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We propose implicit and explicit iterative algorithms for finding a common element of the set of solutions of the minimization
problem for a convex and continuously Fréchet differentiable functional, the set of solutions of a finite family of generalized mixed
equilibrium problems, and the set of solutions of a finite family of variational inequalities for inverse strong monotone mappings
in a real Hilbert space. We prove that the sequences generated by the proposed algorithms converge strongly to a common element
of three sets, which is the unique solution of a variational inequality defined over the intersection of three sets under very mild

conditions.

1. Introduction and Problems Formulation

Let H be a real Hilbert space with inner product {,-) and
norm |- ||, let C be a nonempty closed convex subset of H, and
let P be the metric projection of H onto C. Let S : C — C
be a self-mapping on C. We denote by Fix(S) the set of fixed
points of S and by R the set of all real numbers. Recall that a
mapping A : C — H is said to be L-Lipschitz continuous if
there exists a constant L > 0 such that

|Ax-Ay|<Llx-y]., VvxyeC. )
In particular, if L = 1, then A is called a nonexpansive
mapping [1], and if L € [0, 1), then A is called a contraction.

Recall that a mapping A : C — H is called

(i) monotone if

(Ax - Ay,x—y) =20, Vx,yeCGC; 2)

(ii) #-strongly monotone if there exists a constant 7 > 0
such that

(Ax—Ayx-yyznlx-yI', VeyeC G

(iii) a-inverse strongly monotone if there exists a constant
a > 0 such that

(Ax - Ay,x—y) > af|Ax - Ay|", Vx,yeC. (4)

Itis obvious that if A is a-inverse strongly monotone, then
A is monotone and (1/«)-Lipschitz continuous.

Let A : C — H be a nonlinear mapping on C. We
consider the following variational inequality problem (VIP):
find a point x € C such that

(Ax,y —-x) =0, VyeC. (5)

The solution set of VIP (5) is denoted by VI(C, A).

The VIP (5) was first discussed by Lions [2] and is
now well known. The VIP (5) has many potential applica-
tions in computational mathematics, mathematical physics,
operations research, mathematical economics, optimization
theory, and so on; see, for example, [3-5] and the references
therein.

In 1976, Korpelevich [6] proposed an iterative algorithm
for solving the VIP (5) in Euclidean space R™:

Yo = PC (xn - TAxn)’
(6)

Xn+1 :PC (xn_TAyn)’ Vn >0,
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with 7 > 0, a given number which is known as the extra-
gradient method. The literature on the VIP is vast and Kor-
pelevich’s extragradient method has received great attention
given by many researchers. See, for example, [7-16] and
the references therein. In particular, motivated by the idea
of Korpelevichs extragradient method [6], Nadezhkina and
Takahashi [17] introduced an extragradient iterative scheme:

X, = x € C chosen arbitrary,

Yn = PC (xn - AnAxn) >
(7)
Xpp1 = O Xy + (1 - ‘Xn) SPC (xn - A7114)171) >

Vn >0,

where A : C — H is a monotone, L-Lipschitz continuous
mapping, S : C — C is a nonexpansive mapping, {A,} C
[a,b] for some a,b € (0,1/L), and {«,} < [c,d] for some
¢,d € (0,1). They proved the weak convergence of {x,} to an
element of Fix(S) N VI(C, A).
Let ¢ : C — R be a real-valued function, let A :
H — H be anonlinear mapping, andlet® : CxC — R
be a bifunction. In 2008, Peng and Yao [18] introduced the
following generalized mixed equilibrium problem (GMEP) of
finding x € C such that
O(x,y)+9(y)—¢(x)+(Ax,y—x) 20, VyeC.
(8)

We denote the set of solutions of GMEP (8) by
GMEP(O, ¢, A). The GMEP (8) is very general in the sense
that it includes, as special cases, optimization problems,
variational inequalities, minimax problems, and Nash
equilibrium problems in noncooperative games. The GMEP
is further considered and studied. See, for example, [19, 20].
Some special cases of GMEP (8) are as follows.
If ¢ = 0, then GMEP (8) reduces to the generalized
equilibrium problem (GEP) which is to find x € C such that
O(x,y)+(Ax,y-x) >0, VyeC. 9)
Itis introduced and studied by S. Takahashi and W. Takahashi
[21]. The set of solutions of GEP is denoted by GEP(®, A).
If A = 0, then GMEP (8) reduces to the mixed
equilibrium problem (MEP) which is to find x € C such that
O(x,y)+o(y)-¢(x)=0, VyeC. (10)
It is considered and studied in [22]. The set of solutions of
MEP is denoted by MEP(®, ¢).
If p = 0and A = 0, then GMEP (8) reduces to the
equilibrium problem (EP) which is to find x € C such that
O(x,y)=0, VyeC. (1)
It is considered and studied in [23]. The set of solutions of EP
is denoted by EP(®).
Throughout this paper, it is assumed as in [18] that © :
C x C — Ris a bifunction satisfying conditions (Al)-(A4)
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and ¢ : C — R is a lower semicontinuous and convex
function with restriction (B1) or (B2), where

(A1) O(x,x) =0, forall x € C;

(A2) © is monotone; that is, O(x, y) + O(y, x) < 0 for any

x,y €GC;
(A3) O is upper hemicontinuous; that is, for each x, y, z €
C)
limsup® (tz+ (1-t)x,y) <O (x,y); (12)

t—0*

(A4) O(x,-) is convex and lower semicontinuous for each
x € C;

(B1) for each x € H and r > 0, there exists a bounded
subset D, ¢ Cand y, € C such that, for any z €
C\D,,

0(27)+9(1) - 9@+ 1 (re-zz-x) <0 (1)

(B2) Cis a bounded set.

Next we list some known results for the MEP as follows.

Proposition 1 (see [22]). Assume that ® : Cx C — R
satisfies (Al)-(A4) and let ¢ : C — R be a proper lower
semicontinuous and convex function. Assume that either (Bl)
or (B2) holds. For r > 0 and x € H, define a mapping
T . H — C as follows:

109 () = {z€C:0(2) 19 (1) -9 (@
(14)
+%(y—z,z—x) >0, VJ’GC}’

for all x € H. Then the following conditions hold:

(i) for each x € H, Tr(®"”)(x) is nonempty and single-
valued;

(ii) Tr(®"”) is firmly nonexpansive; that is, for any x, y € H,

2
|09 - TP y|" < (T Px ~ TPy, x -y} (15)

(iii) Fix(T®?) = MEP(®, ¢);

(iv) MEP(®, ¢) is closed and convex;

2
W) ITOx =TV 5 < (s = H/NTOPx - TP,
T®x - x), for all s,t > 0 and x € H.
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Let A, 1,4, ...,A,y € (0,1], n > 1. Given the
nonexpansive mappings S;,S,,...,Sy on H, for each n > 1,
the mappings U, ,,U,,,, ..., U, y are defined by

Un,l = An,lsl + (1 - An,l)l’
Un,Z = An,ZSn[]n,I + (1 - An,z) I’
Un,n—l = An—lTn—IIJn,n + (1 - An—l) I’
(16)

= Aun-1Sn-1Upn-a + (1- An,N—l) I

Wn = UpN = /\n,NSNUn,N—l + (1 - Aﬂ,N) L.

Un,N—l

The W, is called the W-mapping generated by S, ..., Sy
and A,,,A,,,...,A, y. Note that the nonexpansivity of S;
implies the nonexpansivity of W,.

In 2012, combining the hybrid steepest-descent method
in [24] and hybrid viscosity approximation method in [25],
Ceng et al. [20] proposed and analyzed the following hybrid
iterative method for finding a common element of the set of
solutions of GMEP (8) and the set of fixed points of a finite

family of nonexpansive mappings {S;}Y,.

Theorem CGY (see [20, Theorem 3.1]). Let C be a nonempty
closed convex subset of a real Hilbert space H. Let ® : C x
C — R be a bifunction satisfying assumptions (Al)-(A4)
and let ¢ : C — R be a lower semicontinuous and convex
function with restriction (Bl) or (B2). Let the mapping A :
H — H be §-inverse strongly monotone, and let {S,»}f\:r1
be a finite family of nonexpansive mappings on H such that
N~ Fix(S;) N GMEP(®, ¢, A)#0. Let F : H — H be a k-
Lipschitzian and n-strongly monotone operator with constants
K, > 0andV : H — H a p-Lipschitzian mapping with
constant p > 0. Let 0 < p < 2n/x* and 0 < yp < 7, where T =

1—=/1 = u(2n — ux?). Suppose {«,,} and {B,,} are two sequences

in (0, 1), {y,} is a sequence in (0, 28], and {An,i}f\:jl is a sequence
in [a,b] with 0 < a < b < 1. For every n > 1, let W, be the
W-mapping generated by S,...,Sy and A, 1, A, 5, ..., A, N
Given x, € H arbitrarily, suppose the sequences {x,} and {u,,}
are generated iteratively by

O (ty y) + ¢ () = @ (u,) + (Ax,, y — 14,
+ l(y—u,,,un -x,)20, VyeCGC,
" (17)
Xn+1 = (xnyvxn + ﬁn'xn
+ ((1 - ﬁn) I- (xmuF) Wnun’

where the sequences {a,,}, {3,}, and {r,;} and the finite family of

sequences {/\n)i}f.\:r | satisfy the following conditions:

Vn>1,

(i) lim, , o, = 0and Y2, &, = 00;
(ii) 0 < liminf, _, B, <limsup, _, B, < L;
(iii) 0 < liminf,_ r, < limsup,_ 1, < 26 and

lim,, , o (fy1 — 1) = 0;

(iv) lim,, , o, (4,141, = A,;) =0, foralli=1,2,...,N.

Then both {x,,} and {u,} converge strongly to x* € ﬂf\ilFix(Si)ﬂ
GMEP(®, ¢, A), where x™ = Pﬂfil Fix(S,-)nGMEP(G),(p,A)(I - uF +
yf)x" is a unique solution of the variational inequality problem
(VIP):

((uF —yV) x",x" - x) <0,

N (18)
Vx € [ Fix (S;) N GMEP (©,¢, A).

i=1

Let f : C — R be a convex and continuously Fréchet
differentiable functional. Consider the convex minimization
problem (CMP) of minimizing f over the constraint set C:

minf (x) (19)

(assuming the existence of minimizers). We denote by I’ the
set of minimizers of CMP (19). It is well known that the
gradient-projection algorithm (GPA) generates a sequence
{x,} determined by the gradient Vf and the metric projection
Pe:

X1 = Po(x, = AVf (x,)), V¥n=0, (20)
or more generally,
Xp1 = Po(x, - A, Vf (x,)), Vn=0, (21)

where, in both (20) and (21), the initial guess x, is taken
from C arbitrarily and the parameters A or A, are positive
real numbers. The convergence of algorithms (20) and (21)
depends on the behavior of the gradient Vf. As a matter of
fact, it is known that, if Vf is a-strongly monotone and L-
Lipschitz continuous, then, for 0 < A < 2a/L?, the operator

S = Po (I - AVf) (22)

is a contraction. Hence, the sequence {x,,} defined by the GPA
(20) converges in norm to the unique solution of CMP (19).
More generally, if the sequence {A,} is chosen to satisfy the

property

0 <liminf A, < lirrlrlsolip A, < i—‘:, (23)
then the sequence {x,} defined by the GPA (21) converges in
norm to the unique minimizer of CMP (19). If the gradient
Vf is only assumed to be Lipschitz continuous, then {x,}
can only be weakly convergent if H is infinite dimensional
(a counterexample is given in Section 5 of Xu [26]).

Since the Lipschitz continuity of the gradient Vf implies
that it is actually (1/L)-inverse strongly monotone (ism) [27],
its complement can be an averaged mapping (i.e., it can be
expressed as a proper convex combination of the identity
mapping and a nonexpansive mapping). Consequently, the
GPA can be rewritten as the composite of a projection and an
averaged mapping, which is again an averaged mapping. This
shows that averaged mappings play an important role in the



GPA. Recently, Xu [26] used averaged mappings to study the
convergence analysis of the GPA, which is hence an operator-
oriented approach.

In 2011, combining the hybrid steepest-descent method in
[24], viscosity approximation method, and averaged mapping
approach to the GPA in [26], Ceng et al. [28] introduced
and analyzed the following implicit and explicit iterative
algorithms:

x) = Po[syVa, + (I —suF) Thx,], A€ <0, %) , (24)

Xp1 = Po[s,yVx, + (I —s,uF)T,x,], ¥n>0, (25)

where V: C — H is [-Lipschitzian mapping with constant
I >0and F : C — H is a k-Lipschitzian and #-strongly
monotone operator with constants x,# > 0. Assume that 0 <

w<2n/K’,0 <yl <1 =1-+1-uRy—ux?),s :=s(A) =
(2 - AL)/4 for each A € (0,2/L), Po(I — AVf) = sI + (1 -
s)T) for each A € (0,2/L), s, = s,(A,) = (2 - A,L)/4 with
{A,} c(0,2/L)and A, — 2/L,and Po(I- A, Vf) =s,I+(1—
s,)T,,. The authors proved that the net {x,} defined by (24)
converges strongly to some g € I', which is a unique solution
of the variational inequality problem (VIP):

(WF-yV)q.p-q) 20, Vpel. (26)

Furthermore, utilizing control conditions (i) s, — 0, (ii)
Yolosy = oo, and (iii) either Y,ools,q — s,/ < o0
or lim, , s,.1/s, = 1, the authors also proved that the
sequence {x,} generated by (25) converges strongly to some
q € T, which is a unique solution of the VIP (26).

Motivated and inspired by the above facts, in this paper
we introduce implicit and explicit iterative algorithms for
finding a common element of the set of solutions of the
CMP (19) for a convex functional f : C — R with L-
Lipschitz continuous gradient Vf, the set of solutions of a
finite family of GMEPs, and the set of solutions of a finite
family of VIPs for inverse strong monotone mappings in a real
Hilbert space. Under very mild control conditions, we prove
that the sequences generated by the proposed algorithms
converge strongly to a common element of three sets, which
is the unique solution of a variational inequality defined
over the intersection of three sets. Our iterative algorithms
are based on Korpelevichs extragradient method, hybrid
steepest-descent method in [24], viscosity approximation
method, and averaged mapping approach to the GPA in [26].
The results obtained in this paper improve and extend the
corresponding results announced by many others.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert
space with inner product and norm denoted by (:,-) and || - [|,
respectively. Let C be a nonempty closed convex subset of H.
We write x,, — x to indicate that the sequence {x,,} converges
weakly to x and x,, — x to indicate that the sequence {x,}
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converges strongly to x. Moreover, we use w,,(x,,) to denote
the weak w-limit set of the sequence {x,}; that is,

w, (x,)
= {x €H:x, (27)
— x for some subsequence {xni} of {xn}}.

The metric projection from H onto C is the mapping P, :
H — C which assigns to each point x € H the unique point
Pox € C satisfying the property

| = Bex]| = tnf Jlx ~ y] = d (%, C). (28)

Some important properties of projections are listed in the
following proposition.

Proposition 2. For given x € H and z € C,
(z=Pxe{(x-2z,y-2)<0,forally € G

(i) z = Pox & |lx—z|* < llx = yl* = Iy - 2l for all
y€C;

(iii) (Pox — Pey, x — y) = |Pox — Pcyllz,for all y € H.

Consequently, P, is nonexpansive and monotone. If A is
an a-inverse strongly monotone mapping of C into H, then it
is obvious that A is (1/«)-Lipschitz continuous. We also have
that, forallu,v € Cand A > 0,

(I = AA) u— (I - AA) v|)?
= [|(u = v) = A(Au - Av)|
= |lu- v||2 - 2MAu — Av,u —v) (29)
+ M| Au — Ay
< llu=v* + A (A = 20) | Au — Av|.

So, if A < 2a, then I — AA is a nonexpansive mapping from C
to H.

Definition 3. A mapping T : H — H is said to be
(a) nonexpansive [1] if

ITx - Ty| < ||x-y|, Vx.ye€H; (30)

(b) firmly nonexpansive if 2T" — I is nonexpansive, or,
equivalently, if T is 1-inverse strongly monotone (1-
ism),

(x=y,Tx-Ty) > |Tx-Ty|", Vx,yeH; (3]

alternatively, T is firmly nonexpansive if and only if T
can be expressed as

T:%(I+S), (32)

where S : H — H is nonexpansive; projections are
firmly nonexpansive.
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It can be easily seen that if T is nonexpansive, then
I — T is monotone. It is also easy to see that a projection
P is 1-ism. Inverse strongly monotone (also referred to as
cocoercive) operators have been applied widely in solving
practical problems in various fields.

Definition 4. A mapping T : H — H is said to be an aver-
aged mapping if it can be written as the average of the identity
I and a nonexpansive mapping; that is,

T=010-a)l+as, (33)

where « € (0,1) and S : H — H is nonexpansive. More
precisely, when the last equality holds, we say that T' is «-
averaged. Thus firmly nonexpansive mappings (in particular,
projections) are (1/2)-averaged mappings.

Proposition 5 (see [29]). Let T :
mapping.

(i) T is nonexpansive if and only if the complement I — T
is (1/2)-ism.

(ii) If T is v-ism, then, fory > 0, yT is (v/y)-ism.

H — H be a given

(iii) T is averaged if and only if the complement I-T is v-ism
forsomev > 1/2. Indeed, for« € (0, 1), T is a-averaged
ifand only if I — T is (1/2a)-ism.

Proposition 6 (see [29]). Let S,T,V: H — H be given oper-
ators.

O IT = (1 -a)S+aV for somea € (0,1) and if S is
averaged and V is nonexpansive, then T is averaged.

(ii) T is firmly nonexpansive if and only if the complement
I - T is firmly nonexpansive.

(iii) If T = (1 - «)S + aV for some o € (0,1) and if S is
firmly nonexpansive and V is nonexpansive, then T is
averaged.

(iv) The composite of finitely many averaged mappings is
averaged. That is, if each of the mappings {T;}Y, is
averaged, then so is the composite T, - - T In partic-
ular, if Ty is o, -averaged and T, is oy-averaged, where
o, o, € (0,1), then the composite T, T, is a-averaged,
where a = a; + a, — o ;.

(v) If the mappings {T;}, are averaged and have a
common fixed point, then

N
() Fix (T;) = Fix (T, - -~ Ty) - (34)
i=1

The notation Fix(T') denotes the set of all fixed points of the

mapping T; that is, Fix(T) = {x € H : Tx = x}.

We need some facts and tools in a real Hilbert space H
which are listed as lemmas below.

Lemma 7. Let X be a real inner product space. Then there
holds the following inequality:

I+ y|” < Ixl? +2(nx + ), ¥x,yeX. (39

Lemma 8. Let A : C — H be a monotone mapping. In the
context of the variational inequality problem the characteriza-
tion of the projection (see Proposition 2(i)) implies

ueVI(C,A) & u=P-(u-AAu), for some A > 0.

(36)

Lemma 9 (see [30, Demiclosedness principle]). Let C be a
nonempty closed convex subset of a real Hilbert space H. Let
T be a nonexpansive self-mapping on C with Fix(T) # 0. Then
I - T is demiclosed. That is, whenever {x,} is a sequence in C
weakly converging to some x € C and the sequence {(I —T)x,}
strongly converges to some y, it follows that (I - T)x = y. Here
I is the identity operator of H.

Lemma 10 (see [31]). Let {s,} be a sequence of nonnegative
numbers satisfying the conditions

Sy < (1—a,) s, + o, B, Vn1, (37)
where {«,} and {B,,} are sequences of real numbers such that

() {e,}  [0,1] and Y22, «, = 00, or, equivalently,

n=1"n
(e} n
[TO-a):= lim [T(1-a)=0; (38)
n=1 k=1
(i) limsup, _, B, < 0, or Y2 la,B,l < oo. Then
lim, _, s, =0.

Lemma 11 (see [32]). Let {x,} and {z,} be bounded sequences
in a Banach space X and let {8} be a sequence in [0, 1] with

0< linrrli(gfﬁn < liyrlrisolipﬁn <1 (39)

Suppose that x,,,, = (1 - )z, + B,.x, foreachn > 1 and

lim sup (||Zn+1 - Zn" - "xn+1 - xn") <0. (40)
n— 00
Thenlim, _, |z, — x, |l = 0.

The following lemma can be easily proven and, therefore,
we omit the proof.

Lemma 12. Let V : H — H be an I-Lipschitzian mapping
with constant | > 0, and let F H — H bea k-
Lipschitzian and n-strongly monotone operator with positive
constants k,n > 0. Then for 0 < yl < un,

2
((WF =yV)x = (uF =yV) y,x = y) = (un = 1) | =51,
Vx,y € H.

(41)
That is, uF — yV is strongly monotone with constant un — yl.

Let C be a nonempty closed convex subset of a real Hilbert
space H. We introduce some notations. Let A be a number in
(0, 1]andlet y > 0. Associating with a nonexpansive mapping
T:C — H, we define the mapping T" : C — H by

T'x = Tx - MEF (Tx), VxeC, (42)



where F : H — H is an operator such that, for some
positive constants x,# > 0, F is k-Lipschitzian and #-strongly
monotone on H; that is, F satisfies the following conditions:

[Fx — Ey|| < ]lx = ¥,
5 (43)
(Fx - Fy,x—y) 2 n|x - y|’,

forallx,y € H.

Lemma 13 (see [31, Lemma 3.1]). T* is a contraction provided
0 < u < 2n/x%; that is,

"TAx - T)LyH <(1-M)|x-y|, Vx,yeC, (44)

where T = 1 — |1 — u(2n — ux?) € (0, 1].

Remark 14. (i) Since F is x-Lipschitzian and #-strongly
monotone on H, we get 0 < # < k. Hence, whenever 0 <
u < 2n/x*, we have

0<(1-pun)’

= 1= 2un+ '’

45
S1—2‘u11+p121<2 (45)

2
<1=2un+ o HK =1,

which implies

0<1—+1-2un+pPx?<1. (46)
So,7=1—1/1-u2y—ux?) € (0,1].

(ii) In Lemma 13, put F = (1/2)I and gy = 2. Then we
know thatx = 5 = 1/2,0 < p = 2 < 257/x* = 4, and

T=1-\1-p(2n-p?)
(o (1)) =1

Finally, recall that a set-valued mapping T : H — 2/
is called monotone if, forall x, y € H, f € Txand g € Ty
imply (x — y, f — g) = 0. A monotone mapping T : H —
2M is maximal if its graph G(T) is not properly contained in
the graph of any other monotone mapping. It is known that
a monotone mapping T' is maximal if and only if, for (x, f) €
HxH,{(x-y,f—-g)>0forall (y,g) € G(T) implies f €
Tx.Let A: C — H be a monotone, L-Lipschitz continuous
mapping and let Nv be the normal cone to C at v € C; that
is, Nov={w € H: (v —u,w) > 0, for all u € C}. Define

To < Av+ Ngv, %fveC,
@, ifv¢gcC.

(47)

(48)

It is known that in this case T is maximal monotone, and 0 €
Tvif and only if v € Q; see [33].
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3. Implicit Iterative Algorithm and
Its Convergence Criteria

We now state and prove the first main result of this paper.

Theorem 15. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let f : C — R be a convex
functional with L-Lipschitz continuous gradient Vf. Let M
and N be two integers. Let ®, be a bifunction from C x C
to R satisfying (Al)-(A4) and let ¢ : C — R U {+o0}
be a proper lower semicontinuous and convex function, where
ke{l,2,...,M}. Let B, : H - Hand A; : C — H be -
inverse strongly monotone and w;-inverse strongly monotone,
respectively, where k € {1,2,...,M} andi € {1,2,...,N}. Let
F : H — H be a k-Lipschitzian and n-strongly monotone
operator with positive constantsx,n > 0. LetV: H — H bean

I-Lipschitzian mapping with constant1 > 0. Let 0 < p < 217/x*
and 0 < yl < T, where T = 1 — |1 — u(25 — px?). Assume that

Q = o, GMEP(®y, ¢, By) N Y, VI(C, A;) N T #0 and
that either (BI) or (B2) holds. Let {x,} be a sequence generated
by

(©r90) (Op-1>Prm-1)
u, = Terf (I - rM,nBM) Terfml P (1 - erl,nBM—l)

T Tr(il’%) (I - rl,nBl) X>
v, =Po (I - AN,nAN) P (I - )‘N—1,nAN—1)
- Pe (I - Az,nAz) Pe (I - /\l,nAl) Uy»

x, = s,yVx, + (I - s,uF) T,v,, VYn=1,

(49)

where Po(I-A,Vf) = s, I1+(1-s,)T, (here T, is nonexpansive
ands, = (2-1,L)/4 € (0,1/2) foreach A,, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) foreach A, € (0,2/L), lim
lim, , A, =2/L);

(i) {A;,.} € [a;,b] € (0,21), foralli € {1,2,...,N};
(iii) {re,} € [e fid € (0,2u), forallk € {1,2,..., M}.

=0 (e

n—»oosn

Then {x,} converges strongly as A, — 2/L (e s, — 0)toa
point q € Q, which is a unique solution of the VIP:

(uF-yV)g,p-q) 20, VpeQ. (50)

Equivalently, g = Po(I — uF +yV)q.

Proof. First of all, let us show that the sequence {x,} is well
defined. Indeed, since Vf is L-Lipschitzian, it follows that Vf
is 1/L-ism; see [34]. By Proposition 5(ii) we know that, for
A > 0,AVf is (1/AL)-ism. So by Proposition 5(iii) we deduce
that I — AVf is (AL/2)-averaged. Now since the projection P
is (1/2)-averaged, it is easy to see from Proposition 6(iv) that
the composite Po(I — AVf) is ((2 + AL)/4)-averaged for A €
(0,2/L). Hence we obtain that for each n > 1, Po(I - A, Vf) is
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((2+ A, L)/4)-averaged for each A,, € (0,2/L). Therefore, we
can write

2-A,L 2+ AL
oy T,=s,0+(1-s,)T,

PC (I - )‘nvf) = 4 4
(51)

where T, is nonexpansive and s, := s,(A,) = (2-A,L)/4 €
(0,1/2) for each A, € (0,2/L). It is clear that

2
)\n—>z<=>sn—>0. (52)
Put

A% = Tr(gk"”k) (I - rk,an) Ok 1Pic) (I - rk—l,an—l)

n Tk-1n

(53)
©,¢;
"'Tr(h,, o (I- ”1,nBl) X
forallk € {1,2,...,M}andn > 1,
Ain =P (I - Ai,nAi) Pc (I - )‘i—1,nAi—1)
(54)

e Fe (I_Az,nAz)Pc (I_Al,nAl)’
foralli € {1,2,...,N}andn > 1, andA(L = Aon = I, where I
is the identity mapping on H. Then we have that u,, = AYx,

and v, = ANu,.
Consider the following mapping G,, on H defined by

G,x = s,pVx + (I - s,uF) T,AN AMx,
(55)

VxeH, n>1,

where s, = (2-1,L)/4 € (0,1/2) for each A,, € (0,2/L). By
Proposition 1(ii) and Lemma 13 we obtain from (29) that, for
all x, y € H,

IG.x - Gyl
< sy [Vx -y
+ (1 = s,uF) T, AT AY x
— (I = s,uF) T,AN A% |
< sylfx -y
+(1=5,7) [ANAYx - ATAYH

< sl fx -]

+(1=5,7) (T = Ay, An) A AT x

7
-(I- /\N,nAN) Alr\:_lAI;\q/[)’“
< spylfx -y
+(1=s,7) A5 A - AT AN
< spylfx -y
+(1=s,7) A% x - ASA%|
= syl |x -yl
+(1=s,7) AN x - A%y
< spylfx -y
+ (1= 5,7) (T = ragBar) A3 '
— (1= g, Bag) A%
< syl lx -yl
+(1=s,7) A x - A
< syl lx -yl
+(1=s,7) A% - A%y
= syl |x -yl
+(1=5,7) |x -y
=(1=s,(r=y1))x - |-
(56)
Since0 < 1 -s,(r—-9yl) < 1,G, : H — Hisa

contraction. Therefore, by the Banach contraction principle,
G,, has a unique fixed point x,, € H, which uniquely solves
the fixed point equation

X, = 5, YV, + (I = s,uF) T,AN A x, . (57)

This shows that the sequence {x,,} is defined well.
Note that 0 < yl < Tand uy > 7 & x > 5. Hence by
Lemma 12 we know that

((uF =yV)x = (uF =yV) y,x = y)
(58)
> (un - yl)|x -y, ¥x,yeH.



That is, uF — yV is strongly monotone for 0 < yl < 7 < un.
Moreover, it is clear that uF — yV is Lipschitz continuous. So
the VIP (50) has only one solution. Below we use g € Q to

denote the unique solution of the VIP (50).
Now, let us show that {

e, = £

= (| T(Omer) (I = 7pBy) AM 'x

"Mon n

— O (I- "M,nBM) AI:,/I_IP”

"™n

< H(I rMnBM) AM lxn

~(I = yuBur) AIXI—IP"

M-1 M-1
< e, -

< HA(an - A(Lp

= lx. = pll-

Similarly, we have

v - £l
= "Pc (I - AnnAN) A

n

~Pc(I=An,An) AZZ_IP"

"(I /\Nn

~(I-AnnAN) AIZ_IP"

)AN 'u

n

N-1 N-1
< AN, - AT p|

< "Aonun - Aonp
= . - -
Combining (59) and (60), we have
v = pll < %, - £l
Since

p=PC(I_/\an)pzSnp+(l_sn)Tnp’

VA, € <OE>
L

x,} is bounded. In fact, take p € Q
arbitrarily. Then from (29) and Proposition 1(ii) we have
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where s, :=s,(A,) = 2 -A,L)/4 € (0,1/2). It is clear that
T,p = p foreach A, € (0,2/L). Thus, utilizing Lemma 13 and
the nonexpansivity of T,,, we obtain from (61) that

B
= "5n (van - tqu) + (I - SmuF) Tnvn

- (I - SnMF) TnP”

< "(I - Sn‘”F) Tnvn - (I n."lF) p"
+ 5, [lyVx, — uFpl|
<(1-s,7)|v.- 2l (63)
(59)
+ 5, (¥ [V, = Vo[ + |yVp - uFpl)
<(1-s5,7) |x, - 2l
+ 5, (Y |x, = p + Ve - uFpl)
=(1=s,(r=yD) |, - 2l
+ 5, lyVp - uFp] -
This implies that ||x, — pll < llyVp — uFpll/(t — yI). Hence
{x,} is bounded. So, according to (59) and (61) we know that
{u,}, v, {T,v,.}, {Vx,}, and {FT,v,} are bounded.
Next let us show that [u, — x,| — 0, [v,-u,| — 0,and
lx, — T,x,| = Oasn — oo.
Indeed, from (29) it follows that, for alli € {1,2,..., N}
andk € {1,2,..., M},
v, - pl’
N 2
(60) = [A%u, - ]
i 2
< A%, - £
= [Pt = Ay ADA - Petl - A, ADp|
i-1 2
<[ @A, AN w, - (1= 2,40
im 2
< a5 w2
+ Alﬂ (Aln 217! 'ALAI lu AIP“Z
(61) )
<, - pl
+ A (Ai = 211) 'AiAir:l”n - AiP"z
(62) < "xn - p”Z
A (Vo = 20) AN s, — Ap|
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= I
- e, of
< i, of

) (I - rk,an) Al:lxn

T
< “(I - rk,an)Al:lxn - (I - rk,an)P"Z

k-1 2
< a5 x, - p

+ T (Ten = 244 “BkAlfflxn - BkP“Z
2
< |lx. - pl
+ T (Tew = 244 “BkA’;_lxn - BkP'|2-

Thus, utilizing Lemma 7, from (49) and (64) we have

I - ol
= s, (¥Vx,, — uFp)
+ (I = s,uF) T,v,
— (I - s,uF) T,p|
< "(I - Sn["F) Tnvn - (I - Sru”F) Tnp“z
+ 2s,{yVx,, — uFp, x,, — p)
<(1- sn‘r)z"vn - p||2
+ 25n<YVXn - AMFP’ Xy~ P>
= (1-5,7)"Jv, - p|’
+2s,y(Vx,, - Vp,x,, — p)
+ 2571(pr - #FP> Xy — p)
<(1- snr)2||vn - p||2
+ anyl"xn - p”2
+2s, [yVp - uFpl ||x. - pl
< (1= 5,7)" [, - o
+ Ai,n (Ai,n - 2’71)

><“A A’ 'u, A,-p“z]

+ 25nyl||xn - p||2

(64)

+2s, |[yVp - uFp| ||x, - p|
< (1= 5,7) [, - 2
+ T (M = 244
x|, - Bl
+Ai, (Ai,n - 2’71‘)
x4, —A,-p||2]
+ 25,9l]%, - pI’
+2s, [lyvp - uFp| ||x, - pl
= [1-25, (= 1) + 22°] |, - o
-(1- snT)zrkn (24 = 11.)
x |Bea ' x, - By p||
+ A (20— Aiy)

+2s, [yVp - uFp|| ||x, - |

AN, AiP“Z

<|xu = ol + 527 — 2l
= (1= 5,7)" [ i = )
x |Bed x, - Bep|
+ A (20 = Ai)
A, - Al ]

+2s, [yVp - uFp|| |x, - pl
(65)

which implies that

B A x, — BkP||2

(1 - SnT)Z [rk,n (2Mk - rk,n)

A (21 = ”A Al ', - iP”Z] (66)

< sy7x, - ol
+2s, [yVp — uFp] |x, - pl-
Since {A;,} € [a;,b] € (0,27;) and {r,,} C [er, fi] € (0,2u),

foralli € {1,2,...,N}and k € {1,2,...,M}, froms, — 0
we conclude immediately that
lim "A Alu, —Aip" =0,
(67)

11m HBkA X, ka“ =0,

foralli € {1,2,...,N}and k € {1,2,..., M}.
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Furthermore, by Proposition 1(ii) we obtain that for each
ke{l,2,..., M}

[, - ol

2
(®9k) k-1 (®¢k)
= [T (1 — i, By) A, ~ T30 (1 -1y, By) p||

< <(I - rk,an) A]:lxn - (I - rk,an) p» AI;xn - P>

= () B e, (B o

+ |, ol

-0 B A, — (=7 B p
-85 x, - )

k-1

k 2
.= 1|

1
SE( n P||2+

—"A';*lx,, - A’;xn ~Tkm (BkAI;lxn - ka)"2) ’
(68)

which implies that

2
1
.= 1|

k 2
.- p| <

-1
A X, — A];xn

n

~Bep)|

k-1
- rk,n (BkAn xn

k-1 2 k-1 k|2
= & o = o] - A5 2, - A

2 k-1 2
= T || BBy Xn — BkP"

+ 217, (0 x, — A% x,, BLAN X, - Bip)

2

IA

k=1 Ak
n n'xn n-n

Ak—lxn _ p'lz _

+ Zrk)n

x |Bea ', -

< "xn - P”Z - A]:’l_lxﬂ - ]; n

k-1 k
+ 21, "An X, - Anxn"

x |BiA 'x, - Byp| -
(69)

Also, by Proposition 2(iii), we obtain that for each i €
{1,2,..., N}

N u, - p"2

"PC (I Azn l)

PC(I /\zn 1 P"2

Abstract and Applied Analysis
= <(I AznAz)Al 1” - (I /\zn i p A nln p>

= (=2 A, - (180

2
i
_"(I /\Jn 1) llun
(1= 2404 p = (M, = p)[)
1
<5 (I o]+

i-1 i
—“An u, - AN, u, -

N’y Pll

~AinlAih - A

< 2 (- ol + i, - o

_"Ai;lun B Ain”n - (Ail\’;lun - Aip)uz),

(70)
which implies
e I T
- ”Al;lun - Ainun - Ai,rl(Aij\l;lz/lYl - A’Ap)"2
= o = oI 7 =
2 A - A -

+ 2Ai,n<Aln1un - Anun’ AiAi;Iun - A1P>
< ||un - p||2 - ”A';lun - A"nun“2
+21;, "A:lun - Ainun||

x |AA w, - Apl.
Thus, utilizing Lemma 7, from (49), (69), and (71) we have

I - oI
= |ls, (yVx, = uFp) + (I = s,uF) T,,
- (I - Sn[’lF) Tnp||2

< “(I - SmuF) Tnvn - (I - SnMF) Tnpllz
+ 25n<YV’Cn - AMFP’ Xy~ P>

< (1=5,7) v - pI
+ ZSnyl"xn - p||2
+2s, [yVp - uFp|l |x, - pl



Abstract and Applied Analysis 1

= (1= s, AYu, - pff +2r, A5, = A, || Bty x, - B

+21;,

o 3
w2591, = p+ 25, [yVo - ] [, - Ay = Nt | [ 4, = A

wa + 25, IyVo - P |, - o
SOl .
S\x.—pl +s,7 X%, —p —(L=s,T
v 25,11 ol + 25, IyVp - wFpl I, - ol

A ARy P A — A |
i-1 i 2 X n Xn T BX| T n Un = DUy
AN, u,—Nou,

<(1- snr)2 ["un - p||2 -

k-1 k
AN x, — AN x
+2/\i,n n n’n

+ Zrk’n n

Atu, - A, ' “BkA};_lxﬂ B ka“

l + 24, A, - A || AN, - Asp|

x| AA w, - A p|

2 + 25, [|yVp - uFp| |x, - pll-
+ 25,1lx, - p

(72)
+2s, [yVp - uFp| |x. - Pl It immediately follows that
(1 2[IAM, _ Z_AH A 2
(15" [ Jails =l =" = Al (1= 5,2 (|5, - b %, - )
+ 20, A, - A,
’ < s, - ol
i1 4
<4t - 4] 21 [, - Al B - B Y

+ ZSnyl“xn - p||2

+2s, [yVp — uFp|| |x, - pl

i-1 i
+ 20, A, w, — A,

AiAirII”n - AiP"

+ 25, [yVp - uFp| %, - pll-

2 k 2 i-1 i 2
< (1-s,7) [ Ny =l = A% - N, Since {A;,,} € [a;,b] € (0,27;,) and {r; .} C ey, fi.] € (0,2p4),
i1 i foralli € {1,2,..., N}and k € {1,2,..., M}, from (67) and
+2M5, A, u, — Aln”n” s, — 0we deduce that
i1
x| A, - Ap] | Tim 4%, - akx, | =0,
i T (74)
+2s,yl||x, - pl nh—>ngo "A’;lun - A’nun" =0,
+2s, ||yVp — uFp| |x, — p
n “ ” || n " i foralli € {1,2,..., N}andk € {1,2,..., M}. Hence we get
<(1- SnT)z ["xn - P”Z - “A];_lxn - A];x”“ 0 M
k-1 k ”xn - un” = | Ax = Ay x""
+ 21, "An X, — Anx,," o .
. " <|Ax, —ALx,
x |B.AY %, - B.p
o -3 &
1— 1
_"A” u"_Anun" 4 oeee 4 AMilx —AMx
n n non
+2A;, Ay = N, — 0 asn— 0o
i-1
X ”AiAn U, — Aip' ] "”n - Vn” = "Aonun - AIZun”
+ 26,1, - plf ol
< "Anun - Anun
+ 25, [yVp - uFp| x, - | o AL, — A2 (76)
n-n n-n

< (125,50 + 577 ey~ plF - (1577 Y A

k-1 ko |? i-1 i
x(”An xn—Anxn" + A, un—Anun“)

— 0 asn— o00.
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So, taking into account that [ x,, — v, || < lIx,, —u, | + lu, —v,I,
we have
Jim fx, — v, = 0. (77)
Thus, from (77) and s, — 0 we have
"Vn - TnVn" < ”Vn - xn” + “xn - Tnvn"
= ||vn - xn” +s, ||nyn - ‘uFTnVn” (78)
— 0

as n — 0.

Now we show that ||x, - T, x,| — 0asn — oo.In fact, from
the nonexpansivity of T,,, we have

I = Tueall <l = vall + v = Tval
+ | T, = T, | (79)
<2 [lx, = vl + v, = T -
By (77) and (78), we get
Jim e, = Tx, || = 0. (80)
From (78) it is easy to see that
Jim |x, = T,v,[ =o0. (81)
Observe that
1Pc (1= A V) v, =il
= v+ (1= 5,) Tyvy = v
= (1=5)[Tv, =l

< ||Tnvn - vn" ,

(82)

where s, = (2 -1,L)/4 € (0,1/2) for each A,, € (0,2/L).
Hence we have

2
P(I——V) -
”C Lf Vi = Vn

< ”PC <1 - %Vf) v, = Po (I = A, Vf)v,

+]|Pc (I = A, Vf) v, — v,
(83)

< "(I - %Vf) v, — (I =1, V) v,
+[Pe (I =2,9f) v, = v
< (20 ) I Gl + =il

From the boundedness of {v,},s, — 0 (& A, — 2/L) and
IT,v,, — v, = 0 (due to (78)), it follows that

=0. (84)

2
Jlim v, — Pe (I - EVf) v,

Abstract and Applied Analysis

Further, we show that w,(x,) ¢ Q. Indeed, since {x,}
is bounded, there exists a subsequence {xni} of {x,} which
converges weakly to some w. Note that lim, _, llx, — u,l =
0 (dueto (75)). Hence x, — w.Since Cis closed and convex,
C is weakly closed. So, we have w € C. From (74)-(75), we

have that A’;_xni - w, Ay, = wu, = wandv, —w,
wherek € {1,2,...,M}andm € {1,2,..., N}. First, we prove
thatw € (., VI(C, A,,). Let

A b >
T y= mV+Nev, veC (85)
9, v¢C,

wherem € {1,2,...,N}. Let (v,u) € G(T,,). Sinceu — A, v €
Nevand ATu, € C, we have

(v—A"u

n-n>

u—-A,v)=0. (86)

On the other hand, from A7 u, = Po(I - /\m,nAm)A"yTlun and
v € C, we have

<v - AN, AT, - (A:’;_lun - /\m,nAmA:?_lun» >0,
(87)

and hence

A'u, — A"y
<v -Au,, % + AmArzlun> >0. (88)

m,n

Therefore we have
m
<V - A”iu”x” 1/l>
m
> (v-— An,.”n,»AmV)

> <v = At Amv>

m m—1
_ _ Am Aniu”i A"i u”i +A Am—l
v n; Uy, A m**n; Uy,

mn;
m m
= <v — A Uy, Ay — AmAn,-”n,->
m m m—1
+ (V= AL u, Ay N, — AN )

m m—1
Am A”iu”i B A"i uni
- V- niu"i’ —)t

mn;

m m m—1
> (v= A, AN, = AN, )
m m—1
A An,-“n,- An,- U,
(VA )
mn;

(89)

From (74) and since A, is Lipschitz continuous, we obtain
that lim,, _, . |A,,A"u, — A,, A" 'u,|| = 0. From AL u, —
w, {A;,} C [a;,b] € (0,21;), foralli € {1,2,..., N} and (74),
we have

(v—w,u) >0. (90)
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Since T,, is maximal monotone, we have w € T,'0
and hence w € VI(C,A,), m = 1,2,...,N, which
implies w € ﬂﬁleI(C,Am). Next we prove that
w € (L, GMEP(®y, ¢y, By). Since Ahx, = TiO%(I -
BN %, n > 1,k € {1,2,..., M}, we have

O (A, ) + 01 () — i (A x,)

+ <BkA’;_1xn, y - Al;xn>

(o1
+ —(y- A};xn, A’;xn - A’:lxn) >0
Tkn
By (A2), we have
o (¥) — ok (Al;xn) + <BkAI;_1xn’y - Alilxn>
o (M b, 07, ©2

> 0, (y, A]:lxn) .

Letz, =ty+(1-t)w, forallt € (0,1] and y € C. This implies
that z, € C. Then, we have

<zt — Ak xn,Bkzt>

n
= P (Alilxn) -9 (2,)
+(z, - Al;xn, B.z,)
—(z, - A];xn, BkA];_lxn)
_ <zt - A x,, —A];x" ~ A, >
Tkn
+ 0, (zt, A];xn) (93)
= Pk (Al;xn) - ¢ ()
+(z, - A];xn, Bz, — BkA];xn)
+(z, - A];xn, BkA];xn - BkAl;_lxn)
(a0
Tkn
+ 0 (zt, A];xn) .
By (74), we have ||BkAl;xn - BkAI;_lxnll — Oasn — oo.

Furthermore, by the monotonicity of By, we obtain (z, —
A*x,, Bz, - BkA];xn) > 0. Then, by (A4) we obtain

n’n’

(z, - w, Bizy) 2 ¢ (W) - @ (2,) + O (2, w). (94)

13
Utilizing (A1), (A4), and (94), we obtain
0= 0y (z:,2) + i (2) - 91 ()
<t (2, )
+(1-1) O (2, w) + ty ()
+ (1= 1) g (W) — ¢y (1) ©5)

<t[0 (2 ¥) + 9 (¥) — i (2)]
+(1-1){(z, —w, Byz;)
= 1[0k (20 ¥) + o1 (¥) — i (2,)]
+(1-t)t(y — w, Byz,),
and hence

0< 0 (20 7) + 1 (¥) — i (2,) + (1 =) {y —w, Bkzt2§6)

Lettingt — 0, we have, for each y € C,
0< 0 (w,y) + ¢ (y) - o (W) + (y —w, Bw). ~ (97)

This implies that w € GMEP(O, ¢, B,) and hence w €

ﬂ,ivil GMEP(Oy, ¢, By). Further, let us show that w € T. As
a matter of fact, from (84), Ve — W, and Lemma 9, we
conclude that

w= P (I- %Vf) w, (98)

So, w € VI(C,Vf) = T. Therefore, w ¢ ﬂf\ll VI(C,A;) n
ﬂ,ivil GMEP(Oy, ¢, B,) N T =: Q. This shows that w,,(x,) C
Q.

Finally, let us show that x, — qasn — 0o, where g is
the unique solution of the VIP (50). Indeed, we note that, for
w € Qwithx, —w,

x, —w = s, (yVx, — uFw)

(99)
+(I = s,uF)T,v, — (I - s,uF) w.
By (61) and Lemma 13, we obtain that
2
I, — w]
=Sy <van - .qu’ Xy — w>
+ <(I - SnMF) Tnvn - (I - SnMF) w, X, — w>
=Sy <van - /’le’ Xy — w>
+||(I = s,uF) T,v, — (I - s,uF) w| |x, —w| (100)

<s, (yVx, - pFw,x, — w)
+ (1= 5,7) v = w] [}, — ]
<s, (yVx, - pFw,x, — w)

+(1=s,7)|x, - w||2.
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Hence it follows that

IN

1
"xn - wuz ; (nyn - [/le, Xy — w>

1 (y(vx, - Vw, x,, — w)
T

+(yVw - pFw, x,, — w))

1
< - (yl“xn - w||2 + (yVw — uFw, x,, - w)) ,
(101)
which hence leads to
Vw - uFw, x,, —w
R
Ty
In particular, we have
Vw - pFw, x,, —
x, —w| < YV~ pw, x,, — w) (103)

T -yl

Since x,, — w, it follows from (103) thatx,, — wasi — ©o.
Now we show that w solves the VIP' (50). Since x,, =
s,yVx, + (I —s,uF)T,v,, we have

(uF = yV) x,
1 (104)
= _S_ ((I - Sn[’tF) Xn — (I - sn."lF) Tnvn) .

n

It follows that, for each p € Q,
<(.MF - )/V) K> Xy = P>

= L (I = $,iF) %, — (I = 5,4F) T, %, - )
Sl’l

= _l <(I - Sm”F) Xn — (I _SnMF) Tnvn’xn _p>
S

n

= L {(L - $,F) %, ~ (1 = $,F) T,AY A, x, ~ p)
Sn

n n>

(T - (T P )

+<MFx —yFTA An > X —p>

< (uFx, — uFT, A} AY'x,. x, - p)
(105)

since I — THAIZA]:I is monotone (i.e., {((I — TnAI:AJZI)x -(I-
T,ANAM)y,x — y) > 0, for all x,y € H. This is due to
the nonexpansivity of TnAI;] AIZI )- Since ||lx, = T,v,| = (I -
TnAIZ AIZI )x,l — 0asn — o0, by replacing # in (105) with
n; and letting i — 00, we get

((WF ~yV)w,w = p) = lim ((4F = V) x,,x, = p)
< lim <‘qun1_ —uFT, v, x, — p>
=0.

(106)
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That is, w € Q) is a solution of VIP (50).
Finally we show that the sequence {x,,} converges strongly
to g. To thisend, let {x,, } be another subsequence of {x, } such

that x, — @. By the same arguments as above, we have
w € Q. Moreover, it follows from (106) that

((uF = yV)w,w —w) < 0. (107)
Interchanging w and @, we obtain

((uF —yV) w,w - w) < 0. (108)

Utilizing Lemma 12 and adding the two inequalities (107) and
(108), we have

(un = ¥1) Ihw - @1
<((uF-yV)w - (uF —yV)w,w - w) < 0.

(109)

Hence w = w. Therefore we conclude that x, — wasn —
0o. Taking into account the uniqueness of solutions of VIP
(50), we have w = gq. The VIP (50) can be rewritten as

(I-uF+yV)q-q,q-p)=0, VpeQ.  (10)
By Proposition 2(i), this is equivalent to the fixed point
equation

Po(I-uF+yV)g=gq. (111)
This completes the proof. O

Corollary 16. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ® be a bifunction
from CxC to R satisfying (Al)-(A4) andletp : C — RU{+0c0}
be a proper lower semicontinuous and convex function. Let B :
H — Hand A; : C — H be {-inverse strongly monotone
and w;-inverse strongly monotone, respectively, fori = 1,2. Let
F : H — H be a x-Lipschitzian and n-strongly monotone
operator with positive constantsk,n > 0. LetV: H — H bean
I-Lipschitzian mapping with constant 1 > 0. Let 0 < u < 21/x”

and 0 < yl < 7, where T = 1 — |1 — u(2n — px?). Assume that

Q := GMEP(®, ¢, B)NVI(C, A)NVI(C, A,)NT + 0 and that
either (B1) or (B2) holds. Let {x,} be a sequence generated by

O (t, y) + 9 (¥) — ¢ () + (B, y — 14,)
1
+—{y-u,u,—x,)>0 VyeC,
T (112)
Vi = PC (I - A2,11142)})(3 (I - A1,;’1141) Uy

x, = $,yVx, + (I - s,uF) T,v,, VYn=>1,

where Po(I - A, Vf) = s, I+(1—s,)T, (here T, is nonexpansive
ands, = (2—-A,L)/4 € (0,1/2) foreach A, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) foreach A,, € (0,2/L),lim,_, s, =0 (&
lim, _, A, = 2/L);
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(i) A} € [a,b] € (0,25, fori = 1,2
(iii) {r,}} < [e, f] < (0,20).

Then {x,} converges strongly as A, — 2/L (s, — 0)toa
point q € Q, which is a unique solution of the VIP:

((uF=yV)q.p-q) =0,

Corollary 17. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ® be a bifunction
from C x C to R satisfying (Al)-(A4) and let ¢ : C — R U
{+00} be a proper lower semicontinuous and convex function.
Let B: H — Hand A : C — H be {-inverse strongly
monotone and &-inverse strongly monotone, respectively. Let F :
H — H beax-Lipschitzian and n-strongly monotone operator
with positive constants k,51 > 0. Let V. : H — H be an I-
Lipschitzian mapping with constant 1 > 0. Let 0 < u < 21/’

Vp e Q. (113)

and 0 < yl < 7, where T = 1 — \|1 — u(2n — px?). Assume that

Q := GMEP(0,¢,B) N VI(C, A) N T #0 and that either (B1)
or (B2) holds. Let {x,} be a sequence generated by

O (uy y) + @ (y) — 9 (u,) + (Bx,, y — u4,,)

1
+ —(y—-u,u,—x, =20, VyeC,
"' (114)

YV = PC (I - pnA) Up>

x, = $,yVx, + (I - s,uF) T,v,, Vn=>1,

where Po(I-A,Vf) = s, I1+(1-s,)T, (here T, is nonexpansive
ands, = (2-A,L)/4 € (0,1/2) foreach A,, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) foreach A,, € (0,2/L),lim,,_, s, =0 (&
lim, , A, = 2/L);

(ii) {p,} C [a,b]  (0,28);
(iii) {r,} < [e, f1 < (0,20).

Then {x,} converges strongly as A, — 2/L (s, — 0)toa
point q € Q, which is a unique solution of the VIP:
((uF-yV)q,p-q) >0,

Vp e Q. (115)

4. Explicit Iterative Algorithm and
Its Convergence Criteria

We next state and prove the second main result of this paper.

Theorem 18. Let C be a nonempty closed convex subset of
a real Hilbert space H. Let f : C — R be a convex
functional with L-Lipschitz continuous gradient Vf. Let M
and N be two integers. Let ®, be a bifunction from C x C
to R satisfying (Al1)-(A4) and let ¢, : C — R U {+o0}
be a proper lower semicontinuous and convex function, where
ke{l,2,...,M}. Let B, : H - Hand A; : C — H be -
inverse strongly monotone and n;-inverse strongly monotone,
respectively, where k € {1,2,...,M} andi € {1,2,...,N}. Let

15

F : H — H be a k-Lipschitzian and n-strongly monotone
operator with positive constantsk,n > 0. LetV: H — H bean
I-Lipschitzian mapping with constant1 > 0. Let 0 < u < 217/x”

\1 — u(2y — ux?). Assume that
Q = N, GMEP(®y, ¢, By) N Y, VI(C, A;) N T #0 and
that either (B1) or (B2) holds. For arbitrarily given x, € H, let
{x,,} be a sequence generated by

and 0 < yl < 1, wheret =1-

(®arr9nr) (®n—1>Pn-1)
by = T (1= B ) TOH) (1 By )

9,
o Tr(ly,,l ) (I - rl,nBl) Xp>

Ve = Po (I - /\N,nAN) Pe (I - ANfl,nANfl)
- Po (I - Az,nAz) Pe (I - )‘1,nA1) Up>
'xn+1 = Snyvxn + ﬂnxn

+ ((1 - ﬁn)l - SnMF) Tnvn’ Vn>1,

(116)

where Po(I-A,Vf) = s, 1+(1-s,)T, (here T, is nonexpansive
ands, = (2—-A,L)/4 € (0,1/2) foreach A, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) for each A,, € (0,2/L), and lim,,_, s, =

0 (& lim,_, A, =2/L);

(ii) {B,} < (0,1) and 0 < liminf,_, B, < limsup,_,
B, <L

(iii) {A;,,} € lab] € (0,21;) and lim,, , IA; 01 — Al =

0, foralli € {1,2,...,N}

(iv) {reu} < lew fil € (0,2p) andlim,, _, |rp i1 — 7ol =
0, forallk e {1,2,...,M}.

Then {x,} converges strongly as A, — 2/L (& s, — 0)toa
point q € Q, which is a unique solution of VIP (50).

Proof. First of all, repeating the same arguments as in Theo-
rem 15, we can write

2-A,L

Po(I-A,Vf) = 4" 1+2+A"LT

4 " a17)
=s,J+(1-s,)T,

where T, is nonexpansive and s,, := s,(A,) = (2-1,L)/4 €
(0,1/2) for each A, € (0,2/L). It is clear that

2
A, — I s, — 0. (118)
Put
k Oy [C
An = Tr(k,nk 7 (I - rk,an) Tik,inl Pic) (I - rkfl,an—l)
© o (119)
Tt Trlmpq’1 (I - rl,nBl) Xu>
forallk € {1,2,...,M}andn > 1,
Aln =P (I - Ai,nAi) Pe (I - Ai—l,nAi—l)
(120)

PC (I_AZ,nAZ)PC (I _Al,nAl)’
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foralli € {1,2,...,N}andn > 1,andA(il = Aon = I,whereI is
the identity mapping on H. Then we have thatu,, = AMx, and

v, = AI;] u,,. In addition, taking into consideration conditions
(i) and (ii), we may assume, without loss of generality, that
s, <1-p,,foralln>1.

We divide the remainder of the proof into several steps.

Step 1. Let us show that |lx,, — pll < max{llx, — pll, lyVp -
uFpll/(t —yD}, foralln > 1 and p € Q. Indeed, take p € Q
arbitrarily. Repeating the same arguments as those of (59)-
(61) in the proof of Theorem 15, we obtain

ot = Pl < % = 2l
lv. = pll < . - 2l (121)
v, = pll < ||x, - pll-

Taking into account conditions (i) and (ii), we may assume,

without loss of generality, thats, < 1 -3, for alln > 1. Then
from (121), T,,p = p, and Lemma 13, we have

%1 — 2l
= I, (yVx, = uFp) + B, (x, - p)
+((1=B) I = s,uF) T,
~((1=B) I~ s,uF) T,p|
< s, [lyVx, — ukp|
(1-B,)

X (I— jﬁnMF>TV

S?’l
—(I— 1_/3n‘uF>Tn

< s, (lyVx, = yvp| + |yVp - uFp|)
+ ﬁn ”xn - p"

+(1-4,)(1-

+ﬁn ”xn_p" +

(122)

v, ol
-8, Vu= P

< s, (lyVx, = yVp| + lyVp - uFpl)
+ Bl = pll
+ (1= By = s,7) |x, — Pl

< syl |lx, = pll + s, [yVp - uFp|
+(1=s,7) %, - pl

= (1 =5, (v = 1)) |, - pl

oy VP = el
T—yl

Vp — uFp
Smax«l“xn—p",w}.
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By induction, we have

lyve - uFp]| }

X,—p Smax{x—p,— ,
b = pl < max{ - I 222 -

Vn>1.

Hence {x,} is bounded. According to (121), {u,,}, {v,}, {T,,v,,},
{Vx,}, and {FT,v,} are also bounded.

Step 2. Let us show that ||x,,,; — x,| — 0asn — oo. To this

n+1
end, define
Xps1 = Buxn + (1= B) 2z, V> 1. (124)
Observe that, from the definition of z,,,
Zp+l ~ Zn
_ Xn+2 _ﬁn+1xn+1 _ Xnt1 ﬁn n
1- [))n+1 I- ﬁn
_ Sn+1yvxn+1 + ((1 B ﬁn+1) I 5n+1/"F) Tn+lvn+1
1- ﬁn-fl
_ Snyvxn + ((1 B ﬁn) I- sn."lF) Tnvn
1- /3;1
Sp+1 Sn
=l Vx| - 1V
1_ﬁn+1y et 1_[’)71)/ o
+ Tn+lvn+1 - Tnvn
S
FT _ n+l T
1 _ /3".“ Vi 1- [;n+1 n+1Vn+1
= SVl—+1 (van ‘uF n+1Y; n+1)
1- /3n+1
+ 1 8 (!"FTnVn - van)
“ Pn
+ Tn+1 n+l Tnvn'
(125)
Thus, it follows that
||Zn+1 - Zn"
S
< 75— Vel + #IF T vl
- ﬁn+1
s (126)
+ " ([ FTv,| + v [V, ])
1-8,
" n+1Vn+1 — Tnvn“ .
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On the other hand, since Vf is (1/L)-ism, Po(I — A, Vf) is
nonexpansive for A, € (0,2/L). So, it follows that, for any
given p € Q),
“PC (I - )Ln+1vf) Vn"

< ”PC (I - An+1vf) Vi — P” + ”p"

= ||PC (I - An+lvf) Vo — PC (I - An+lvf)p|| + "p”

< v - 2l + o

< [l + 21l

(127)

This together with the boundedness of {v,} implies that
{Pc(I - A, Vf)v,} is bounded. Also, observe that

” n+1Vn Tnvn "

i H 4P (1 = Ay V) -

(2 /\n+lL)IV

2+A,,L "
4P-(I-A,Vf)-(2-A,L)I
2+A,L '
4P (T =20 V) - 4P (1= A.Vf)
ST 2 AL " 2eA L

2-AL 2= Ayl
2+)LL C2+A L™

n+l

= [ (4@ +A,L) P (I = A,y V) v,

—4 (2 + /\n+lL) pC (I - /‘nvf) Vn)
X((2+ A L) (24 A,1))" |

4L |/\n+1 | " ”
(2 +A,qL)(2+A,L) '

/\n+1)PC (I_/\nHVf) Vi
+4(2+1,,,L)
><(pC (I_ /\n+lvf) Y _PC (I_ /\nvf) Vn))

x((2+ Ayal) (2+2,0)

= ” (4L ()Ln -

4L |/\n+1 | " ”
(2 +A,qL)(2+A,L) n

4L |)Ln - /\n+1| ”Pc (I-2X,1Vf) Vn”
(2 + )‘n+1L) (2 + /\nL)

(4@ + Aal)

X |[Pc (I = A V) v = Po (1= A, VF) )

17
x((2+ Ay L) 2+ A,L) )
4LMHH Anl "V “
(2 +A,,L)2+A,L) " "
< Mn+1 - /‘nl
X [L|Pe (I = Ay VE) vl + 4 [9F () + L|val]
< M |An+1 nl >
(128)

where SUPps {LIPC(I = Ay VAVl + 41V ()l + Lilv, I} < M
for some M > 0. So, by (128), we have that

” n+1Vn+1 — T v, " < ” n+1Vn+1 — Tn+lvn||
+ ||Tn+lvn - Tnvn"

~ 12

< s =l + A =2, 02
4M

= ||Vn+1 - Vn" + T (5n+1 + Sn) .

Note that
"Vn+l - 1)rt" = ' ntlUnel — "

"PC (I ANn+1AN) An+1 n+1

-Pc (I - /\N,nAN) AIZ_ “n"
n+1 n+1

< [[Po (1= Anpr An) A%

_PC(I /\NnAN)ArHl n+l||

”PC(I /\NnAN)AnJrl Uy
_PC (I ANnAN) AN lun"

“(I ANn+1AN)An+1 Upiy

_(I /\NnAN)A

n+1 Upi1

+ (1= AnnAn) AL
(I ANn

Aan

N-1 N-1
An+1 Uyt _An Uy

n+1 Upt1

)AN lun”

AAN:

= |AN,n+1 n+1 Uiy

+|

|ANn+1 Aan”ANAnH n+1“

N-2 ||

+ ANt = ANl "AN—lAnH Uiy
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N-2
# A - AT
< |AN,n+1 ANn| ANAn+1 n+1"
+ ANt — ANl |'AN—1An+1 n+1||

toeeet |A1,n+1 1n| "A An+1un+1.|

0 0
+ "Anﬂum—l - Anun

N
= MOZ |Ai,n+1 - /\i,n| + ”un+1 - un” >
i=1
(130)

where sup . {Y~, IA,A w1} < M, for some M, > 0.
Also, utilizing Proposition 1(ii), (v) we deduce that

”un+1 - un”

=[5 = 85

n+1xn+1

_ |I7(®apan) M-1
- T”M,n+1 (I - rM,n+lBM) An+1 Xn+1

—TOrer) (I -7pnBu) AM "x

TM” n

(Or:Par) M-1
’1—‘1‘M,‘+1 (I - rM,n+lBM) An+1 Xn+1

(On1:Pr) M-1
_TrM:J P (I - rM,nBM) An+1 xn+1

(OrrP0m) M-1
+ TrMiA o (I - rM,nBM) An+1 Xn+1

[CIVEIW) M-1
_TrM,iA P (I - rM,nBM) A

(®npPr) M-1
TTM:/il M (I - rM,n+lBM) An+1 Xnt1

C
TrM}:l o) (I- T'p, ar1Bumr) An+1 Xn+l

) M-1
(I- "M,n+1BM) Nt Xni

(®n9)
_Ter:[ u (I - rMnBM) An+l Xn+1

+ “(I - rM,nBM) AI:z/Iﬁ:llerl - (I - rM,nBM) AIZIilxn“

lrM,nJrl - rM,n|
< Lonr ARl

M i+l

(Onr1:9r) M-1
T”Mn 1 (I - rM,n+lBM) An+1 Xn+1

M-1
- (I - rM,n+lBM) An+1 Xn+1

|rMn+1 rMnl ”BMAnH xn+1||

AM—l

+ "AnJrl Xy n xn"
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= ITM,n+1 - rM,n|

| I

1
+ —_—
Mo+l

T(®M Pa)

"M+l

(I- "'y, a1 Ba) An+1 Xn+1

|

-(I- 'y, e1Bar) An+1 Xn+1

AM71

+ AN - 85 |

< IrM,nJrl - rM,n|

1
+

|: HBMA n+1 Xn+1
"M+

(@ ) M-1
T, w90 (T — rM,n+lBM) TP

"Mpn+1

M-1
- (I - rM,nHBM) An+1 Xn+1

teeet Irl,n+1 - 71,n|

1

+

|:||B An+1xn+1

1,n+1

(€] 0
T( op1) (I - rl,n+lBl) An+1xn+1

T n+1

-(I- rl,n+lBl) A?’H—lxnﬂ

0 0
+ “Anﬂxnﬂ - Anxn

~ M
< Mlz lrk,n+1 - rk,n| + “xn+1 - xn" >
k=1

(131)
where M, > 0 is a constant such that, for each n > 1,
M
Z HlBk n+1xn+1
k=1
L |r©eeo k-1 132
+ |TrknkH‘Pk (I = i1 Be) A X1 (132)
Tlen+1 ’

- (I - rk,n+1Bk) A]:;rllxwrl ] < Ml'

Combining (126)-(131), we get

”zn+1 - Zn” - ”xnﬂ - xn"

< il Sn+1

"B (Y"V’Cn+1”+!/’"F +1Vn+1||)
n+1
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a)

T1- /3

” ni1Varl — Tnvn” - “xwrl - xn”

Snt1

1= B

IN

(y ||Vxn+1" Ty "F +1Vn+1“)

S
- Ty V)
4
* ||Vn+1 - Vn" + T (5n+1 + Sn)
- "xn+1 - xn"
< ”/}1 Y IV | + | FT v [)
n+l
F e Ty IV

N
+ MOZ |Ai,n+1 - /\i,nl + ”unH - un"
i=1

4M
+ T (Sn+1 + sn)

- ||xn+1 - xn"
< HE (v ||Vxn+1|| tu "F +1Vn+1||
n+1
e Gl V)

N
+ MOZ |Ai,n+1 - /\i,nl

i=1

_ M
+ Ml Z |rk,n+1 - rk,n'
k=1
AN
+ ||xn+1 - xn" + T (Sn+1 + Sn)
- ||xn+1 - xn"
n+1

= /3 (Y ||Vxn+1|| + Au "F +1Vn+1||
n+l

x FT,v,| +y|Vx,
1_/3n(#|| I+ v [vxal)

N
+ Moz |Ai,n+1 - /\i,nl
i=1

+ Ml z |rk,n+1 - rk,n'
k=1

4M
+ T (5n+1 + Sn) .

(133)
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Thus, it follows from (133) and conditions (i)—(iv) that
limsup (2,01 = 2, = [ns =2} <0 (134)
Hence by Lemma 11 we have
Jim |z, - x,[ = 0. (135)

Consequently,

lim_x,,, =X, = lim (1-8,) ]z,

n— 00

—x,] =0, (136)
and by (129)-(131),

nlLIl'olo "un+1 - un" =0,

,,ango “Vn+1 - Vn” =0, (137)

im [T,y Vet — Tov,| = 0.

n->00 n+l

Step 3. Let us show that IIBkA’;’lxn - Bepl
IA;A"  u, — A;pll — 0, forall k € {1,2,...
{1,2,...,N}.

Indeed, since

— 0 and
,M}and i €

Xn+1 = 5nyvxn + ﬁnxn + ((1 - /jn) I- snMF) Tnvn’ (138)

we have
"xn - Tnvn”
< ”xn - xn+1” + ”xn+1 - Tnvn“
(139)
< %0 = xpia || + 50 YV, — uFT, v,
+ ﬁn “xn - Tnvn" >
that is,
"xn - Tnvn" < 1— ”xn - xn+1"
n
(140)
+ [Vl + | FT ) -

n
l_ﬁn

So, from's, — 0, |x

follows that

w1 — Xl — 0, and condition (ii), it

nlLr%O ”xn - Tnvn“ =0. (141)
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Also, from (29) it follows that, for all i € {1,2,...
kef1,2,..., M},

, N} and

Iy, ol
= %~ o
< [, o]

= |Peld = Ay DAL, — Pl — 2, AP

intti

Lnt 1 LNttt

< || = A ADAS w, — (- 2, A0 p|

< |A5 = pl + Ay Ay = 20) AN 1y - A

< Jotn = 27 + Xi i = 20) [ A, = A

<y = oI + As (i = 21) | AN 1, — A
= oI

= &%, ol

< &%, ol

T (1 -1, B) A ',
10 (1 -1, B,) p|
< |1 - reuBOAS %, (T =i, BOP|
<[ a5 %, = ol + rien (ri — 26) | Bed - Bep||
< ot = I + 1 (i = 2000 B’y = Bep

(142)

Furthermore, utilizing Lemma 7, we deduce from (116) that

%1 - 2l
= s, (YW, = uFp) + B, (x, = Tyv,)
+ (I = s,uF) T,, - (I - s,uF) p|/
<||B. (s = T,v,)
+ (I = s,uF) T, = (I - s,uF) p||
+25,(yVx, — uFp, x,,, = p)
< [Bullxw = Tuval
+ (I = s,4F) T, = (I = s,uF) T, p|]°

+ 25, [yVa, = wFp|| |1 - P

Abstract and Applied Analysis

< [By o = Tovall + (1= 5,0) v = 2l
+25, 9V, = uFp| %51 = p

= (L= 5,0) v = oI + Bl = Tl
+2(1=5,7) By v = Pl %0 = T

+ 28, |[yVx, = uFp| | %1 — Pl -
(143)

From (142)-(143), it follows that
B §

< = oI + Ballxs = Tovi|’
+2(1=5,7) By v = pll 1% = Tval
+25, [lyVx, = uFp|| %1 - Pl

< ety = I+ Aip (i = 27) AN 0, — Asp||
+ Bl = Toval”
+2(1=5,7) By [va = pll % = Toval

+ 2$n "yvxn - [’tFp“ "xnﬂ - P"

(144)

< %0 = Pl + i (i — 208 "BkA]:lxn - ka||2
A (Vg = 20) AN s, — Ap|
+ Bl = Toval”
+2(1 = 5,7) By v = Pl 1w = Tl
+2s, |lyVx, = uFp| [per - Pl

and so

Bl x, - BkP“2

Tien (28 = i)

A (21— Ap,) AN, - Ap|]

<l = oI = s = I
+ Bl = Tova|”
+2(1=5,7) By [V = Pl 0 = Tova
+25, |[yVx, = uFp| %1 - Pl

< (% = 2l + %1 = 21D %0 = sl
+ Ballc, = Tl
+2(1=5,7) By [va = Pl |0 = Tova]

+ 25, [ vV, — wFp|| |01 - Pl
(145)
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Since {A;,,} € [a;,b] € (0,27;) and {ry.,,} C [ex, fi] € (0,2u4),
foralli € {1,2,..., N}andk € {1,2,..., M3}, by (136), (141),
and (145) we conclude immediately that

Tim |40 W, - Ap| = 0,

o (146)
lim || B’ x, = Bep| = 0,
foralli € {1,2,..., N}andk € {1,2,..., M}

Step 4. Let us show that |x,, —u,|| — 0, |y, —v,| — 0,and
lv,-Tv,l — O0asn — oo.

Indeed, by Proposition 1(ii) we obtain that for each k €
{1,2,..., M}

TR0 (1 - 1, ,B) Al x,
T (1= 1y, By) p||2
< (1= 1B A ',
—(I=reBi) P AL X, = )
= (10 - B A~ (1 B o
+ |k, - o]
[\ = 7B AT x,
(1 -rB) p- (85, - p)[)
< 5 (185w ol + s, = o

k-1 k k-1 2
An Xp — An'xn - rk,n(BkAn Xp — ka)" ) >

(147)
which implies that
&%, - o[
< [a¥x, - p||2
~ |85, - Ak, - 1, (BASx, ~ Bep)||
o, o~ s, - b
-2 Bt x, - Bep| o)

+ 21, (AN, - AR, B Ak, - Bep)
<ot ol o, - e

+ 21, |5 x, - AN | [BeA X, - By
<l = ol - 5 - e

k-1 k k-1
+ 21, A5 x, = Al || B x, - By

21

Also, by Proposition 2(iii), we obtain that for each i €
{1,2,...,N}

"Ainun - P||2
= [Pt = Ay ADAS u, — Pl — A, ADp|
< <(I - Ai,nAi) Airjlun
=(I=2:,4:) p, Ainun - P>
- % (“(I —XinA;) A, = (T- AinA;) P"2

+ (AL u, - p"

—||(1—)L. A

in i) Ain_lu

- (I - /\i,nAi) p- (Ainun - p)”z)

AL 2 Al 2
n Un— p| + wln ~ p

-

Aty = Nty = A (AN AiP)“z)

; 2
Anun - P"

1
<2 (bl +

A, — Ny, — A (AN, - AiP)HZ) ’

(149)
which implies
Anun - P“
< [y~ pI
- Airjlun - Ainun - Ai,n(AiAi;Iun - Azp)"z
i P2
= o = pI = A5 1 = A
(150)

A2 AN - A
+ 2Ai,n <Air:1un - Ainun’AiAiglun - Aip>
s S
< “un - P"2 - ”Alnlun - Alﬂu”"
20 A = A | AN - A
Thus, from (143), (148), and (150), we have
%01 - 2
< (1 - SnT)ZHVn - p"2 + ﬂﬁ“xn - Tnvnuz
+2 (1 - SnT) ﬁn ”Vn - p” ”xn - T”V””

+ 25, [ YV, = wFp|| %1 - Pl



= (1= 5,0 | AN, — p| + Blx, ~ Toval
+2(1=5,7) B, v = pll [0 ~ T
+25, |9V, = uEp| [0 - p

< (1= 5,7 | ALty = o[ + BEllx, ~ Tl

+2(1=5,7) B v = pll [0 ~ T

+ 25, [ vV, = wFp|| %01 - P

<(1-s,1)

X ["un - p||2 - "A'nlun -ANu,

1" n n

+2;,, ||A’;1un - A u,

AN, - Ap] ]

+ Brllxy = Toval’
+2(1=5,7) By v = Pl = Taval
+ 25, [lyVx,, = uFp|| %1 — P

= (1-s,7)°

dl

M 2 i-1 i 2
Anxn_p" - An un_Anun“

+2A;,

At = N A0S, - A,p)] |
+ ﬁi"xn - Tnvn"2
+2 (1 - SnT) ﬁn ”Vn - p” ”xn - Tnvn“
+2s, [V, — pFp| | %01 - Pl

<(1- snr)2

|

Ak 2 AL Al 2
wXn —P|| ~ n Un = DUy

i-1 i
+2/\i,n AN, u, —Nou,

AN, Ap) ]
+ Bl = Tovi|”

+2(1=5,7) By [va = Pl %0 = Tova

+ 28, [ YV, = uFp|l %1 P

<(1-s,7)
X ["xn - p||2 - "Alil_lxn - A’;xn”2

k-1 k
A, x, - A x,

+ 21y, BkAI;_lxn - ka“

A Al 2
n Un = DUy

+2A;,

A, |40, ~ 4,0
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+ ﬁrzn"xn - TnVn||2
+2 (1 - SnT) :8n an - p“ “xn - Tnvn“
+2s, [|[yVx, = pFp | %01 - Pl

_ 2
< |x, - p||2 -(1- snr)znA]; 'x, - A];xn

k-1 k k-1
+ 21, 1A, X, — ALx,|| (| BrA, X, — ka“

-(1- sn'r)2||A:1un - Ainun ?

+21;,

Ai:;lun - Ain””” ”AiAi;lun - Aip”
+ Bollx, = Tl
+2(1=5,7) B |l = Pll %0 = Tvall

+ 25, [ vV, — uFp|| |01 - plls

(151)
that is,
(15,0 (|8, - Al 4], - ]
< [ = I = Jtpes - 2

+ 2, |85, = A | [ B x, ~ Bip

20 A = A | A6, — A

+ ﬁft“‘xn - Tnvnllz

+2(1=5,7) B v = Pll 1% = T,
(152)

+ zsn ||van - #FP" "xn+1 - p"
< (o, = 2l + %1 = 21 260 = X |
+ 27 ||A’;‘1xn - A’;xn" ||BkA’;‘1xn - B, p||

i-1 i
+2A;, (A w, - N,

AN, - Ap|

1 n n
+ ﬁi”xn - Tnvn“z
+2(1=5,7) B v = Pll 1% = T,

+ 25, [yVx, = uFp| %1 = I

So, from s, — 0, (136), (141), and (146) we immediately get

. i1 i

Jim 47y = A
. . (153)

. -1

nlgrréo A, x, - A x,

=0,
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foralli € {1,2,...,N}andk € {1,2,..., M}. Note that

||xn - un" = 'A(an - Ajfxn
< A%k, - b + A%, - Al
+oe “Af_lxn - Ayxn“ ,
(154)
||un - vn" = “Aonun - AIZun”
< “Aonun - Alnun“ + “Alnun - Aznun“
+ot “Ai]_lun - AIZun .
Thus, from (153) we have
nlil%o e, = ] = 0,
(155)
nleréo [, = v, || = 0.
It is easy to see thatasn — oo
I, = vl < 126 = thal| + [|Jtts = ] — O (156)
Also, observe that
"TnVn - Vn“ = "Tnvn - xn” + ”xn - Vn” : (157)
Hence we have from (141)
Jim [T,,v,, = v,|| = 0. (158)

Step 5. Let us show thatlim sup, _, .. {(uF -yV)gq,q—-x,) <0,
where g € Q is the same as in Theorem 15; that is, g € Q
is a unique solution of VIP (50). To show this inequality, we
choose a subsequence {xn’,} of {x,} such that

lim sup ((uF =yV)aq,q - x,)
(159)
= lim ((uF -yV) 4,9~ x,,).

Since {x,} is bounded, there exists a subsequence {x,, } of
ij

{x,,,} which converges weakly to w. Without loss of generality,
we may assume that x, — w. From Step 4, we have that
A’;ixni - w, Ay u, — w,u, —wandv, — w,wherek €
{1,2,...,M}and m € {1,2,...,N}. Since v, — T,,v,, — 0 by
Step 4, by the same arguments as in the proof of Theorem 15,
we get w € Q. Since g = Py (I — yuF + yV)gq, it follows that

lim sup ((uF = YV) 4.4 = x,)
= lim ((uF -yV)q.q-x, ) (160)

=((uF-yV)g,q-w) <0.
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Step 6. Let us show that lim,, _, [lx,, — gll = 0, where g € Q is
the same as in Theorem 15; that is, g € () is a unique solution
of VIP (50). From (116), we know that

Xue1 —q = 8, (YVX, — pFq)
+ B (Tyv, — q)
+ (1= Bu) I = s,uF) T,v,
- ((1=B)I-s,uF)q.

Applying Lemmas 7 and 13 and noticing that T,,q = g and
v, —qll < llx, — qll, for all n > 1, we have

@161)

2
1 = al
< "ﬂn (Tnvn - q) + ((1 - /3n) I- Sru“F) Tnvn
- ((1 - :Bn) I- Sn["F) q"2
+25,(yVx, - uFq, X1 = @)
< [ﬁn ”Tnvn - q"
+ ||((1 - ﬁn) I- SnMF) Tnvn - ((1 - ﬁn) I- SmuF) q“]2
+ 25, (YVx, = YV X1 — )
+25,(yVq = pFq, x4, = q)

ﬂn "Tnvn - q“ + (1 - ﬁn)

S S
x| I—-—= ptF)Tnvn—<I— = yF)an
(-5 =
+ 25, (YVx, = YVq X0 — q)
+2s,(yVq — pFq, x,., — q)

Blvaal v -8 (1= 125 ) vl

+2s,(yVx, —YVq, X, — @)

+25,(yVq — pFq, x,.,1 — q)
= [ﬁn ”vn - q” + (1 - Bn - SnT) "Vn - q"]z
+25,(yVx, = YVq, X1 — @)
+2s,(yVq — uFq, X, — q)
[ﬁn ”'xn - q” + (1 - ﬁn - SnT) “xn - q"]2
+25,(yVx, = YVq, X1 — @)
+2s,(yVq — pFq, x,., — q)
<(1- sn‘r)zuxn - q“2

+ zsnyl "xn - q” ”xn+1 - ‘ZH

+2s,(yVq — pFq, x,.1 — q)

< (1-75,) %, -l

]z

IN

IN

sl (= al” + xus — al)

+25,(yVq - uFq, x,41 = q)-
(162)
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This implies that
s = all
- 1-21s, +7°s> +5,y]
B 1-s,yl

I, ~alf

2s
- S” " (YVq - uFq, X1 = q)

(1- 22 Y g

1—s,yl
T Sn 2
sl

+

2s, WV - uF — )
e VA HFD X =4
(T yl 2(r-vl)s,
< (1- 2520 Yl + 22
nY

TZS i 1
X (T )/l) 2 T—)/l <HFq_)/Vq)q_xn+1>

= (1 — 0y "xn - q” + onan’

(163)
where Mz = sup,.,lx, - qIIZ, o, = 2 -yD/A - s,¥D)s,
and

5 - T (uFq - yVa,q—x,..).  (164)
n (T )/l) )/l H q Y q’q n+l/-

From condition (i) and Step 5, it is easy to see that o, —
0,Y2,0, = coandlimsup, _, &, < 0. Hence, by Lemma 10,
we conclude that x, — gqasn — oo. This completes the
proof. O

Corollary 19. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ® be a bifunction
from CxC to R satisfying (Al)-(A4) andlet ¢ : C — RU{+00}
be a proper lower semicontinuous and convex function. Let B :
H — Hand A; : C — H be {-inverse strongly monotone
and w;-inverse strongly monotone, respectively, fori = 1,2. Let
F : H — H be a x-Lipschitzian and n-strongly monotone
operator with positive constantsk,n > 0. LetV: H — H bean
I-Lipschitzian mapping with constant 1 > 0. Let 0 < u < 217/x”

and 0 < yl < 7, where T = 1 — \|1 — u(2n — px?). Assume that

Q := GMEP(0®, ¢, B)NVI(C, A,)NVI(C, A,)NT + @ and that
either (B1) or (B2) holds. For arbitrarily given x, € H, let {x,,}
be a sequence generated by

O (1, ) + 9 () — ¢ (u,) + (Bx,, y — )

1
+—(y-u,u,-—x,)=20, VyeC,

n
Vu = PC (I_AZ,nAZ)PC (I_Al,nAl)un’ (165)
Xn+1 = SnYV’Cn + ﬁnxn

+((1-B,)I-s,uF)T,v,, VYn=1,
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where Po(I- A, Vf) = s,1+(1-s,)T, (here T, is nonexpansive
ands, = (2—-A,L)/4 € (0,1/2) foreach A,, € (0,2/L)). Assume
that the following conditions hold:

(i) s, € (0,1/2) for each A,, € (0,2/L), and lim,,_, s, =
0 (& lim, _, A, =2/L);
(ii) {B,} < (0,1) and 0 < liminf
B <L
(111) {/\i,n} C [ai) bz] C (0’ 2111) andlimnaool/\i,rﬁl_ki,nl =0
fori=1,2;
(iv) {r,} c [e, f1 € (0,20) and lim,,_, 7,1

Then {x,} converges strongly as A, — 2/L(& s, — 0)toa
point q € Q, which is a unique solution of VIP (113).

nooof < limsup, |,

-7, =0.

Corollary 20. Let C be a nonempty closed convex subset of a
real Hilbert space H. Let f : C — R be a convex functional
with L-Lipschitz continuous gradient Vf. Let ® be a bifunction
from C x C to R satisfying (Al)-(A4) and let ¢ : C — R U
{+00} be a proper lower semicontinuous and convex function.
Let B: H — Hand A : C — H be {-inverse strongly
monotone and E-inverse strongly monotone, respectively. Let F :
H — H beax-Lipschitzian and n-strongly monotone operator
with positive constants k,n7 > 0. Let V.: H — H be an I-
Lipschitzian mapping with constant 1 > 0. Let 0 < u < 25/x>

and 0 < yl < 1, where T = 1 — \|1 — u(2n — px?). Assume that

Q := GMEP(0O, ¢, B)NVI(C, A) T # 0 and that either (BI) or
(B2) holds. For arbitrarily given x, € H, let {x,} be a sequence
generated by

O () + 9 () — ¢ (u,) + (Bx,,, y — )

+ l()/—un,u,, -x, =20, VyeC,
rn
v, = Po(l-p,A)u,, (166)
X1 = SV, + BX,
+((1=B) I =s,uF) T, Vnzl,

where Po(I-A,Vf) = s, I1+(1-s,)T, (here T, is nonexpansive
ands, = (2-A,L)/4 € (0,1/2) foreach A,, € (0,2/L)). Assume
that the following conditions hold:
(i) s, € (0,1/2) for each A,, € (0,2/L), and lim,, , s, =
0 (e lim,_, A, =2/L);
ii) {B,} € (0,1) and 0 < liminf
B, <L
(i) {p,} € [a,b] c (0,2&) and lim,, _, ,1p,1
(iv) {r,} c [e, f1 € (0,20) and lim,, _, 7,1

Then {x,} converges strongly as A, — 2/L (&'s, — 0)toa
point q € Q, which is a unique solution of VIP (115).

n—>ooﬁn S llmsupﬂ*)OO

_pn| =0
-7, =0.
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