𝑀,𝜆

is 1-inverse-strongly mono-
tone; that is,

󵄩󵄩󵄩󵄩𝐽𝑀,𝜆(𝑥) − 𝐽
𝑀,𝜆

(𝑦)
󵄩󵄩󵄩󵄩

2
≤ ⟨𝑥 − 𝑦, 𝐽

𝑀,𝜆 (𝑥) − 𝐽
𝑀,𝜆

(𝑦)⟩ ,

∀𝑥, 𝑦 ∈ 𝐻.

(29)

(3) 𝑢 ∈ 𝐻 is a solution of the variational inclusion (2) if
and only if 𝑢 = 𝐽

𝑀,𝜆
(𝑢 − 𝜆𝐴𝑢), for all 𝜆 > 0; that is, 𝑢

is a fixed point of the mapping 𝐽
𝑀,𝜆

(𝐼 − 𝜆𝐴). Therefore
one has

Ω = 𝐹 (𝐽
𝑀,𝜆 (𝐼 − 𝜆𝐴)) , ∀𝜆 > 0, (30)
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where Ω is the set of solutions of variational inclusion
problem (2).

(4) If 𝜆 ∈ (0, 2𝛼], then Ω is a closed convex subset in𝐻.

Lemma 6 (see [23]). For 𝑥, 𝑦 ∈ 𝐻 and 𝜔 ∈ (0, 1), the
following statements hold:

(1) ‖𝑥 + 𝑦‖
2
≤ ‖𝑥‖

2
+ 2⟨𝑦, 𝑥 + 𝑦⟩;

(2) ‖(1−𝜔)𝑥+𝜔𝑦‖2 = (1−𝜔)‖𝑥‖
2
+𝜔‖𝑦‖

2
−𝜔(1−𝜔)‖𝑥−𝑦‖

2.

Lemma 7 (see [24]). Let {𝑎
𝑛
} be a sequence of real numbers,

and there exists a subsequence {𝑎
𝑚𝑗

} of {𝑎
𝑛
} such that 𝑎

𝑚𝑗
<

𝑎
𝑚𝑗+1

for all 𝑗 ∈ 𝑁, where 𝑁 is the set of all positive integers.
Then there exists a nondecreasing sequence {𝑛

𝑘
} of𝑁 such that

lim
𝑘→∞

𝑛
𝑘
= ∞ and the following properties are satisfied by

all (sufficiently large) number 𝑘 ∈ 𝑁:

𝑎
𝑛𝑘

≤ 𝑎
𝑛𝑘+1

, 𝑎
𝑘
≤ 𝑎
𝑛𝑘+1

. (31)

In fact, 𝑛
𝑘
is the largest number 𝑛 in the set {1, 2, . . . , 𝑘} such

that 𝑎
𝑛
< 𝑎
𝑛+1

holds.

Lemma 8 (see [18]). Let {𝑎
𝑛
} ⊂ [0,∞), {𝛼

𝑛
} ⊂ [0, 1), {𝑏

𝑛
} ⊂

(−∞, +∞), and ℎ ∈ [0, 1) be such that

(1) {𝑎
𝑛
} is a bounded sequence;

(2) 𝑎
𝑛+1

≤ (1−𝛼
𝑛
)
2
𝑎
𝑛
+2𝛼
𝑛
ℎ√𝑎
𝑛√𝑎
𝑛+1

+𝛼
𝑛
𝑏
𝑛
, for all 𝑛 ≥ 1;

(3) whenever {𝑎
𝑛𝑘
} is a subsequence of {𝑎

𝑛
} satisfying

lim inf
𝑘→∞

(𝑎
𝑛𝑘+1

− 𝑎
𝑛𝑘
) ≥ 0, (32)

it follows that lim sup
𝑘→∞

𝑏
𝑛𝑘

≤ 0;
(4) lim

𝑛→∞
𝛼
𝑛
= 0 and ∑

∞

𝑛=1
𝛼
𝑛
= ∞.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 9 (see [15]). Let 𝑀 : 𝐻 → 2
𝐻 be a multivalued

maximal monotonemapping, let𝐴 : 𝐻 → 𝐻 be an 𝛼-inverse-
strongly monotone mapping, and let Ω be the set of solutions
of variational inclusion problem (2) and Ω ̸= 0. Then the
following statements hold.

(1) If 𝜆 ∈ (0, 2𝛼], then the mapping 𝐾 : 𝐻 → 𝐻 defined
by

𝐾 := 𝐽
𝑀,𝜆 (𝐼 − 𝜆𝐴) (33)

is quasinonexpansive, where 𝐼 is the identity mapping
and 𝐽
𝑀,𝜆

is the resolvent operator associated with𝑀.
(2) The mapping 𝐼 − 𝐾 : 𝐻 → 𝐻 is demiclosed at zero;

that is, for any sequence {𝑥
𝑛
} ⊂ 𝐻, if 𝑥

𝑛
⇀ 𝑥 and

(𝐼 − 𝐾)𝑥
𝑛
→ 0, then 𝑥 = 𝐾𝑥.

(3) For any 𝛽 ∈ (0, 1), the mapping 𝐾
𝛽
defined by

𝐾
𝛽
= (1 − 𝛽) 𝐼 + 𝛽𝐾 (34)

is a strongly quasinonexpansive mapping and 𝐹(𝐾
𝛽
) =

𝐹(𝐾).
(4) 𝐼 − 𝐾

𝛽
, 𝛽 ∈ (0, 1) is demiclosed at zero.

3. Main Results

Throughout this section, we always assume that the following
conditions are satisfied:

(C1) 𝑀
𝑖
: 𝐻 → 2

𝐻 is a multivalued maximal monotone
mapping, 𝐴

𝑖
: 𝐻 → 𝐻 is an 𝛼

𝑖
-inverse-strongly

monotone mapping, and Ω
𝑖
is the set of solutions

to variational inclusion problem (2) with 𝐴 = 𝐴
𝑖
,

𝑀 = 𝑀
𝑖
, andΩ

𝑖
̸= 0, for all 𝑖 = 1, 2, 3;

(C2) 𝐾
𝑖
and 𝐾

𝑖,𝛽
, 𝛽 ∈ (0, 1), 𝑖 = 1, 2, 3, are the mappings

defined by

𝐾
𝑖
:= 𝐽
𝑀𝑖 ,𝜆

(𝐼 − 𝜆𝐴
𝑖
) , 𝜆 ∈ (0, 2𝛼

𝑖
] ,

𝐾
𝑖,𝛽

:= (1 − 𝛽) 𝐼 + 𝛽𝐾
𝑖
, 𝛽 ∈ (0, 1) ,

(35)

respectively.

Next, there are our main results.

3.1. An Existence Theorem

Theorem 10. Let 𝐴
𝑖
, 𝑀
𝑖
, Ω
𝑖
, 𝐾
𝑖
, and 𝐾

𝑖,𝛽
satisfy conditions

(C1) and (C2), and let 𝑓
𝑖
: 𝐻 → 𝐻 be contractions with a

contractive constant ℎ
𝑖
∈ (0, 1), for all 𝑖 = 1, 2, 3. Then there

exists a unique element (𝑥∗, 𝑦∗, 𝑧∗) ∈ Ω
1
× Ω
2
× Ω
3
such that

the following three inequalities are satisfied:

⟨𝑥
∗
− 𝑓
1
(𝑦
∗
) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝑦
∗
− 𝑓
2
(𝑧
∗
) , 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ Ω

2
,

⟨𝑧
∗
− 𝑓
3
(𝑥
∗
) , 𝑧 − 𝑧

∗
⟩ ≥ 0, ∀𝑧 ∈ Ω

3
.

(36)

Proof. The proof is a consequence of Banach’s contraction
principle but it is given here for the sake of completeness. By
Proposition 5 and Lemma 9, Ω

1
, Ω
2
, and Ω

3
are nonempty

closed and convex.Therefore themetric projection𝑃
Ω𝑖
is well

defined for each 𝑖 = 1, 2, 3.
Since 𝑓

𝑖
is a contraction mapping for each 𝑖 = 1, 2, 3, then

we have 𝑃
Ω𝑖
𝑓
𝑖
which is a contraction and also have

𝑃
Ω1

𝑓
1
∘ 𝑃
Ω2

𝑓
2
∘ 𝑃
Ω3

𝑓
3 (37)

which is a contraction. Hence there exists a unique element
𝑥
∗
∈ 𝐻 such that

𝑥
∗
= (𝑃
Ω1

𝑓
1
∘ 𝑃
Ω2

𝑓
2
∘ 𝑃
Ω3

𝑓
3
) 𝑥
∗
. (38)

Putting 𝑧
∗
= 𝑃
Ω3

𝑓
3
(𝑥
∗
) and 𝑦

∗
= 𝑃
Ω2

𝑓
2
(𝑧
∗
), then 𝑧

∗
∈ Ω
3
,

𝑦
∗
∈ Ω
2
, and 𝑥

∗
= 𝑃
Ω1

𝑓
1
(𝑦
∗
).

Suppose that there is an element (𝑥, 𝑦, 𝑧̂) ∈ Ω
1
×Ω
2
×Ω
3

such that the following three inequalities are satisfied:

⟨𝑥 − 𝑓
1
(𝑦) , 𝑥 − 𝑥⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝑦 − 𝑓
2 (𝑧̂) , 𝑦 − 𝑦⟩ ≥ 0, ∀𝑦 ∈ Ω

2
,

⟨𝑧̂ − 𝑓
3 (𝑥) , 𝑧 − 𝑧̂⟩ ≥ 0, ∀𝑧 ∈ Ω

3
.

(39)
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Then
𝑥 = 𝑃

Ω1
𝑓
1
(𝑦) ,

𝑦 = 𝑃
Ω2

𝑓
2 (𝑧̂) ,

𝑧̂ = 𝑃
Ω3

𝑓
3 (𝑥) .

(40)

Therefore
𝑥 = (𝑃

Ω1
𝑓
1
∘ 𝑃
Ω2

𝑓
2
∘ 𝑃
Ω3

𝑓
3
) 𝑥. (41)

This implies that 𝑥 = 𝑥
∗, 𝑦 = 𝑦

∗, and 𝑧̂ = 𝑧
∗. This completes

the proof.

3.2. A Convergence Theorem

Theorem 11. Let 𝐴
𝑖
, 𝑀
𝑖
, Ω
𝑖
, 𝐾
𝑖
, and 𝐾

𝑖,𝛽
satisfy conditions

(C1) and (C2), and let 𝑓
𝑖
: 𝐻 → 𝐻 be contractions with a

contractive constant ℎ
𝑖
∈ (0, 1), for all 𝑖 = 1, 2, 3. Let {𝑥

𝑛
},

{𝑦
𝑛
}, and {𝑧

𝑛
} be three sequences defined by

𝑥
0
, 𝑦
0
, 𝑧
0
∈ 𝐻,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑥
𝑛
+ 𝛼
𝑛
𝑓
1
(𝐾
2,𝛽

𝑦
𝑛
) ,

𝑦
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
2,𝛽

𝑦
𝑛
+ 𝛼
𝑛
𝑓
2
(𝐾
3,𝛽

𝑧
𝑛
) ,

𝑧
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
3,𝛽

𝑧
𝑛
+ 𝛼
𝑛
𝑓
3
(𝐾
1,𝛽

𝑥
𝑛
) ,

𝑛 = 0, 1, 2, . . . ,

(42)

where {𝛼
𝑛
} is a sequence in (0, 1) satisfying 𝛼

𝑛
→ 0 and

∑
∞

𝑛=0
𝛼
𝑛

= ∞. Then the sequences {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
}

generated to be (42) converge to 𝑥
∗, 𝑦∗, and 𝑧

∗, respectively,
where (𝑥

∗
, 𝑦
∗
, 𝑧
∗
) is the unique element in Ω

1
× Ω
2
× Ω
3

verifying (36).

Proof. (i) First we prove that sequences {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} are

bounded.
From Lemma 9, it follow that 𝐾

𝑖,𝛽
is strongly quasinon-

expansive and 𝐹(𝐾
𝑖,𝛽
) = 𝐹(𝐾

𝑖
) = Ω

𝑖
for each 𝑖 = 1, 2, 3. Since

𝑓
𝑖
is contraction with the coefficient ℎ

𝑖
for each 𝑖 = 1, 2, 3 and

𝑥
∗
∈ 𝐹(𝐾

1,𝛽
), 𝑦∗ ∈ 𝐹(𝐾

2,𝛽
), and 𝑧

∗
∈ 𝐹(𝐾

3,𝛽
), it follows that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝐾
1,𝛽

𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑓
1
(𝐾
2,𝛽

𝑦
𝑛
) − 𝑥
∗󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑓
1
(𝐾
2,𝛽

𝑦
𝑛
) − 𝑓
1
(𝑦
∗
)
󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓1 (𝑦
∗
) − 𝑥
∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼
𝑛
ℎ
1

󵄩󵄩󵄩󵄩󵄩
𝐾
2,𝛽

𝑦
𝑛
− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓1 (𝑦
∗
) − 𝑥
∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼
𝑛
ℎ
1

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓1 (𝑦
∗
) − 𝑥
∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼
𝑛
ℎ
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓1 (𝑦
∗
) − 𝑥
∗󵄩󵄩󵄩󵄩 ,

(43)

where ℎ = max{ℎ
1
, ℎ
2
, ℎ
3
}. Similarly, we can also compute

that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
∗󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩 + 𝛼
𝑛
ℎ
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓2 (𝑧
∗
) − 𝑦
∗󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
∗󵄩󵄩󵄩󵄩 ≤ (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩 + 𝛼
𝑛
ℎ
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓3 (𝑥
∗
) − 𝑧
∗󵄩󵄩󵄩󵄩 .

(44)

This implies that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛 (1 − ℎ)) [

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
∗󵄩󵄩󵄩󵄩]

+ 𝛼
𝑛 (1 − ℎ)

×

󵄩󵄩󵄩󵄩𝑓1 (𝑦
∗
) − 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑓2 (𝑧
∗
) − 𝑦
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑓3 (𝑥
∗
) − 𝑧
∗󵄩󵄩󵄩󵄩

1 − ℎ

≤ max {󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
∗󵄩󵄩󵄩󵄩 ,

(
󵄩󵄩󵄩󵄩𝑓1 (𝑦

∗
) − 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑓2 (𝑧
∗
) − 𝑦
∗󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑓3 (𝑥

∗
) − 𝑧
∗󵄩󵄩󵄩󵄩) × (1 − ℎ)

−1
} .

(45)

By induction, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
∗󵄩󵄩󵄩󵄩

≤ max {󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦0 − 𝑦
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑧0 − 𝑧
∗󵄩󵄩󵄩󵄩 ,

(
󵄩󵄩󵄩󵄩𝑓1 (𝑦

∗
) − 𝑥
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑓2 (𝑧
∗
) − 𝑦
∗󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑓3 (𝑥

∗
) − 𝑧
∗󵄩󵄩󵄩󵄩) × (1 − ℎ)

−1
} ,

(46)

for all 𝑛 ≥ 1.
Hence {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} are bounded. Consequently,

{𝐾
1,𝛽

𝑥
𝑛
}, {𝐾
2,𝛽

𝑦
𝑛
}, and {𝐾

3,𝛽
𝑧
𝑛
} are bounded.

(ii) Next we prove that for each 𝑛 ≥ 1 the following
inequality holds:

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

∗󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩

2
)

+ 2𝛼
𝑛
ℎ (

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
∗󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩)

+ 2𝛼
𝑛
(⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ ⟨𝑓
2
(𝑧
∗
) − 𝑦
∗
, 𝑦
𝑛+1

− 𝑦
∗
⟩

+ ⟨𝑓
3
(𝑥
∗
) − 𝑧
∗
, 𝑧
𝑛+1

− 𝑧
∗
⟩) .

(47)
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From (42) and Lemma 6, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛼

𝑛
)(𝐾
1,𝛽

𝑥
𝑛
− 𝑥
∗
) + 𝛼
𝑛
(𝑓
1
(𝐾
2,𝛽

𝑦
𝑛
) − 𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
(1 − 𝛼

𝑛
) (𝐾
1,𝛽

𝑥
𝑛
− 𝑥
∗
)
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓
1
(𝐾
2,𝛽

𝑦
𝑛
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= (1 − 𝛼
𝑛
)
2 󵄩󵄩󵄩󵄩󵄩

𝐾
1,𝛽

𝑥
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓
1
(𝐾
2,𝛽

𝑦
𝑛
) − 𝑓
1
(𝑦
∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

+ 2𝛼
𝑛
⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
)
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑓
1
(𝐾
2,𝛽

𝑦
𝑛
) − 𝑓
1
(𝑦
∗
)
󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 + 2𝛼
𝑛
⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
)
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝛼
𝑛
ℎ
1

󵄩󵄩󵄩󵄩󵄩
𝐾
2,𝛽

𝑦
𝑛
− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

×
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 + 2𝛼
𝑛
⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ (1 − 𝛼
𝑛
)
2 󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+ 2𝛼
𝑛
ℎ
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ .

(48)

Similarly, we can also prove that
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

∗󵄩󵄩󵄩󵄩

2
≤ (1 − 𝛼

𝑛
)
2 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
ℎ
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
∗󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
⟨𝑓
2
(𝑧
∗
) − 𝑦
∗
, 𝑦
𝑛+1

− 𝑦
∗
⟩ ,

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
∗󵄩󵄩󵄩󵄩

2
≤ (1 − 𝛼

𝑛
)
2 󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
ℎ
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧
∗󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛
⟨𝑓
3
(𝑥
∗
) − 𝑧
∗
, 𝑧
𝑛+1

− 𝑧
∗
⟩ .

(49)

Adding up inequalities (48) and (49), inequality (47) is
proved.

(iii) Next, we prove that if there exists a subsequence
{𝑛
𝑘
} ⊂ {𝑛} such that

lim inf
𝑘→∞

{(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘+1

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛𝑘+1

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑘+1

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

)

− (
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

)} ≥ 0,

(50)

then

lim sup
𝑘→∞

{⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛𝑘+1

− 𝑥
∗
⟩

+ ⟨𝑓
2
(𝑧
∗
) − 𝑦
∗
, 𝑦
𝑛𝑘+1

− 𝑦
∗
⟩

+⟨𝑓
3
(𝑥
∗
) − 𝑧
∗
, 𝑧
𝑛𝑘+1

− 𝑧
∗
⟩} ≤ 0.

(51)

Since the norm ‖ ⋅ ‖
2 is convex and lim

𝑛→∞
𝛼
𝑛
= 0, by (42),

we have

0 ≤ lim inf
𝑘→∞

{(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘+1

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛𝑘+1

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑘+1

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

)

− (
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

)}

≤ lim inf
𝑘→∞

{(1 − 𝛼
𝑛𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐾
1,𝛽

𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
𝑓
1
(𝐾
2,𝛽

𝑦
𝑛𝑘
) − 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐾
2,𝛽

𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
𝑓
2
(𝐾
3,𝛽

𝑧
𝑛𝑘
) − 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛𝑘
)
󵄩󵄩󵄩󵄩󵄩
𝐾
3,𝛽

𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
𝑓
3
(𝐾
1,𝛽

𝑥
𝑛𝑘
) − 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

− (
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

)}

= lim inf
𝑘→∞

{(
󵄩󵄩󵄩󵄩󵄩
𝐾
1,𝛽

𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

)

+ (
󵄩󵄩󵄩󵄩󵄩
𝐾
2,𝛽

𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

)

+ (
󵄩󵄩󵄩󵄩󵄩
𝐾
3,𝛽

𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

)}

≤ lim sup
𝑘→∞

{(
󵄩󵄩󵄩󵄩󵄩
𝐾
1,𝛽

𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

)

+ (
󵄩󵄩󵄩󵄩󵄩
𝐾
2,𝛽

𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

)

+ (
󵄩󵄩󵄩󵄩󵄩
𝐾
3,𝛽

𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

)}

≤ 0.

(52)

This implies that

lim
𝑘→∞

(
󵄩󵄩󵄩󵄩󵄩
𝐾
1,𝛽

𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

)

= lim
𝑘→∞

(
󵄩󵄩󵄩󵄩󵄩
𝐾
2,𝛽

𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

2

)

= lim
𝑘→∞

(
󵄩󵄩󵄩󵄩󵄩
𝐾
3,𝛽

𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

2

) = 0.

(53)
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Since the sequences {‖𝐾
1,𝛽

𝑥
𝑛𝑘

−𝑥
∗
‖+ ‖𝑥

𝑛𝑘
−𝑥
∗
‖}, {‖𝐾

2,𝛽
𝑦
𝑛𝑘

−

𝑦
∗
‖+‖𝑦
𝑛𝑘
−𝑦
∗
‖}, and {‖𝐾

3,𝛽
𝑧
𝑛𝑘
−𝑧
∗
‖+‖𝑧
𝑛𝑘
−𝑧
∗
‖} are bounded,

we have

lim
𝑘→∞

(
󵄩󵄩󵄩󵄩󵄩
𝐾
1,𝛽

𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

−
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑘

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

)

= lim
𝑘→∞

(
󵄩󵄩󵄩󵄩󵄩
𝐾
2,𝛽

𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

−
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛𝑘

− 𝑦
∗󵄩󵄩󵄩󵄩󵄩

)

= lim
𝑘→∞

(
󵄩󵄩󵄩󵄩󵄩
𝐾
3,𝛽

𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

−
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑘

− 𝑧
∗󵄩󵄩󵄩󵄩󵄩

) = 0.

(54)

By Lemma 9, 𝐾
1,𝛽
, 𝐾
2,𝛽
, and 𝐾

3,𝛽
are strongly quasinonex-

pansive. We have

𝐾
1,𝛽

𝑥
𝑛𝑘

− 𝑥
𝑛𝑘

󳨀→ 0, 𝐾
2,𝛽

𝑦
𝑛𝑘

− 𝑦
𝑛𝑘

󳨀→ 0,

𝐾
3,𝛽

𝑧
𝑛𝑘

− 𝑧
𝑛𝑘

󳨀→ 0.

(55)

Consequently, we obtain that

𝑥
𝑛𝑘

− 𝑥
𝑛𝑘+1

󳨀→ 0, 𝑦
𝑛𝑘

− 𝑦
𝑛𝑘+1

󳨀→ 0,

𝑧
𝑛𝑘

− 𝑧
𝑛𝑘+1

󳨀→ 0.

(56)

It follows from the boundedness of {𝑥
𝑛𝑘
} and 𝐻 which is

reflexive that there exists a subsequence {𝑥
𝑛𝑘
𝑙

} of {𝑥
𝑛𝑘
} such

that 𝑥
𝑛𝑘
𝑙

⇀ 𝑝 and

lim
𝑙→∞

⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛𝑘
𝑙

− 𝑥
∗
⟩

= lim sup
𝑘→∞

⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛𝑘

− 𝑥
∗
⟩

= lim sup
𝑘→∞

⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛𝑘+1

− 𝑥
∗
⟩ .

(57)

By Lemma 9, 𝐼 − 𝐾
1,𝛽

is demiclosed at zero, and so 𝑝 ∈

𝐹(𝐾
1,𝛽

) = Ω
1
. Hence from (36) we have

lim
𝑙→∞

⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛𝑘
𝑙

− 𝑥
∗
⟩

= ⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑝 − 𝑥

∗
⟩ ≤ 0.

(58)

Therefore

lim sup
𝑘→∞

⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛𝑘+1

− 𝑥
∗
⟩

= lim
𝑙→∞

⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛𝑘
𝑙

− 𝑥
∗
⟩ ≤ 0.

(59)

Similarly, we can also prove that

lim sup
𝑘→∞

⟨𝑓
2
(𝑧
∗
) − 𝑦
∗
, 𝑦
𝑛𝑘+1

− 𝑦
∗
⟩ ≤ 0,

lim sup
𝑘→∞

⟨𝑓
3
(𝑥
∗
) − 𝑧
∗
, 𝑧
𝑛𝑘+1

− 𝑧
∗
⟩ ≤ 0.

(60)

Hence, we have the desired inequality.
(iv) Finally, we prove that the sequences {𝑥

𝑛
}, {𝑦
𝑛
},

and {𝑧
𝑛
} generated to be (42) converge to 𝑥

∗
, 𝑦
∗, and 𝑧

∗,
respectively.

It is clear that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
∗󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩

2
)
1/2

× (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

∗󵄩󵄩󵄩󵄩

2
)
1/2

.

(61)

Substituting (61) into (47), we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

∗󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
)
2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩

2
)

+ 2𝛼
𝑛
ℎ {(

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩

2
)
1/2

× (
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑧𝑛+1 − 𝑧

∗󵄩󵄩󵄩󵄩

2
)
1/2

}

+ 2𝛼
𝑛
(⟨𝑓
1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ ⟨𝑓
2
(𝑧
∗
) − 𝑦
∗
, 𝑦
𝑛+1

− 𝑦
∗
⟩

+ ⟨𝑓
3
(𝑥
∗
) − 𝑧
∗
, 𝑧
𝑛+1

− 𝑧
∗
⟩) .

(62)

Set

𝑎
𝑛
:=

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩

2
,

𝑏
𝑛
:= 2 (⟨𝑓

1
(𝑦
∗
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ ⟨𝑓
2
(𝑧
∗
) − 𝑦
∗
, 𝑦
𝑛+1

− 𝑦
∗
⟩

+ ⟨𝑓
3
(𝑥
∗
) − 𝑧
∗
, 𝑧
𝑛+1

− 𝑧
∗
⟩) .

(63)

Then, we have the following statements.

(i) From (i), {𝑎
𝑛
} is bounded sequence.

(ii) From (62), 𝑎
𝑛+1

≤ (1−𝛼
𝑛
)
2
𝑎
𝑛
+2𝛼
𝑛
ℎ√𝑎
𝑛√𝑎
𝑛+1

+𝛼
𝑛
𝑏
𝑛
,

for all 𝑛 ≥ 1.
(iii) From (iii), whenever {𝑎

𝑛𝑘
} is a subsequence of {𝑎

𝑛
}

satisfying

lim inf
𝑘→∞

(𝑎
𝑛𝑘+1

− 𝑎
𝑛𝑘
) ≥ 0, (64)

it follows that lim sup
𝑘→∞

𝑏
𝑛𝑘

≤ 0.

By Lemma 8, we have

lim
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧

∗󵄩󵄩󵄩󵄩

2
) = 0. (65)
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Hence, we obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦
∗󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
∗󵄩󵄩󵄩󵄩 = 0.

(66)

This completes the proof.

3.3. Consequence Results. UsingTheorem 11, we can prove the
following results.

Theorem 12. Let 𝐴
𝑖
, 𝑀
𝑖
, Ω
𝑖
, 𝐾
𝑖
, and 𝐾

𝑖,𝛽
satisfy conditions

(C1) and (C2), and let 𝐹 : 𝐻 → 𝐻 be a 𝜇-Lipschitzian and
𝑟-strongly monotone mapping. Let {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} be three

sequences defined by

𝑥
0
, 𝑦
0
, 𝑧
0
∈ 𝐻,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑥
𝑛
+ 𝛼
𝑛
𝑓
1
(𝐾
2,𝛽

𝑦
𝑛
) ,

𝑦
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
2,𝛽

𝑦
𝑛
+ 𝛼
𝑛
𝑓
2
(𝐾
3,𝛽

𝑧
𝑛
) ,

𝑧
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
3,𝛽

𝑧
𝑛
+ 𝛼
𝑛
𝑓
3
(𝐾
1,𝛽

𝑥
𝑛
) ,

𝑛 = 0, 1, 2, . . . ,

(67)

where 𝑓
1

:= 𝐼 − 𝜌𝐹, 𝑓
2

:= 𝐼 − 𝜂𝐹, 𝑓
3

:= 𝐼 − 𝜉𝐹 with
𝜌, 𝜂, 𝜉 ∈ (0, 2𝑟/𝜇

2
), and {𝛼

𝑛
} is a sequence in (0, 1) satisfying

𝛼
𝑛
→ 0 and∑

∞

𝑛=0
𝛼
𝑛
= ∞. Then the sequences {𝑥

𝑛
}, {𝑦
𝑛
}, and

{𝑧
𝑛
} converge to 𝑥

∗
, 𝑦
∗, and 𝑧

∗, respectively, where (𝑥∗, 𝑦∗, 𝑧∗)
is the unique element in Ω

1
× Ω
2
× Ω
3
such that the following

three inequalities are satisfied:

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝜂𝐹 (𝑧
∗
) + 𝑦
∗
− 𝑧
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ Ω

2
,

⟨𝜉𝐹 (𝑥
∗
) + 𝑧
∗
− 𝑥
∗
, 𝑧 − 𝑧

∗
⟩ ≥ 0, ∀𝑧 ∈ Ω

3
.

(68)

Proof. It is easy to see that 𝑓
1
, 𝑓
2
, and 𝑓

3
are contraction

mappings and all the conditions in Theorem 11 are satisfied.
By Theorem 11, we have the sequences {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
}

which converge to (𝑥
∗
, 𝑦
∗
, 𝑧
∗
) ∈ Ω
1
× Ω
2
× Ω
3
such that the

following three inequalities are satisfied:

⟨𝑥
∗
− 𝑓
1
(𝑦
∗
) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝑦
∗
− 𝑓
2
(𝑧
∗
) , 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ Ω

2
,

⟨𝑧
∗
− 𝑓
3
(𝑥
∗
) , 𝑧 − 𝑧

∗
⟩ ≥ 0, ∀𝑧 ∈ Ω

3
.

(69)

Substituting 𝑓
1

:= 𝐼 − 𝜌𝐹, 𝑓
2

:= 𝐼 − 𝜂𝐹, and 𝑓
3

:= 𝐼 − 𝜉𝐹

into (69), we obtain that the sequences {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
}

converge to (𝑥
∗
, 𝑦
∗
, 𝑧
∗
) ∈ Ω
1
×Ω
2
×Ω
3
such that the following

three inequalities are satisfied:

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝜂𝐹 (𝑧
∗
) + 𝑦
∗
− 𝑧
∗
, 𝑦 − 𝑦

∗
⟩ ≥ 0, ∀𝑦 ∈ Ω

2
,

⟨𝜉𝐹 (𝑥
∗
) + 𝑧
∗
− 𝑥
∗
, 𝑧 − 𝑧

∗
⟩ ≥ 0, ∀𝑧 ∈ Ω

3
.

(70)

This completes the proof

Setting 𝐴
1

= 𝐴
2

= 𝐴
3
in Theorem 11, we obtain the

following corollary.

Corollary 13. Let𝐴
1
,𝑀
1
,Ω
1
,𝐾
1
, and𝐾

1,𝛽
satisfy conditions

(C1) and (C2), and let 𝑓
𝑖
: 𝐻 → 𝐻 be contractions with a

contractive constant ℎ
𝑖
∈ (0, 1), for all 𝑖 = 1, 2, 3. Let {𝑥

𝑛
},

{𝑦
𝑛
}, and {𝑧

𝑛
} be three sequences defined by

𝑥
0
, 𝑦
0
, 𝑧
0
∈ 𝐻,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑥
𝑛
+ 𝛼
𝑛
𝑓
1
(𝐾
1,𝛽

𝑦
𝑛
) ,

𝑦
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑦
𝑛
+ 𝛼
𝑛
𝑓
2
(𝐾
1,𝛽

𝑧
𝑛
) ,

𝑧
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑧
𝑛
+ 𝛼
𝑛
𝑓
3
(𝐾
1,𝛽

𝑥
𝑛
) ,

𝑛 = 0, 1, 2, . . . ,

(71)

where {𝛼
𝑛
} is a sequence in (0, 1) satisfying 𝛼

𝑛
→ 0 and

∑
∞

𝑛=0
𝛼
𝑛

= ∞. Then the sequences {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
}

generated to be (42) converge to 𝑥
∗, 𝑦∗, and 𝑧

∗, respectively,
where (𝑥∗, 𝑦∗, 𝑧∗) is the unique element inΩ

1
×Ω
1
×Ω
1
such

that the following three inequalities are satisfied:

⟨𝑥
∗
− 𝑓
1
(𝑦
∗
) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝑦
∗
− 𝑓
2
(𝑧
∗
) , 𝑥 − 𝑦

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝑧
∗
− 𝑓
3
(𝑥
∗
) , 𝑥 − 𝑧

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
.

(72)

Corollary 14. Let 𝐴
1
, 𝑀
1
, Ω, 𝐾

1
, and 𝐾

1,𝛽
satisfy conditions

(C1) and (C2), and let 𝐹 : 𝐻 → 𝐻 be 𝜇-Lipschitzian and 𝑟-
strongly monotone mapping. Let {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} be three

sequences defined by

𝑥
0
, 𝑦
0
, 𝑧
0
∈ 𝐻,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑥
𝑛
+ 𝛼
𝑛
𝑓
1
(𝐾
1,𝛽

𝑦
𝑛
) ,

𝑦
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑦
𝑛
+ 𝛼
𝑛
𝑓
2
(𝐾
1,𝛽

𝑧
𝑛
) ,

𝑧
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑧
𝑛
+ 𝛼
𝑛
𝑓
3
(𝐾
1,𝛽

𝑥
𝑛
) ,

𝑛 = 0, 1, 2, . . . ,

(73)

where 𝑓
1

:= 𝐼 − 𝜌𝐹, 𝑓
2

:= 𝐼 − 𝜂𝐹, 𝑓
3

:= 𝐼 − 𝜉𝐹 with
𝜌, 𝜂, 𝜉 ∈ (0, 2𝑟/𝜇

2
), and {𝛼

𝑛
} is a sequence in (0, 1) satisfying

𝛼
𝑛
→ 0 and∑

∞

𝑛=0
𝛼
𝑛
= ∞. Then the sequences {𝑥

𝑛
}, {𝑦
𝑛
}, and

{𝑧
𝑛
} converge to 𝑥∗, 𝑦∗, and 𝑧

∗, respectively, where (𝑥∗, 𝑦∗, 𝑧∗)
is the unique element in Ω

1
× Ω
1
× Ω
1
such that the following

three inequalities are satisfied:

⟨𝜌𝐹 (𝑦
∗
) + 𝑥
∗
− 𝑦
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝜂𝐹 (𝑧
∗
) + 𝑦
∗
− 𝑧
∗
, 𝑥 − 𝑦

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
,

⟨𝜉𝐹 (𝑥
∗
) + 𝑧
∗
− 𝑥
∗
, 𝑥 − 𝑧

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
.

(74)

Setting 𝐴
1
= 𝐴
2
= 𝐴
3
, 𝑓
1
= 𝑓
2
= 𝑓
3
, and 𝑥

0
= 𝑦
0
= 𝑧
0
in

Theorem 11, we obtain the following corollary.
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Corollary 15. Let𝐴
1
,𝑀
1
,Ω
1
,𝐾
1
, and𝐾

1,𝛽
satisfy conditions

(C1) and (C2), and let 𝑓 : 𝐻 → 𝐻 be contractions with
a contractive constant ℎ ∈ (0, 1). Let {𝑥

𝑛
} be the sequences

defined by

𝑥
0
∈ 𝐻,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑥
𝑛
+ 𝛼
𝑛
𝑓 (𝐾
1,𝛽

𝑥
𝑛
) ,

𝑛 = 0, 1, 2, . . . ,

(75)

where {𝛼
𝑛
} is a sequence in (0, 1) satisfying 𝛼

𝑛
→ 0 and

∑
∞

𝑛=0
𝛼
𝑛
= ∞. Then the sequences {𝑥

𝑛
} converge to 𝑥

∗
∈ Ω
1

such that the following three inequalities are satisfied:

⟨𝑥
∗
− 𝑓
1
(𝑥
∗
) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
. (76)

Corollary 16. Let𝐴
1
,𝑀
1
,Ω
1
,𝐾
1
, and𝐾

1,𝛽
satisfy conditions

(C1) and (C2), and let 𝐹 : 𝐻 → 𝐻 be 𝜇-Lipschitzian and 𝑟-
strongly monotone mapping. Let {𝑥

𝑛
} be the sequences defined

by

𝑥
0
∈ 𝐻,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
)𝐾
1,𝛽

𝑥
𝑛
+ 𝛼
𝑛
(𝐼 − 𝜌𝐹) (𝐾

1,𝛽
𝑥
𝑛
) ,

𝑛 = 0, 1, 2, . . . ,

(77)

where 𝜌 ∈ (0, 2𝑟/𝜇
2
) and {𝛼

𝑛
} is a sequence in (0, 1) satisfying

𝛼
𝑛

→ 0 and ∑
∞

𝑛=0
𝛼
𝑛
= ∞. Then the sequences {𝑥

𝑛
} converge

to 𝑥
∗

∈ Ω
1
such that the following three inequalities are

satisfied:

⟨𝐹 (𝑥
∗
) , 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ Ω

1
. (78)
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